Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-547-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-547-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
Jörg Schnecker
CORRESPONDING AUTHOR
Department of Microbiology and Ecosystem Science, University of
Vienna, Vienna 1090, Austria
D. Boone Meeden
Department of Natural Resources and the Environment, University of New
Hampshire, Durham, NH 03824, USA
Francisco Calderon
College of Agricultural Sciences, Oregon State University, Corvallis,
OR 97333, USA
Michel Cavigelli
Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD
20705, USA
R. Michael Lehman
North Central Agricultural Research Laboratory, USDA-ARS, Brookings,
SD 57006, USA
Lisa K. Tiemann
Department of Plant, Soil and Microbial Science, Michigan State
University, East Lansing, MI 48824, USA
A. Stuart Grandy
Department of Natural Resources and the Environment, University of New
Hampshire, Durham, NH 03824, USA
Related authors
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Emily Kyker-Snowman, William R. Wieder, Serita D. Frey, and A. Stuart Grandy
Geosci. Model Dev., 13, 4413–4434, https://doi.org/10.5194/gmd-13-4413-2020, https://doi.org/10.5194/gmd-13-4413-2020, 2020
Short summary
Short summary
Microbes drive carbon (C) and nitrogen (N) transformations in soil, and soil models have started to include explicit microbial physiology and functioning to try to reduce uncertainty in soil–climate feedbacks. Here, we add N cycling to a microbially explicit soil C model and reproduce C and N dynamics in soil during litter decomposition across a range of sites. We discuss model-generated hypotheses about soil C and N cycling and highlight the need for landscape-scale model evaluation data.
Cited articles
Allison, S. D. and Jastrow, J. D.: Activities of extracellular enzymes in
physically isolated fractions of restored grassland soils, Soil Biol.
Biochem., 38, 3245–3256, https://doi.org/10.1016/j.soilbio.2006.04.011, 2006.
Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy
in microbial communities, P. Natl. Acad. Sci. USA, 105,
11512–11519, https://doi.org/10.1073/pnas.0801925105, 2008.
Ashworth, A. J., Allen, F. L., DeBruyn, J. M., Owens, P. R., and Sams, C.:
Crop Rotations and Poultry Litter Affect Dynamic Soil Chemical Properties
and Soil Biota Long Term, J. Environ. Qual., 47, 1327–1338,
https://doi.org/10.2134/jeq2017.12.0465, 2018.
Babin, D., Ding, G.-C., Pronk, G. J., Heister, K., Kögel-Knabner, I., and
Smalla, K.: Metal oxides, clay minerals and charcoal determine the
composition of microbial communities in matured artificial soils and their
response to phenanthrene, FEMS Microbiol. Ecol., 86, 3–14,
https://doi.org/10.1111/1574-6941.12058, 2013.
Bailey, V. L., Smith, A. P., Tfaily, M., Fansler, S. J., and Bond-Lamberty,
B.: Differences in soluble organic carbon chemistry in pore waters sampled
from different pore size domains, Soil Biol. Biochem., 107, 133–143,
https://doi.org/10.1016/j.soilbio.2016.11.025, 2017.
Barnard, R. L., Osborne, C. A., and Firestone, M. K.: Responses of soil
bacterial and fungal communities to extreme desiccation and rewetting, ISME
J., 7, 2229–2241, https://doi.org/10.1038/ismej.2013.104, 2013.
Berglund, Ö. and Berglund, K.: Influence of water table level and soil
properties on emissions of greenhouse gases from cultivated peat soil, Soil
Biol. Biochem., 43, 923–931, https://doi.org/10.1016/j.soilbio.2011.01.002, 2011.
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen
availability, Plant Soil, 10, 9–31, https://doi.org/10.1007/BF01343734, 1958.
Bowles, T. M., Atallah, S. S., Campbell, E. E., Gaudin, A. C. M., Wieder, W.
R., and Grandy, A. S.: Addressing agricultural nitrogen losses in a changing
climate, Nat. Sustain., 1, 399–408, https://doi.org/10.1038/s41893-018-0106-0, 2018.
Bowles, T. M., Mooshammer, M., Socolar, Y., Calderón, F., Cavigelli, M.
A., Culman, S. W., Deen, W., Drury, C. F., Garcia y Garcia, A., Gaudin, A.
