Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-161-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils
INRAE, Infosol, 45075 Orléans, France
Nicolas P. A. Saby
INRAE, Infosol, 45075 Orléans, France
Claudy C. Jolivet
INRAE, Infosol, 45075 Orléans, France
Line Boulonne
INRAE, Infosol, 45075 Orléans, France
Giovanni Caria
INRAE, US 0010 Laboratoire d'analyses des sols, 273 Rue de Cambrai,
62000 Arras, France
Xavier Freulon
MINES ParisTech, Centre de Géosciences, 35 Rue
Saint-Honoré, 77305 Fontainebleau, France
Chantal de Fouquet
MINES ParisTech, Centre de Géosciences, 35 Rue
Saint-Honoré, 77305 Fontainebleau, France
Hélène Roussel
ADEME International, 20 Ave Gresille, 49004 Angers 01, 75006 Paris, France
Franck Marot
ADEME International, 20 Ave Gresille, 49004 Angers 01, 75006 Paris, France
Antonio Bispo
INRAE, Infosol, 45075 Orléans, France
ADEME International, 20 Ave Gresille, 49004 Angers 01, 75006 Paris, France
Related authors
No articles found.
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Christophe Djemiel, Samuel Dequiedt, Walid Horrigue, Arthur Bailly, Mélanie Lelièvre, Julie Tripied, Charles Guilland, Solène Perrin, Gwendoline Comment, Nicolas P. A. Saby, Claudy Jolivet, Antonio Bispo, Line Boulonne, Antoine Pierart, Patrick Wincker, Corinne Cruaud, Pierre-Alain Maron, Sébastien Terrat, and Lionel Ranjard
SOIL, 10, 251–273, https://doi.org/10.5194/soil-10-251-2024, https://doi.org/10.5194/soil-10-251-2024, 2024
Short summary
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023, https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
Short summary
We introduce Shapley values for machine learning model interpretation and reveal the local and global controlling factors of soil organic carbon (SOC) stocks. The method enables spatial analysis of the important variables. Vegetation and topography determine much of the SOC stock variation in mainland France. We conclude that SOC stock variation is complex and should be interpreted at multiple levels.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Cited articles
ADEME: Méthodologie de détermination des valeurs de fonds dans les sols: Echelle territoriale, Groupe de travail sur les valeurs de fonds, 112 pp., 2018.
Aichner, B., Bussian, B., Lehnik-Habrink, P., and Hein, S.: Levels and
spatial distribution of persistent organic pollutants in the environment: A
case study of German forest soils, Environ. Sci. Technol., 47,
12703–12714, https://doi.org/10.1021/es4019833, 2013.
Albanese, S., Fontaine, B., Chen, W., Lima, A., Cannatelli, C., Piccolo, A.,
Qi, S., Wang, M., and De Vivo, B.: Polycyclic aromatic hydrocarbons in the
soils of a densely populated region and associated human health risks: the
Campania Plain (Southern Italy) case study, Environ. Geochem. Hlth., 37, 1–20, https://doi.org/10.1007/s10653-014-9626-3, 2015.
Anyanwu, I. N. and Semple, K. T.: Fate and behaviour of nitrogen-containing
polycyclic aromatic hydrocarbons in soil, Environ. Technol. Innov., 3,
108–120, https://doi.org/10.1016/j.eti.2015.02.006, 2015.
Bertrand, O., Mondamert, L., Grosbois, C., Dhivert, E., Bourrain, X.,
Labanowski, J., and Desmet, M.: Storage and source of polycyclic aromatic
hydrocarbons in sediments downstream of a major coal district in France,
Environ. Pollut., 207, 329–340, https://doi.org/10.1016/j.envpol.2015.09.028, 2015.
Biache, C., Ghislain, T., Faure, P., and Mansuy-Huault, L.: Low temperature
oxidation of a coking plant soil organic matter and its major constituents:
An experimental approach to simulate a long term evolution,
J. Hazard. Mater., 188, 221–230, https://doi.org/10.1016/j.jhazmat.2011.01.102, 2011.
Biache, C., Mansuy-Huault, L., and Faure, P.: Impact of oxidation and
biodegradation on the most commonly used polycyclic aromatic hydrocarbon
(PAH) diagnostic ratios: Implications for the source identifications, J.
