Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-605-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Yifeng Zhang
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Sen Dou
CORRESPONDING AUTHOR
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Batande Sinovuyo Ndzelu
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Rui Ma
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Dandan Zhang
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Xiaowei Zhang
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Shufen Ye
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Hongrui Wang
College of Resource and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, China
Related authors
No articles found.
Yuhan Xia, Sen Dou, Song Guan, and Dilimulati Yalihong
EGUsphere, https://doi.org/10.5194/egusphere-2025-5686, https://doi.org/10.5194/egusphere-2025-5686, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Straw decomposes readily in soil: residues reduced aliphaticity, enhanced oxidation, higher humification, sharp POM decline. Biochar: highly stable, minimal residue/element shifts, slow POM decline, strong decomposition resistance. vs. CK, CS/Bc have higher POM organic carbon/SOM proportion—"false elevation" from undecomposed residues. Full POM counting risks SOM overestimation: recalcitrant organics’ long persistence biases global SOM assessments, providing key refs for precise SOM evaluation.
Cited articles
Ahmed, A. A. Q., Odelade, K. A., and Babalola, O. O.: Microbial Inoculants for
Improving Carbon Sequestration in Agroecosystems to Mitigate Climate Change,
in: Handbook of Climate Change Resilience, edited by: Leal Filho, W., Springer,
Cham, 381–401, https://doi.org/10.1007/978-3-319-93336-8_119, 2019.
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., and Metzger, J. D.: The
influence of humic acids derived from earthworm-processed organic wastes on
plant growth, Bioresour. Technol., 84, 7–14,
https://doi.org/10.1016/s0960-8524(02)00017-2, 2002.
Bhattacharjya, S., Sahu, A., Phalke, D. H. Manna, M. C., Thakur, J. K., Mandal,
A., Tripathi, A. K., Sheoran, P., Choudhary, M., Bhowmick, A., Rahman, M. M.,
Naidu, R., and Patra, A. K.: In situ decomposition of crop residues using
lignocellulolytic microbial consortia: a viable alternative to residue
burning, Environ. Sci. Pollut. Res., 28, 32416–32433,
https://doi.org/10.1007/s11356-021-12611-8, 2021.
Blair, G., Lefroy, R., and Lisle, L.: Soil carbon fractions based on their
degree of oxidation, and the development of a carbon management index for
agricultural systems, Aust. J. Agric. Res., 46, 1459–1466,
https://doi.org/10.1071/AR9951459,1995.
Blair, N.: Impact of cultivation and sugar-cane green trash management on
carbon fractions and aggregate stability for a Chromic Luvisol in
Queensland, Australia, Soil. Till. Res., 55, 183–191,
https://doi.org/10.1016/s0167-1987(00)00113-6, 2000.
Changtingny, M. H., Curtin, D., Beare, M. H., and Greenfield, L. G.: Influence of
Temperature on Water-Extractable Organic Matter and Ammonium Production in
Mineral Soils, Soil. Sci. Soc. Am. J., 74, 517–524,
https://doi.org/10.2136/sssaj2008.0347, 2010.
Chapin, F. S., Matson, P. A., and Vitousek, P. M.: Plant Nutrient Use, in:
Principles of Terrestrial Ecosystem Ecology, Springer, New York, 229–258 https://doi.org/10.1007/978-1-4419-9504-9_8, 2011.
Chen, H. Q., Hou, R. X., Gong, Y. S., Li, H. W., Fan, M. S., and Kuzyakov, Y.:
Effects of 11 years of conservation tillage on soil organic matter fractions
in wheat monoculture in Loess Plateau of China, Soil. Till. Res., 106,
85–94, https://doi.org/10.1016/j.still.2009.09.009, 2009.
Chen, Z., Wang, H., Liu, X., Zhao, X., Lu, D., Zhou, J., and Li, C.: Changes in
soil microbial community and organic carbon fractions under short-term straw
return in a rice-wheat cropping system, Soil. Till. Res., 165, 121–127,
https://doi.org/10.1016/j.still.2016.07.018, 2017.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The
Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant
litter decomposition with soil organic matter stabilization: do labile plant
inputs form stable soil organic matter?, Glob. Change Biol., 19,
988–995, https://doi.org/10.1111/gcb.12113, 2013.