C. M., Harkcom, W. S., Lehman, R. M., Osborne, S. L., Robertson, G. P.,
Salerno, J., Schmer, M. R., Strock, J., and Grandy, A. S.: Long-Term Evidence
Shows that Crop-Rotation Diversification Increases Agricultural Resilience
to Adverse Growing Conditions in North America, One Earth, 2, 284–293,
https://doi.org/10.1016/j.oneear.2020.02.007, 2020.
Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform
fumigation and the release of soil nitrogen: A rapid direct extraction
method to measure microbial biomass nitrogen in soil, Soil Biol. Biochem.,
17, 837–842, https://doi.org/10.1016/0038-0717(85)90144-0, 1985.
Calderón, F. J. and Jackson, L. E.: Rototillage, Disking, and Subsequent
Irrigation, J. Environ. Qual., 31, 752–758, https://doi.org/10.2134/jeq2002.7520,
2002.
Canarini, A. and Dijkstra, F. A.: Dry-rewetting cycles regulate wheat carbon
rhizodeposition, stabilization and nitrogen cycling, Soil Biol. Biochem.,
81, 195–203, https://doi.org/10.1016/j.soilbio.2014.11.014, 2015.
Cavigelli, M. A., Teasdale, J. R., and Conklin, A. E.: Long-Term Agronomic
Performance of Organic and Conventional Field Crops in the Mid-Atlantic
Region, Agron. J., 100, 785–794, https://doi.org/10.2134/agronj2006.0373, 2008.
Culman, S. W., Snapp, S. S., Freeman, M. A., Schipanski, M. E., Beniston,
J., Lal, R., Drinkwater, L. E., Franzluebbers, A. J., Glover, J. D., Grandy,
A. S., Lee, J., Six, J., Maul, J. E., Mirksy, S. B., Spargo, J. T., and
Wander, M. M.: Permanganate Oxidizable Carbon Reflects a Processed Soil
Fraction that is Sensitive to Management, Soil Sci. Soc. Am. J., 76,
494–504, https://doi.org/10.2136/sssaj2011.0286, 2012.
Davidson, E. A.: Sources of Nitric Oxide and Nitrous Oxide following Wetting
of Dry Soil, Soil Sci. Soc. Am. J., 56, 95–102,
https://doi.org/10.2136/sssaj1992.03615995005600010015x, 1992.
DeAngelis, K. M., Silver, W. L., Thompson, A. W., and Firestone, M. K.:
Microbial communities acclimate to recurring changes in soil redox potential
status, Environ. Microbiol., 12, 3137–3149,
https://doi.org/10.1111/j.1462-2920.2010.02286.x, 2010.
Ding, G., Liu, X., Herbert, S., Novak, J., Amarasiriwardena, D., and Xing,
B.: Effect of cover crop management on soil organic matter, Geoderma,
130, 229–239, https://doi.org/10.1016/j.geoderma.2005.01.019, 2006.
Evans, S. E. and Wallenstein, M. D.: Soil microbial community response to
drying and rewetting stress: Does historical precipitation regime matter?,
Biogeochemistry, 109, 101–116, https://doi.org/10.1007/s10533-011-9638-3, 2012.
Fierer, N. and Schimel, J. P.: Effects of drying-rewetting frequency on soil
carbon and nitrogen transformations, Soil Biol. Biochem., 34, 777–787,
https://doi.org/10.1016/S0038-0717(02)00007-X, 2002.
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., and Richter, A.:
Experimental drought reduces the transfer of recently fixed plant carbon to
soil microbes and alters the bacterial community composition in a mountain
meadow, New Phytol., 201, 916–927, https://doi.org/10.1111/nph.12569, 2014.
Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., and Glover, L.
A.: Bacterial diversity promotes community stability and functional
resilience after perturbation, Environ. Microbiol., 7, 301–313,
https://doi.org/10.1111/j.1462-2920.2005.00695.x, 2005.
Göransson, H., Godbold, D. L., Jones, D. L., and Rousk, J.: Bacterial
growth and respiration responses upon rewetting dry forest soils: Impact of
drought-legacy, Soil Biol. Biochem., 57, 477–486,
https://doi.org/10.1016/j.soilbio.2012.08.031, 2013.