Hazard. Mater., 267, 31–39, https://doi.org/10.1016/j.jhazmat.2013.12.036, 2014.
Bogan, B. W. and Sullivan, W. R.: Physicochemical soil parameters affecting
sequestration and mycobacterial biodegradation of polycyclic aromatic
hydrocarbons in soil, Chemosphere, 52, 1717–1726,
https://doi.org/10.1016/S0045-6535(03)00455-7, 2003.
Brändli, R. C., Bucheli, T. D., Ammann, S., Desaules, A., Keller, A.,
Blum, F., and Stahel, W. A.: Critical evaluation of PAH source apportionment
tools using data from the Swiss soil monitoring network, J. Environ. Monitor., 10, 1278–1286, https://doi.org/10.1039/b807319h, 2008.
Bruce, E. D., Abusalih, A. A., McDonald, T. J., and Autenrieth, R. L.:
Comparing deterministic and probabilistic risk assessments for sites
contaminated by polycyclic aromatic hydrocarbons (PAHs), J. Environ. Sci. Heal. A, 42, 697–706, https://doi.org/10.1080/10934520701304328, 2007.
Brus, D. J., Lamé, F. P. J., and Nieuwenhuis, R. H.: National baseline
survey of soil quality in the Netherlands, Environ. Pollut., 157, 2043–2052,
https://doi.org/10.1016/j.envpol.2009.02.028, 2009.
Bull, S. and Collins, C.: Promoting the use of BaP as a marker for PAH
exposure in UK soils, Environ. Geochem. Hlth., 35, 101–109,
https://doi.org/10.1007/s10653-012-9462-2, 2013.
Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F., and Duarte, A. C.:
Levels, sources and potential human health risks of organic pollutants in
urban soils, Sci. Total Environ., 430, 184–192,
https://doi.org/10.1016/j.scitotenv.2012.04.075, 2012a.
Cachada, A., Pereira, M. E., da Silva, E. F., and Duarte, A. C.:
Sources of potentially toxic elements and organic pollutants in an urban
area subjected to an industrial impact, Environ. Monit. Assess., 184,
15–32, https://doi.org/10.1007/s10661-011-1943-8, 2012b.
Cachada, A., da Silva, E. F., Duarte, A. C., and Pereira, R.: Risk
assessment of urban soils contamination: The particular case of polycyclic
aromatic hydrocarbons, Sci. Total Environ., 551–552, 271–284,
https://doi.org/10.1016/j.scitotenv.2016.02.012, 2016.
Canadian Council of Ministers of the Environment (CCME): Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects), Scientific Criteria Document (revised), 216 pp., 2010.
Carre, F., Caudeville, J., Bonnard, R., Bert, V., Boucard, P., and Ramel, M.:
Soil Contamination and Human Health: A Major Challenge for Global Soil
Security, in: Global Soil Security, edited by: Field, D. J., Morgan, C. L. S., and McBratney, A. B., Springer Int. Publishing AG, Cham, Switzerland, 275–295, 2017.
Chilès, J.-P. and Delfiner, P.: Geostatistics: Modeling Spatial
Uncertainty, edn. 2, John Wiley & Sons Inc., Hoboken, New Jersey, USA,
2012.
Cui, S., Zhang, Z., Fu, Q., Hough, R., Yates, K., Osprey, M., Yakowa, G., and
Coull, M.: Long-term spatial and temporal patterns of polycyclic aromatic
hydrocarbons (PAHs) in Scottish soils over 20 years (1990–2009): A national
picture, Geoderma, 361, 114135, https://doi.org/10.1016/j.geoderma.2019.114135, 2020.
Desaules, A., Ammann, S., Blum, F., Brändli, R., and Bucheli, T. D.:
Teneurs en HAP et en PCB dans les sols en Suisse, Résultats de
l'Observatoire national des sols 1995/1999, Obs. Natl. des sols, 96 pp., available at: http://www.nabo.admin.ch (last access: 20 May 2021), 2010.
Duan, L., Naidu, R., Thavamani, P., Meaklim, J., and Megharaj, M.: Managing
long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based
approach, Environ. Sci. Pollut. R., 22, 8927–8941,
https://doi.org/10.1007/s11356-013-2270-0, 2015.