Dannehl, T., Leithold, G., and Brock, C.: The effect of C:N ratios on the fate of carbon from straw and green manure in soil,
Eur. J. Soil. Sci., 68, 988–998, https://doi.org/10.1111/ejss.12497, 2017.
Dou, S.: Soil organic matter, Science Press, Beijing, China, ISBN: 9787030260710, 2010 (in Chinese).
Dou, S., Shan, J., Song, X., Cao, R., Wu, M., Li, C., and Guan, S.: Are
humic substances soil microbial residues or unique synthesized compounds? A
perspective on their distinctiveness, Pedosphere, 30, 159–167,
https://doi.org/10.1016/s1002-0160(20)60001-7, 2020.
Duval, M. E., Martinez, J. M., Galantini, J. A., and Aitkenhead, M.: Assessing
soil quality indices based on soil organic carbon fractions in different
long-term wheat systems under semiarid conditions, Soil. Use. Manag., 36, 71–82,
https://doi.org/10.1111/sum.12532, 2019.
Fan, W., Wu, J., Li, J., and Hu, J.: Comparative effects of different maize
straw returning modes on soil humus composition and humic acid structural
characteristics in Northeast China, Chem. Ecol., 34, 355–370,
https://doi.org/10.1080/02757540.2018.1437147, 2018.
Gaind, S. and Mathur, R. S.: Influence of Insitu incorporation of organic
waste on chemical and biochemical properties of soil under rice–wheat
cropping system, Ecol. Env. Cons., 7, 269–272, 2001.
Gaind, S. and Nain, L.: Chemical and biological properties of wheat soil in
response to paddy straw incorporation and its biodegradation by fungal
inoculants, Biodegradation, 18, 495–503, https://doi.org/10.1007/s10532-006-9082-6,
2007.
Guan, S., Dou, S., Chen, G., Wang, G., and Zhuang, J.: Isotopic characterization
of sequestration and transformation of plant residue carbon in relation to
soil aggregation dynamics, Appl. Soil. Ecol., 96, 18–24,
https://doi.org/10.1016/j.apsoil.2015.07.004, 2015.
Guan, S., An, N., Zong, N., He, Y. T., Shi, P. L., Zhang, J. J., and He, N. P.:
Climate warming impacts on soil organic carbon fractions and aggregate
stability in a Tibetan alpine meadow, Soil. Biol. Biochem., 116, 224–236,
https://doi.org/10.1007/s10532-006-9082-6, 2018.
Haynes, R. J.: Labile organic matter fractions as central components of the
quality of agricultural soils: an overview, Adv. Agron., 85, 221–268,
https://doi.org/10.1016/s0065-2113(04)85005-3, 2005.
Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J., and de Ruiter, P. C.: Carbon sequestration in ecosystems: the role of stoichiometry, Ecology,
85, 1179–1192, http://www.jstor.org/stable/3450161 (last access: 15 September 2022), 2004.
Huang, H., Zeng, G., Tang, L., Yu, H., Xi, X., Chen, Z., and Huang, G.: Effect
of biodelignification of rice straw on humification and humus quality by
Phanerochaete chrysosporium and Streptomyces badius, Int. Biodeterio.
Biodegra., 61, 331–336, https://doi.org/10.1016/j.ibiod.2007.06.014, 2008.
Huang, R., Tian, D., Liu, J., Lu, S., He, X., and Gao, M.: Responses of soil
carbon pool and soil aggregates associated organic carbon to straw and
straw-derived biochar addition in a dryland cropping mesocosm system, Agric.
Ecosyst. Environ., 265, 576–586, https://doi.org/10.1016/j.agee.2018.07.013, 2018.
Islam, M. A., Mostafa, M. G., and Rahman, M. R.: Conversion of solid organic
waste into compost using Trichoderma spp. and its application on some
selected vegetables. Int. J. Environ. Waste. Manag., 14, 211–221,
https://doi.org/10.1504/IJEWM.2014.064570, 2014.