Grandy, A. S. and Robertson, G. P.: Land-use intensity effects on soil
organic carbon accumulation rates and mechanisms, Ecosystems, 10, 58–73,
https://doi.org/10.1007/s10021-006-9010-y, 2007.
Griffiths, B. S. and Philippot, L.: Insights into the resistance and
resilience of the soil microbial community, FEMS Microbiol. Rev., 37,
112–129, https://doi.org/10.1111/j.1574-6976.2012.00343.x, 2013.
Hammerl, V., Kastl, E. M., Schloter, M., Kublik, S., Schmidt, H., Welzl, G.,
Jentsch, A., Beierkuhnlein, C., and Gschwendtner, S.: Influence of rewetting
on microbial communities involved in nitrification and denitrification in a
grassland soil after a prolonged drought period, Sci. Rep.-UK, 9, 1–10,
https://doi.org/10.1038/s41598-018-38147-5, 2019.
Herron, P. M., Stark, J. M., Holt, C., Hooker, T., and Cardon, Z. G.:
Microbial growth efficiencies across a soil moisture gradient assessed using
13C-acetic acid vapor and 15N-ammonia gas, Soil Biol. Biochem., 41,
1262–1269, https://doi.org/10.1016/j.soilbio.2009.03.010, 2009.
Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald-Lachouani, P.,
and Wanek, W.: Alternative Methods for Measuring Inorganic, Organic, and
Total Dissolved Nitrogen in Soil, Soil Sci. Soc. Am. J., 74, 1018–1027,
https://doi.org/10.2136/sssaj2009.0389, 2010.
Jackson, L. E., Calderon, F. J., Steenwerth, K. L., Scow, K. M., and Rolston,
D. E.: Responses of soil microbial processes and community structure to
tillage events and implications for soil quality, Geoderma, 114,
305–317, https://doi.org/10.1016/S0016-7061(03)00046-6, 2003.
Kaisermann, A., de Vries, F. T., Griffiths, R. I., and Bardgett, R. D.:
Legacy effects of drought on plant-soil feedbacks and plant-plant
interactions, New Phytol., 215, 1413–1424, https://doi.org/10.1111/nph.14661, 2017.
Kaurin, A., Mihelič, R., Kastelec, D., Grčman, H., Bru, D.,
Philippot, L., and Suhadolc, M.: Resilience of bacteria, archaea, fungi and
N-cycling microbial guilds under plough and conservation tillage, to
agricultural drought, Soil Biol. Biochem., 120, 233–245,
https://doi.org/10.1016/j.soilbio.2018.02.007, 2018.
Killham, K. and Firestone, M. K.: Salt Stress Control of Intracellular
Solutes in Streptomycetes Indigenous to Saline Soils, Appl. Environ.
Microb., 47, 301–306, https://doi.org/10.1128/aem.47.2.301-306.1984, 1984.
King, A. E. and Blesh, J.: Crop rotations for increased soil carbon:
perenniality as a guiding principle, Ecol. Appl., 28, 249–261,
https://doi.org/10.1002/eap.1648, 2018.
Kramer, S., Marhan, S., Haslwimmer, H., Ruess, L., and Kandeler, E.: Temporal
variation in surface and subsoil abundance and function of the soil
microbial community in an arable soil, Soil Biol. Biochem., 61,
76–85, https://doi.org/10.1016/j.soilbio.2013.02.006, 2013.
Lehman, R. M., Osborne, S. L., and Duke, S. E.: Diversified No-Till Crop
Rotation Reduces Nitrous Oxide Emissions, Increases Soybean Yields, and
Promotes Soil Carbon Accrual, Soil Sci. Soc. Am. J., 81, 76–83,
https://doi.org/10.2136/sssaj2016.01.0021, 2017.
Li, X., Miller, A. E., Meixner, T., Schimel, J. P., Melack, J. M., and
Sickman, J. O.: Adding an empirical factor to better represent the rewetting
pulse mechanism in a soil biogeochemical model, Geoderma, 159,
440–451, https://doi.org/10.1016/j.geoderma.2010.09.012, 2010.
Linn, D. M. and Doran, J. W.: Aerobic and Anaerobic Microbial Populations in
No-till and Plowed Soils, Soil Sci. Soc. Am. J., 48, 794–799,
https://doi.org/10.2136/sssaj1984.03615995004800040019x, 1984.