Elmquist, M., Zencak, Z., and Gustafsson, Ö.: A 700 year sediment record
of black carbon and polycyclic aromatic hydrocarbons near the EMEP air
monitoring station in Aspvreten, Sweden, Environ. Sci. Technol., 41,
6926–6932, https://doi.org/10.1021/es070546m, 2007.
Emery, X.: Ordinary multigaussian kriging for mapping conditional
probabilities of soil properties, Geoderma, 132, 75–88,
https://doi.org/10.1016/j.geoderma.2005.04.019, 2006.
Fernández, P., Vilanova, R. M., Martínez, C., Appleby, P., and
Grimalt, J. O.: The Historical Record of Atmospheric Pyrolytic Pollution
over Europe Registered in the Sedimentary PAH from Remote Mountain Lakes,
Environ. Sci. Technol., 34, 1906–1913, https://doi.org/10.1021/es9912271, 2000.
Flipo, N., Labadie, P., and Lestel, L. (Eds.): Correction to: The Seine River Basin, in: The Seine River Basin, The Handbook of Environmental Chemistry, vol. 90. Springer, Cham., https://doi.org/10.1007/698_2020_667, 2020.
Fouedjio, F., Desassis, N., and Rivoirard, J.: A generalized convolution
model and estimation for non-stationary random functions, Spat. Stat.-Neth., 16, 35–52, https://doi.org/10.1016/j.spasta.2016.01.002, 2016.
Froger, C., Quantin, C., Gasperi, J., Caupos, E., Monvoisin, G., Evrard, O.,
and Ayrault, S.: Impact of urban pressure on the spatial and temporal
dynamics of PAH fluxes in an urban tributary of the Seine River (France),
Chemosphere, 219, 1002–1013, https://doi.org/10.1016/j.chemosphere.2018.12.088, 2019.
Froger, C., Saby, N., Jolivet, C., Boulonne, L., Freulon, X., de Fouquet, C., Roussel, H., Marot, F., and Bispo, A.: Données de réplication pour: Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils, Portail Data INRAe [data set], https://doi.org/10.15454/WPR2C9, 2021.
Gabrieli, J., Vallelonga, P., Cozzi, G., Gabrielli, P., Gambaro, A., Sigl,
M., Decet, F., Schwikowski, M., Gäggeler, H., Boutron, C., Cescon, P.,
and Barbante, C.: Post 17th-century changes of european pah emissions
recorded in high-altitude alpine snow and ice, Environ. Sci. Technol.,
44, 3260–3266, https://doi.org/10.1021/es903365s, 2010.
Gaspéri, J., Ayrault, S., Moreau-Guigon, E., Alliot, F., Labadie, P.,
Budzinski, H., Blanchard, M., Muresan, B., Caupos, E., Cladière, M.,
Gateuille, D., Tassin, B., Bordier, L., Teil, M.-J., Bourges, C., Desportes,
A., Chevreuil, M., and Moilleron, R.: Contamination of soils by metals and
organic micropollutants: case study of the Parisian conurbation, Environ. Sci. Pollut. R., 25, 23559–23573, https://doi.org/10.1007/s11356-016-8005-2,
2018.
Gateuille, D., Evrard, O., Lefevre, I., Moreau-Guigon, E., Alliot, F.,
Chevreuil, M., and Mouchel, J.-M.: Combining measurements and modelling to
quantify the contribution of atmospheric fallout, local industry and road
traffic to PAH stocks in contrasting catchments, Environ. Pollut., 189,
152–160, https://doi.org/10.1016/j.envpol.2014.02.029, 2014a.
Gateuille, D., Evrard, O., Lefevre, I., Moreau-Guigon, E., Alliot, F.,
Chevreuil, M., and Mouchel, J.-M.: Mass balance and decontamination times of
Polycyclic Aromatic Hydrocarbons in rural nested catchments of an early
industrialized region (Seine River basin, France), Sci. Total Environ.,
470–471, 608–617, https://doi.org/10.1016/j.scitotenv.2013.10.009, 2014b.
Gocht, T., Ligouis, B., Hinderer, M., and Grathwohl, P.: Accumulation of
Polycyclic aromatic Hydrocarbons in rural Soils based on Mass balances at
the Catchment scale, Environ. Toxicol. Chem., 26, 591–600, https://doi.org/10.1897/06-287R.1, 2007.
