Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-547-2021
https://doi.org/10.5194/soil-7-547-2021
Original research article
 | 
26 Aug 2021
Original research article |  | 26 Aug 2021

Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations

Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy

Related authors

Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024,https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic
N. Gentsch, R. Mikutta, R. J. E. Alves, J. Barta, P. Čapek, A. Gittel, G. Hugelius, P. Kuhry, N. Lashchinskiy, J. Palmtag, A. Richter, H. Šantrůčková, J. Schnecker, O. Shibistova, T. Urich, B. Wild, and G. Guggenberger
Biogeosciences, 12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015,https://doi.org/10.5194/bg-12-4525-2015, 2015

Related subject area

Soils and biogeochemical cycling
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024,https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024,https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024,https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Freeze-thaw processes correspond to the protection-loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Ruizhe Wang and Xia Hu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1833,https://doi.org/10.5194/egusphere-2024-1833, 2024
Short summary
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024,https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary

Cited articles

Allison, S. D. and Jastrow, J. D.: Activities of extracellular enzymes in physically isolated fractions of restored grassland soils, Soil Biol. Biochem., 38, 3245–3256, https://doi.org/10.1016/j.soilbio.2006.04.011, 2006. 
Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy in microbial communities, P. Natl. Acad. Sci. USA, 105, 11512–11519, https://doi.org/10.1073/pnas.0801925105, 2008. 
Ashworth, A. J., Allen, F. L., DeBruyn, J. M., Owens, P. R., and Sams, C.: Crop Rotations and Poultry Litter Affect Dynamic Soil Chemical Properties and Soil Biota Long Term, J. Environ. Qual., 47, 1327–1338, https://doi.org/10.2134/jeq2017.12.0465, 2018. 
Babin, D., Ding, G.-C., Pronk, G. J., Heister, K., Kögel-Knabner, I., and Smalla, K.: Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene, FEMS Microbiol. Ecol., 86, 3–14, https://doi.org/10.1111/1574-6941.12058, 2013. 
Bailey, V. L., Smith, A. P., Tfaily, M., Fansler, S. J., and Bond-Lamberty, B.: Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains, Soil Biol. Biochem., 107, 133–143, https://doi.org/10.1016/j.soilbio.2016.11.025, 2017. 
Download
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.