McDaniel, M. D. and Grandy, A. S.: Soil microbial biomass and function are altered by 12 years of crop rotation, SOIL, 2, 583–599, https://doi.org/10.5194/soil-2-583-2016, 2016.
McDaniel, M. D., Tiemann, L. K., and Grandy, A. S.: Does agricultural crop
diversity enhance soil microbial biomass and organic matter dynamics? A
meta-analysis, Ecol. Appl., 24, 560–570, https://doi.org/10.1890/13-0616.1, 2014.
Mooshammer, M., Hofhansl, F., Frank, A. H., Wanek, W., Hämmerle, I.,
Leitner, S., Schnecker, J., Wild, B., Watzka, M., Keiblinger, K. M.,
Zechmeister-Boltenstern, S., and Richter, A.: Decoupling of microbial carbon,
nitrogen, and phosphorus cycling in response to extreme temperature events,
Sci. Adv., 3, e1602781, https://doi.org/10.1126/sciadv.1602781, 2017.
Muhr, J., Goldberg, S. D., Borken, W., and Gebauer, G.: Repeated
drying-rewetting cycles and their effects on the emission of CO2, N2O, NO,
and CH4 in a forest soil, J. Plant Nutr. Soil Sc., 171, 719–728,
https://doi.org/10.1002/jpln.200700302, 2008.
Paul, E. A., Morris, S. J., and Bohm, S.: The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers, in: Assessment Methods for Soil Carbon, edited by: Lal, R., Kimble, J. M., Follett, R. F., and Stewart, B. A., 193–206, https://doi.org/10.1201/9781482278644, CRC Press, Boca Raton, Florida, USA, 2001.
Randle-Boggis, R. J., Ashton, P. D., and Helgason, T.: Increasing flooding
frequency alters soil microbial communities and functions under laboratory
conditions, Microbiologyopen, 7, e00548, https://doi.org/10.1002/mbo3.548, 2018.
R Development Core Team: R: A language and environment for statistical
computing, available at: http://www.r-project.org/ (last access: 16 August 2021), 2013.
Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., and Sanderman, J.:
Microbial degradation of organic carbon sorbed to phyllosilicate clays with
and without hydrous iron oxide coating, Eur. J. Soil Sci., 66, 83–94,
https://doi.org/10.1111/ejss.12180, 2015.
Schimel, J. P.: Life in Dry Soils: Effects of Drought on Soil Microbial
Communities and Processes, Annu. Rev. Ecol. Evol. Syst., 49, 409–432,
https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D.
P., Kleber, M., and Ko, I.: Persistence of soil organic matter as an
ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schnecker, J.: Soil data, Phaidra [data set], https://doi.org/11353/10.1220845, 2021a.
Schnecker, J.: Respiration rates, Phaidra [data set], https://doi.org/11353/10.1220845, 2021b.
Schnecker, J., Wild, B., Takriti, M., Eloy Alves, R. J., Gentsch, N.,
Gittel, A., Hofer, A., Klaus, K., Knoltsch, A., Lashchinskiy, N., Mikutta,
R., and Richter, A.: Microbial community composition shapes enzyme patterns
in topsoil and subsoil horizons along a latitudinal transect in Western
Siberia, Soil Biol. Biochem., 83, 106–115, https://doi.org/10.1016/j.soilbio.2015.01.016, 2015.
Schnecker, J., Bowles, T., Hobbie, E. A., Smith, R. G., and Grandy, A. S.:
Substrate quality and concentration control decomposition and microbial
strategies in a model soil system, Biogeochemistry, 144, 47–59,
https://doi.org/10.1007/s10533-019-00571-8, 2019.
Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., and Rey, A.:
Exchange of greenhouse gases between soil and atmosphere: interactions of
soil physical factors and biological processes, Eur. J. Soil Sci., 54,
779–791, https://doi.org/10.1046/j.1351-0754.2003.0567.x, 2003.
Steinweg, J. M., Dukes, J. S., Paul, E. A., and Wallenstein, M. D.: Microbial
responses to multi-factor climate change: effects on soil enzymes, Front.
Microbiol., 4, 146, https://doi.org/10.3389/fmicb.2013.00146, 2013.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Alexander, L.
V., Allen, S. K., Bindoff, N. L., Breon, F.-M., Church, J. A., Cubasch, U.,
Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M.,
Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar Kanikicharla,
K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I.