Grimmer, G.: PAH – Their contribution to the carcinogenicity of various
emissions, Toxicol. Environ. Chem., 10, 171–181,
https://doi.org/10.1080/02772248509357101, 1985.
Gubler, A., Wächter, D., Blum, F., and Bucheli, T. D.: Remarkably
constant PAH concentrations in Swiss soils over the last 30 years,
Environ. Sci.-Proc. Imp., 17, 1816–1828, https://doi.org/10.1039/c5em00344j, 2015.
Hack, A. and Selenka, F.: Mobilization of PAH and PCB from contaminated soil
using a digestive tract model, Toxicol. Lett., 88, 199–210,
https://doi.org/10.1016/0378-4274(96)03738-1, 1996.
Harrison, R. M., Smith, D. J. T., and Luhana, L.: Source apportionment of
atmospheric polycyclic aromatic hydrocarbons collected from an urban
location in Birmingham, U.K, Environ. Sci. Technol., 30, 825–832, 1996.
Heywood, E., Wright, J., Wienburg, C. L., Black, H. I. J., Long, S. M.,
Osborn, D., and Spurgeon, D. J.: Factors influencing the national
distribution of polycyclic aromatic hydrocarbons and polychlorinated
biphenyls in British soils, Environ. Sci. Technol., 40, 7629–7635,
https://doi.org/10.1021/es061296x, 2006.
IRIS, NCEA and U.S. EPA: Executive summary, New Dir. Youth Dev., 2008, 7–12, https://doi.org/10.1002/yd.282, 2008.
Jensen, H., Reimann, C., Finne, T. E., Ottesen, R. T., and Arnoldussen, A.:
PAH-concentrations and compositions in the top 2 cm of forest soils along a
120 km long transect through agricultural areas, forests and the city of
Oslo, Norway, Environ. Pollut., 145, 829–838,
https://doi.org/10.1016/j.envpol.2006.05.008, 2007.
Katsoyiannis, A. and Breivik, K.: Model-based evaluation of the use of
polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source
identification tool, Environ. Pollut., 184, 488–494,
https://doi.org/10.1016/j.envpol.2013.09.028, 2014.
Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E.
G., Von Baer, D., and Oyola, P.: Source Apportionment of Urban Particulate
Aliphatic and Polynuclear Aromatic Hydrocarbons (PAHs) Using Multivariate
Methods, Environ. Sci. Technol., 35, 2288–2294, https://doi.org/10.1021/es001540z,
2001.
Kazunga, C., Aitken, M. D., Gold, A., and Sangaiah, R.: Fluoranthene-2,3- and
-1,5-diones are novel products from the bacterial transformation of
fluoranthene, Environ. Sci. Technol., 35, 917–922,
https://doi.org/10.1021/es001605y, 2001.
Keyte, I. J., Albinet, A., Harrison, R. M., and Harrison, R. M.: On-road
traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and
nitro-derivative compounds measured in road tunnel environments, Sci. Total
Environ., 566–567, 1131–1142, https://doi.org/10.1016/j.scitotenv.2016.05.152, 2016.
Killops, S. D. and Massoud, M. S.: Polycyclic aromatic hydrocarbons of
pyrolytic origin in ancient sediments: evidence for Jurassic vegetation
fires, Org. Geochem., 18, 1–7, https://doi.org/10.1016/0146-6380(92)90137-M, 1992.
Kim, M., Kennicutt, M. C., and Qian, Y.: Source characterization using
compound composition and stable carbon isotope ratio of PAHs in sediments
from lakes, harbor, and shipping waterway, Sci. Total Environ., 389,
367–377, https://doi.org/10.1016/j.scitotenv.2007.08.045, 2008.
Lark, R.: Modelling complex soil properties as contaminated regionalized
variables, Geoderma, 106, 173–190, https://doi.org/10.1016/S0016-7061(01)00123-9, 2002.
Larsen, R. K. and Baker, J. E.: Source Apportionment of Polycyclic Aromatic
Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods,
Environ. Sci. Technol., 37, 1873–1881, https://doi.org/10.1021/es0206184, 2003.
