Articles | Volume 8, issue 2
Original research article
26 Sep 2022
Original research article |  | 26 Sep 2022

Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition

Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang

Related subject area

Soils and biogeochemical cycling
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531,,, 2023
Short summary
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459,,, 2023
Short summary
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Tatjana Carina Speckert, Jeannine Suremann, Konstantin Gavazov, Maria Joao Santos, Frank Hagedorn, and Guido Lars Bruno Wiesenberg
EGUsphere,,, 2023
Short summary
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229,,, 2023
Short summary
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188,,, 2023
Short summary

Cited articles

Ahmed, A. A. Q., Odelade, K. A., and Babalola, O. O.: Microbial Inoculants for Improving Carbon Sequestration in Agroecosystems to Mitigate Climate Change, in: Handbook of Climate Change Resilience, edited by: Leal Filho, W., Springer, Cham, 381–401,, 2019. 
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., and Metzger, J. D.: The influence of humic acids derived from earthworm-processed organic wastes on plant growth, Bioresour. Technol., 84, 7–14,, 2002. 
Bhattacharjya, S., Sahu, A., Phalke, D. H. Manna, M. C., Thakur, J. K., Mandal, A., Tripathi, A. K., Sheoran, P., Choudhary, M., Bhowmick, A., Rahman, M. M., Naidu, R., and Patra, A. K.: In situ decomposition of crop residues using lignocellulolytic microbial consortia: a viable alternative to residue burning, Environ. Sci. Pollut. Res., 28, 32416–32433,, 2021. 
Blair, G., Lefroy, R., and Lisle, L.: Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems, Aust. J. Agric. Res., 46, 1459–1466,,1995. 
Blair, N.: Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia, Soil. Till. Res., 55, 183–191,, 2000. 
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.