Jiang, X., Xu, D., Rong, J., Ai, X., Ai, S., Su, X., Sheng, M., Yang, S.,
Zhang, J., and Ai, Y.: Landslide and aspect effects on artificial soil organic
carbon fractions and the carbon pool management index on road-cut slopes in
an alpine region, Catena, 199, 105094, https://doi.org/10.1016/j.catena.2020.105094,
2021.
Kumada, K.: Chemistry of Soil Organic Matter, Band 17 der Reihe Developments in Soil Science, Elsevier/Japan Scientific Societies Press, Amsterdam, 260 p., ISBN: 0-444-98936-6, 1987.
Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., Xu, X.: Black carbon
decomposition and incorporation into soil microbial biomass estimated by
14C labeling, Soil. Biol. Biochem., 41, 210–219,
https://doi.org/10.1016/j.soilbio.2008.10.016, 2009.
Lefroy, R. D. B., Blair, G., and Stong, W. M.: Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance., Plant. Soil., 155, 399–402, https://doi.org/10.1007/BF00025067, 1993.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in
microbial control over soil carbon storage, Nat. Microbiol., 2, 1–6,
https://doi.org/10.1038/nmicrobiol.2017.105, 2017.
Liu, Z., Gao, T., Liu, W., Sun, K., Xin, Y., Liu, H., Wang, S., Li, G., Han,
H., Li, Z., and Ning, T.: Effects of part and whole straw returning on soil
carbon sequestration in C3–C4 rotation cropland. J. Plant. Nutr. Soil Sci.,
50, 73–85, https://doi.org/10.1002/jpln.201800573, 2019.
Ma, L. J., Lv, X. B., Cao, N., Wang, Z., Zhou, Z. G., and Meng, Y. L.:
Alterations of soil labile organic carbon fractions and biological
properties under different residue-management methods with equivalent carbon
input, Appl. Soil. Ecol., 161, 103821, https://doi.org/10.1016/j.apsoil.2020.103821,
2021.
Mandal, B., Majumder, B., Bandyopadhyay, P. K., Hazra, G. C., Gangopadhyay,
A., Samantarayr, N. A., Mishra, K., Chaudhury, J., Saha, M. N., and Kundu, S.:
The potential of cropping systems and soil amendments for carbon
sequestration in soils under long-term experiments in subtropical India,
Glob. Change Biol., 13, 357–369, https://doi.org/10.1111/j.1365-2486.2006.01309.x,
2007.
Ndzelu, B. S., Dou, S., and Zhang, X.: Changes in soil humus composition and
humic acid structural characteristics under different corn straw returning
modes, Soil. Res., 58, 452–460, https://doi.org/10.1071/sr20025, 2020a.
Ndzelu, B. S., Dou, S., and Zhang, X.: Corn straw return can increase labile
soil organic carbon fractions and improve water-stable aggregates in Haplic
Cambisol, J. Arid. Land., 12, 1018–1030, https://doi.org/10.1007/s40333-020-0024-7,
2020b.
Nelson, D. W. and Sommers, L. E.: Total carbon, organic carbon and organic matter, in: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, edited by: Page, A. L., American Society Agronomy, Madison, WI, 539–579, https://doi.org/10.2134/agronmonogr9.2.2ed.c29, 1982.
Ng, L. C., Sariah, M., Radziah, O., Abidin, M. A. Z, and Sariam, O.: Development
of microbial-fortified rice straw compost to improve plant growth,
productivity, soil health, and rice blast disease management of aerobic
rice, Compost. Sci. Util., 24, 86–97, https://doi.org/10.1080/1065657x.2015.1076750,
2016.
Nigussie, A., Dume, B., Ahmed, M., Mamuye, M., Ambaw, G., Berhium, G.,
Biresaw, A., and Aticho, A.: Effect of microbial inoculation on nutrient
turnover and lignocellulose degradation during composting: A meta-analysis,
Waste Manage., 125, 220–234, https://doi.org/10.1016/j.wasman.2021.02.043, 2021.