Leorri, E., Mitra, S., Irabien, M. J., Zimmerman, A. R., Blake, W. H., and
Cearreta, A.: A 700 year record of combustion-derived pollution in northern
Spain: Tools to identify the Holocene/Anthropocene transition in coastal
environments, Sci. Total Environ., 470–471, 240–247, https://doi.org/10.1016/j.scitotenv.2013.09.064,
2014.
Liu, G., Niu, J., Guo, W., An, X., and Zhao, L.: Ecological and health
risk-based characterization of agricultural soils contaminated with
polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in
China, Chemosphere, 163, 461–470, https://doi.org/10.1016/j.chemosphere.2016.08.056,
2016.
Lohmann, R., Northcott, G. L., and Jones, K. C.: Assessing the contribution
of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the
U.K. Atmosphere, Environ. Sci. Technol., 34, 2892–2899,
https://doi.org/10.1021/es991183w, 2000.
Lorgeoux, C., Moilleron, R., Gasperi, J., Ayrault, S., Bonté, P.,
Lefèvre, I., Tassin, B., Bonté, P., Lefèvre, I., and Tassin, B.:
Temporal trends of persistent organic pollutants in dated sediment cores:
Chemical fingerprinting of the anthropogenic impacts in the Seine River
basin, Paris, Sci. Total Environ., 541, 1355–1363,
https://doi.org/10.1016/j.scitotenv.2015.09.147, 2016.
Ma, L., Zhang, J., Han, L., Li, W., Xu, L., Hu, F., and Li, H.: The effects
of aging time on the fraction distribution and bioavailability of PAH,
Chemosphere, 86, 1072–1078, https://doi.org/10.1016/j.chemosphere.2011.11.065,
2012.
Ma, W. L., Liu, L. Y., Tian, C. G., Qi, H., Jia, H. L., Song, W. W., and Li,
Y. F.: Polycyclic aromatic hydrocarbons in Chinese surface soil: occurrence
and distribution, Environ. Sci. Pollut. R., 22, 4190–4200,
https://doi.org/10.1007/s11356-014-3648-3, 2015.
Maliszewska-Kordybach, B.: Polycyclic aromatic hydrocarbons in agricultural
soils in Poland: preliminary proposals for criteria to evaluate the level of
soil contamination, Appl. Geochem., 11, 121–127,
https://doi.org/10.1016/0883-2927(95)00076-3, 1996.
Maliszewska-Kordybach, B.: Persistent Organic Contaminants in the Environment: PAHs as a Case Study, in: Bioavailability of Organic Xenobiotics in the Environment, edited by: Baveye, P., Block, J. C., and Goncharuk, V. V., NATO ASI Series (Series 2: Environment), Springer, Dordrecht, the Netherlands, 3–34, https://doi.org/10.1007/978-94-015-9235-2_1, 1999.
Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A., and Terelak,
H.: Monitoring of the total content of polycyclic aromatic hydrocarbons
(PAHs) in arable soils in Poland, Chemosphere, 73, 1284–1291,
https://doi.org/10.1016/j.chemosphere.2008.07.009, 2008.
MINES ParisTech/ARMINES: RGeostats: The Geostatistical R Package, Version: 12.0.1, available at: http://cg.ensmp.fr/rgeostats (last access: 31 May 2021), 2020.
Morales-Caselles, C., Yunker, M. B., and Ross, P. S.: Identification of
Spilled Oil from the MV Marathassa (Vancouver, Canada 2015) Using Alkyl PAH
Isomer Ratios, Arch. Environ. Con. Tox., 73, 118–130,
https://doi.org/10.1007/s00244-017-0390-0, 2017.
Morillo, E., Romero, A. S., Madrid, L., Villaverde, J., and Maqueda, C.:
Characterization and sources of PAHs and potentially toxic metals in urban
environments of Sevilla (southern Spain), Water Air Soil Poll.,
187, 41–51, https://doi.org/10.1007/s11270-007-9495-9, 2008.
Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M. J., Blanchard, M., and
Chevreuil, M.: Distribution and spatial trends of PAHs and PCBs in soils in
the Seine River basin, France, Chemosphere, 55, 555–565,
https://doi.org/10.1016/j.chemosphere.2003.11.054, 2004.