I., Piao, S., Plattner, G.-K., Dahe, Q., Ramaswamy, V., Randall, D., Rhein,
M., Rojas, M., Sabine, C., Shindell, D., Stocker, T. F., Talley, L. D.,
Vaughan, D. G., Xie, S.-P., Allen, M. R., Boucher, O., Chambers, D.,
Hesselbjerg Christensen, J., Ciais, P., Clark, P. U., Collins, M., Comiso,
J. C., Vasconcellos de Menezes, V., Feely, R. A., Fichefet, T., Fiore, A.
M., Flato, G., Fuglestvedt, J., Hegerl, G., Hezel, P. J., Johnson, G. C.,
Kaser, G., Kattsov, V., Kennedy, J., Klein Tank, A. M. G., Le Quere, C.,
Myhre, G., Osborn, T., Payne, A. J., Perlwitz, J., Power, S., Prather, M.,
Rintoul, S. R., Rogelj, J., Rusticucci, M., Schulz, M., Sedlacek, J., Stott,
P. A., Sutton, R., Thorne, P. W., and Wuebbles, D.: Climate Change 2013. The
Physical Science Basis. Working Group I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change – Abstract for
decision-makers; Changements climatiques 2013. Les elements scientifiques.
Contribution du groupe de travail I au cinquieme rapport d'evaluation du
groupe d'experts intergouvernemental sur l'evolution du CLIMAT – Resume a
l'intention des decideurs, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Tecon, R. and Or, D.: Biophysical processes supporting the diversity of
microbial life in soil, FEMS Microbiol. Rev., 41, 599–623,
https://doi.org/10.1093/femsre/fux039, 2017.
Tiemann, L. K. and Billings, S. A.: Changes in variability of soil moisture
alter microbial community C and N resource use, Soil Biol. Biochem., 43,
1837–1847, https://doi.org/10.1016/j.soilbio.2011.04.020, 2011.
Tiemann, L. K. and Billings, S. A.: Tracking C and N flows through microbial
biomass with increased soil moisture variability, Soil Biol. Biochem., 49,
11–22, https://doi.org/10.1016/j.soilbio.2012.01.030, 2012.
Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., and
McDaniel, M. D.: Crop rotational diversity enhances belowground communities
and functions in an agroecosystem, edited by D. Hooper, Ecol. Lett., 18,
761–771, https://doi.org/10.1111/ele.12453, 2015.
Unger, S., Máguas, C., Pereira, J. S., David, T. S., and Werner, C.: The
influence of precipitation pulses on soil respiration – Assessing the “Birch effect” by stable carbon isotopes, Soil Biol. Biochem., 42,
1800–1810, https://doi.org/10.1016/j.soilbio.2010.06.019, 2010.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: Microbial biomass
measurements in forest soils: The use of the chloroform
fumigation-incubation method in strongly acid soils, Soil Biol. Biochem.,
19, 697–702, https://doi.org/10.1016/0038-0717(87)90051-4, 1987.
Venter, Z. S., Jacobs, K., and Hawkins, H. J.: The impact of crop rotation on
soil microbial diversity: A meta-analysis, Pedobiologia, 59,
215–223, https://doi.org/10.1016/j.pedobi.2016.04.001, 2016.
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R., and Hart, M.:
Cover crops to increase soil microbial diversity and mitigate decline in
perennial agriculture. A review, Agron. Sustain. Dev., 36, 1–14,
https://doi.org/10.1007/s13593-016-0385-7, 2016.
Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., and Samson-Liebig, S.
E.: Estimating active carbon for soil quality assessment: A simplified
method for laboratory and field use, Am. J. Alternative Agr., 18, 3–17,
https://doi.org/10.1079/AJAA2003003, 2003.
White, K. E., Cavigelli, M. A., Conklin, A. E., and Rasmann, C.: Economic
Performance of Long-term Organic and Conventional Crop Rotations in the
Mid-Atlantic, Agron. J., 111, 1358–1370, https://doi.org/10.2134/agronj2018.09.0604,
2019.
Wood, J. M.: Bacterial responses to osmotic challenges, J. Gen. Physiol.,
145, 381–388, https://doi.org/10.1085/jgp.201411296, 2015.
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Drought and flooding challenge agricultural systems and their management globally. Here we...