Olk, D., Perdue, E., McKnight, D., Chen, Y., Farenhorst, A., Senesi, N.,
Chin, Y. P., Schmitt, K. P., Hertkorn, N., and Harir, M.: Environmental and
agricultural relevance of humic fractions extracted by alkali from soils and
natural waters, J. Environ. Qual., 48, 217–232,
https://doi.org/10.2134/jeq2019.02.0041, 2019.
Organo, N. D., Granada, S. M. J. M., Pineda, H. G. S., Sandro, J. M.,
Nguyen, V. H., and Gummert, M.: Assessing the potential of a Trichoderma-based compost
activator to hasten the decomposition of incorporated rice straw,
Sci. Rep., 12, 448, https://doi.org/10.1038/s41598-021-03828-1, 2022.
Pan, F., Li, Y., Chapman, S. J., Khan, S., and Yao, H.: Microbial utilization of
rice straw and its derived biochar in a paddy soil, Sci. Total. Environ.,
559, 15–23, https://doi.org/10.1016/j.scitotenv.2016.03.122, 2016.
Roldán, M. L., Corrado, G., Francioso, O., and Sanchez-Cortes, S.:
Interaction of soil humic acids with herbicide paraquat analyzed by
surface-enhanced Raman scattering and fluorescence spectroscopy on silver
plasmonic nanoparticles, Anal. Chim. Acta, 699, 87–95,
https://doi.org/10.1016/j.aca.2011.05.001, 2011.
Romero, E., Plaza, C., Senesi, N., Nogales, R., and Polo, A.: Humic acid-like
fractions in raw and vermicomposted winery and distillery wastes, Geoderma,
139, 397–406, https://doi.org/10.1016/j.geoderma.2007.03.009, 2007.
Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T., and Insam, H.: Hydrolase
activities, microbial biomass and bacterial community in a soil after
long-term amendment with different composts, Soil. Biol. Biochem., 38,
3443–3452, https://doi.org/10.1016/j.soilbio.2006.05.017, 2006.
Sainepo, B. M., Gachene, C. K., and Karuma, A.: Assessment of soil organic
carbon fractions and carbon management index under different land use types
in Olesharo catchment, Narok county, Kenya, Carbon. Balance. Manag.,
13, 4–13, https://doi.org/10.1186/s13021-018-0091-7, 2018.
Sajid, S., Zveushe, O. K., de Dios, V. R., Nabi, F., Lee, Y. K., Kaleri, A.
R., Ma, L., Zhou, L., Zhang, W., Dong, F., and Han, Y.: Pretreatment of rice
straw by newly isolated fungal consortium enhanced lignocellulose
degradation and humification during composting, Bioresour. Technol.,
354, 127150, https://doi.org/10.1016/j.biortech.2022.127150, 2022.
Sarmistha, S., Harekrushna, S., Totan, A., Pratap, B., Arup, K. M., Gaurav,
K., and Sayaji, T. M.: Trichoderma-mediated rice straw compost promotes plant growth and
imparts stress tolerance, Environ. Sci. Pollut. Res., 21, 13701,
https://doi.org/10.1007/s11356-021-13701-3, 2021.
Siddiquee, S., Shafawati, S. N., and Naher, L.: Effective composting of
empty fruit bunches using potential Trichoderma strains, Biotechnol. Rep., 13, 1–7,
https://doi.org/10.1016/j.btre.2016.11.001, 2017.
Soil Survey Staff: Keys to Soil Taxonomy, 12th edn., United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, ISBN: 978-0160923210, 2014.
Sprunger, C. D., Culman, S. W., Palm, C. A., Thuita, M., and Vanlauwe, B.:
Long-term application of low C:N residues enhances maize yield and soil
nutrient pools across Kenya, Nutr. Cycl. Agroecosyst., 114, 261–276,
https://doi.org/10.1007/s10705-019-10005-4, 2019.
Sugahara, K. and Inoko, A.: Composition analysis of humus and
characterization of humic acid obtained from city refuse compost, Soil Sci.
Plant Nutr., 27, 213–224, https://doi.org/10.1080/00380768.1981.10431273, 1981.