Ouvrard, S., Chenot, E.-D., Masfaraud, J.-F., and Schwartz, C.: Long-term
assessment of natural attenuation: statistical approach on soils with aged
PAH contamination, Biodegradation, 24, 539–548,
https://doi.org/10.1007/s10532-013-9618-5, 2013.
Pacyna, J. M., Breivik, K., Münch, J., and Fudala, J.: European
atmospheric emissions of selected persistent organic pollutants, 1970–1995,
Atmos. Environ., 37, 119–131, https://doi.org/10.1016/S1352-2310(03)00240-1, 2003.
Pereira, M.: Generalized random fields on Riemannian manifolds: theory and
practice, PSL Research University, Paris, France, available at:
https://pastel.archives-ouvertes.fr/tel-02499376 (last access: 23 June 2020), 2019.
Petitgas, P., Woillez, M., Doray, M., and Rivoirard, J.: Handbook
of geostatistics in R for fisheries and marine ecology, Indicator-Based Geostatistical Models For Mapping Fish Survey Data, Math. Geosci., 50, 187–208, https://doi.org/10.1007/s11004-018-9725-2, 2018.
Petitgas, P., Woillez, M., Doray, M., and Rivoirard, J.: Indicator-Based
Geostatistical Models For Mapping Fish Survey Data, Math. Geosci., 50,
187–208, https://doi.org/10.1007/s11004-018-9725-2, 2018.
Petrišič, M. G., Muri, G., and Ogrinc, N.: Source identification and
sedimentary record of polycyclic aromatic hydrocarbons in lake bled (NW
Slovenia) using stable carbon isotopes, Environ. Sci. Technol., 47,
1280–1286, https://doi.org/10.1021/es303832v, 2013.
Pies, C., Yang, Y., and Hofmann, T.: Distribution of polycyclic aromatic
hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River,
J. Soils Sediments, 7, 216–222, https://doi.org/10.1065/jss2007.06.233, 2007.
Qi, P., Qu, C., Albanese, S., Lima, A., Cicchella, D., Hope, D., Cerino, P.,
Pizzolante, A., Zheng, H., Li, J., and De Vivo, B.: Investigation of
polycyclic aromatic hydrocarbons in soils from Caserta provincial territory,
southern Italy: Spatial distribution, source apportionment, and risk
assessment, J. Hazard. Mater., 383, 121158,
https://doi.org/10.1016/j.jhazmat.2019.121158, 2020.
Ravindra, K., Sokhi, R., and Vangrieken, R.: Atmospheric polycyclic aromatic
hydrocarbons: Source attribution, emission factors and regulation, Atmos.
Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Reeves, W. R., Mcdonald, T. J., Bordelon, N. R., George, S. E., and Donnelly,
K. C.: Impacts of aging on in vivo and in vitro measurements of soil-bound
polycyclic aromatic hydrocarbon availability, Environ. Sci. Technol., 35,
1637–1643, https://doi.org/10.1021/es0017110, 2001.
Rivoirard, J.: Introduction to disjunctive kriging and non-linear
geostatistics, California University, Clarendon Press, 180 pp., 1994.
Rivoirard, J. and Romary, T.: Continuity for Kriging with Moving
Neighborhood, Math. Geosci., 43, 469–481, https://doi.org/10.1007/s11004-011-9330-0,
2011.
Saby, N., Freulon, X., and Froger, C.: R code for the statistical analysis for: Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils, Portail Data INRAE [code], V2, https://doi.org/10.15454/BJFUEV, 2021.
Schmidt, S. N., Christensen, J. H., and Johnsen, A. R.: Fungal
PAH-metabolites resist mineralization by soil microorganisms, Environ. Sci.
Technol., 44, 1677–1682, https://doi.org/10.1021/es903415t, 2010.
Semple, K. T., Morriss, A. W. J., and Paton, G. I.: Bioavailability of
hydrophobic organic contaminants in soils: fundamental concepts and
techniques for analysis, Eur. J. Soil Sci., 54, 809–818,
2003.
Switzer, P. and Green, A.: Min/max autocorrelation factors for multivariate
spatial imagery, Technical report No. 6, Computer Science and Statistics, Vol. 16, 16 pp., 1984.
Tobiszewski, M. and Namieśnik, J.: PAH diagnostic ratios for the
identification of pollution emission sources, Environ. Pollut., 162,
110–119, https://doi.org/10.1016/j.envpol.2011.10.025, 2012.
