Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-605-2022
https://doi.org/10.5194/soil-8-605-2022
Original research article
 | 
26 Sep 2022
Original research article |  | 26 Sep 2022

Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition

Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang

Related authors

Magnetic separation reveals overestimation of soil organic matter due to undecomposed particulate residues
Yuhan Xia, Sen Dou, Song Guan, and Dilimulati Yalihong
EGUsphere, https://doi.org/10.5194/egusphere-2025-5686,https://doi.org/10.5194/egusphere-2025-5686, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary

Cited articles

Ahmed, A. A. Q., Odelade, K. A., and Babalola, O. O.: Microbial Inoculants for Improving Carbon Sequestration in Agroecosystems to Mitigate Climate Change, in: Handbook of Climate Change Resilience, edited by: Leal Filho, W., Springer, Cham, 381–401, https://doi.org/10.1007/978-3-319-93336-8_119, 2019. 
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., and Metzger, J. D.: The influence of humic acids derived from earthworm-processed organic wastes on plant growth, Bioresour. Technol., 84, 7–14, https://doi.org/10.1016/s0960-8524(02)00017-2, 2002. 
Bhattacharjya, S., Sahu, A., Phalke, D. H. Manna, M. C., Thakur, J. K., Mandal, A., Tripathi, A. K., Sheoran, P., Choudhary, M., Bhowmick, A., Rahman, M. M., Naidu, R., and Patra, A. K.: In situ decomposition of crop residues using lignocellulolytic microbial consortia: a viable alternative to residue burning, Environ. Sci. Pollut. Res., 28, 32416–32433, https://doi.org/10.1007/s11356-021-12611-8, 2021. 
Blair, G., Lefroy, R., and Lisle, L.: Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems, Aust. J. Agric. Res., 46, 1459–1466, https://doi.org/10.1071/AR9951459,1995. 
Blair, N.: Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia, Soil. Till. Res., 55, 183–191, https://doi.org/10.1016/s0167-1987(00)00113-6, 2000. 
Download
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Share