Tang, H. M., Xiao, X. P., Tang, W. G., Li, C., Wang, K., Li, W. Y., Cheng,
K. K., and Pan, X. C.: Long-term effects of NPK fertilizers and organic manures
on soil organic carbon and carbon management index under a double-cropping
rice system in southern China, Commun. Soil. Sci. Plant. Anal., 49,
1976–1989, https://doi.org/10.1080/00103624.2018.1492600, 2018.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for
measuring soil microbial biomass C, Soil. Biol. Biochem., 19, 703–707,
https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
Vanlauwe, B., Gachengo, C., Shepherd, K., Barrios, E., Cadisch, G., and Palm, C. A.: Laboratory validation of a resource quality-based conceptual framework
for organic matter management, Soil. Sci. Soc. Am. J., 69, 1135–1145,
https://doi.org/10.2136/sssaj2004.0089, 2005.
Vargas-García, M. C., Suárez-Estrella, F. F., López, M. J., and
Moreno, J.: Influence of microbial inoculation and co-composting material on
the evolution of humic-like substances during composting of horticultural
wastes, Process Biochem., 41, 1438–1443,
https://doi.org/10.1016/j.procbio.2006.01.011, 2006.
Villamil, M. B., Little, J., and Nafziger, E. D.: Corn residue, tillage, and
nitrogen rate effects on soil properties, Geoderma, 151, 61–66,
https://doi.org/10.1016/j.still.2015.03.005, 2015.
Xu, M., Lou, Y., Sun, X., Wang. W., Baniyamuddin, M., and Zhao, K.: Soil organic
carbon active fractions as early indicators for total carbon change under
straw incorporation, Biol. Fert. Soils., 47, 745–752,
https://doi.org/10.1007/s00374-011-0579-8, 2011.
Yang, X., Meng, J., Lan, Y., Chen, W., Yang, T., Yuan, J., Liu, S., and Han, J.:
Effects of maize stover and its biochar on soil CO2 emissions and
labile organic carbon fractions in Northeast China, Agric. Ecosyst.
Environ., 240, 24–31, https://doi.org/10.1016/j.apsoil.2020.103821, 2020.
Yang, Y. N., Wang, L. L., Zhang, Y. F., Li, L. B., Shi, X. D., Liu, X. T.,
Ren, X. D., and Dou, S.: Transformation of corn stalk residue to humus-like
substances during solid-state fermentation, Sustainability, 11, 6711,
https://doi.org/10.3390/su11236771, 2019.
Zhang, P., Wei, T., Li, Y. L., Wang, K., Jia, A. K., Han, Q. F., and Ren, X. L.:
Effects of straw incorporation on the stratification of the soil organic C,
total N and C:N ratio in a semiarid region of China, Soil Till. Res.,
153, 28–35, https://doi.org/10.1016/j.still.2015.04.008, 2015a.
Zhang, J., Lv, B. Y., Xing, M. Y., and Yang, J.: Tracking the composition and
transformation of humic and fulvic acids during vermicomposting of sewage
sludge by elemental analysis and fluorescence excitation–emission matrix,
Waste Manage., 39, 111–118, https://doi.org/10.1016/j.wasman.2015.02.010, 2015b.
Zhang, X., Dou, S., Ndzelu, B. S., Guan, X. W., Zhang, B. Y., and Bai, Y.:
Effects of different corn straw amendments on humus composition and
structural characteristics of humic acid in black soil, Commun. Soil. Sci.
Plan., 51, 107–117, https://doi.org/10.1080/00103624.2019.1695827, 2019.
Zhang, Y., Dou, S., Hamza, B., Ye, S., and Zhang, D.: Mechanisms of three fungal
types on humic-like substances formation during solid-state fermentation of
corn straw, Intl. J. Agric. Biol., 24, 970–976, http://www.fspublishers.org/Issue.php?y=2020&v_no=23&categoryID=908 (last access: 15 September 2022),
2020.
Zhang, Y. F., Dou, S., Ye, S. F., Zhang, D. D., Ndzelu, B. S., Zhang, X. W., and
Shao, M. J.: Humus composition and humic acid-like structural
characteristics of corn straw culture products treated by three fungi, Chem.
Ecol., 37, 164–184, https://doi.org/10.1080/02757540.2020.1855154, 2021.
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
How to effectively convert corn straw into humic substances and return them to the soil in a...