Tong, R., Yang, X., Su, H., Pan, Y., Zhang, Q., Wang, J., and Long, M.:
Levels, sources and probabilistic health risks of polycyclic aromatic
hydrocarbons in the agricultural soils from sites neighboring suburban
industries in Shanghai, Sci. Total Environ., 616–617, 1365–1373,
https://doi.org/10.1016/j.scitotenv.2017.10.179, 2018.
USEPA: Human Health Evaluation Manual Part (B, Development of Risk-based Preliminary Remediation Goals), Risk Assess. Guid. Superfund, I(December), 66, available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/100020LF.PDF?Dockey=100020LF.PDF (last access: 12 September 2020), 1991.
USEPA: Soil Screening Guidance: User's Guide, Environmental Protection Agency, 1–49, Washington DC, USA, available at: https://rais.ornl.gov/documents/SSG_nonrad_user.pdf (last access: 12 September 2020), 1996.
USEPA: Risk Assessment Guidance for Superfund (RAGS) Volume III – Part A:
Process for Conducting Probabilistic Risk Assessment, Appendix B, Risk
Assess. Guid. Superfund, 1–385, available at:
http://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf (last access: 15 September 2020), 2001.
USEPA: Regional Screening Levels (RSLs), U.S. Environmental Protection
Agency, Washington DC, available at:
https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide,
last access: 1 October 2020.
Villanneau, E., Saby, N. P. A., Arrouays, D., Jolivet, C. C., Boulonne, L.,
Caria, G., Barriuso, E., Bispo, A., and Briand, O.: Spatial distribution of
lindane in topsoil of Northern France, Chemosphere, 77, 1249–1255,
https://doi.org/10.1016/j.chemosphere.2009.08.060, 2009.
Villanneau, E. J., Saby, N. P. A., Orton, T. G., Jolivet, C. C., Boulonne,
L., Caria, G., Barriuso, E., Bispo, A., Briand, O., and Arrouays, D.: First
evidence of large-scale PAH trends in French soils, Environ. Chem. Lett.,
11, 99–104, https://doi.org/10.1007/s10311-013-0401-y, 2013.
Wang, C., Wu, S., Zhou, S., Wang, H., Li, B., Chen, H., Yu, Y., and Shi, Y.:
Polycyclic aromatic hydrocarbons in soils from urban to rural areas in
Nanjing: Concentration, source, spatial distribution, and potential human
health risk, Sci. Total Environ., 527–528, 375–383,
https://doi.org/10.1016/j.scitotenv.2015.05.025, 2015.
Wang, C., Wu, S., Zhou, S., Shi, Y., and Song, J.: Characteristics and Source
Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soils: A
Review, Pedosphere, 27, 17–26, https://doi.org/10.1016/S1002-0160(17)60293-5, 2017a.
Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F., and Gao, Y.:
Contamination and health risk assessment of PAHs in soils and crops in
industrial areas of the Yangtze River Delta region, China, Chemosphere, 168, 976–987,
https://doi.org/10.1016/j.chemosphere.2016.10.113, 2017b.
Wang, X.-T., Miao, Y., Zhang, Y., Li, Y.-C., Wu, M.-H., and Yu, G.:
Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity
Shanghai: Occurrence, source apportionment and potential human health risk,
Sci. Total Environ., 447, 80–89, https://doi.org/10.1016/j.scitotenv.2012.12.086, 2013.
Webster, R. and Oliver, M.: Geostatistics for Environmental Scientists, 2nd Edn., Wiley, Chichester, England, 315 pp., 2007.
Wenzel, K. D., Manz, M., Hubert, A., and Schüürmann, G.: Fate of POPs
(DDX, HCHs, PCBs) in upper soil layers of pine forests, Sci. Total Environ.,
286, 143–154, https://doi.org/10.1016/S0048-9697(01)00972-X, 2002.
Yang, W., Lang, Y., and Li, G.: Cancer risk of polycyclic aromatic
hydrocarbons (PAHs) in the soils from Jiaozhou Bay wetland, Chemosphere,
112, 289–295, https://doi.org/10.1016/j.chemosphere.2014.04.074, 2014.
Yang, Y., Ligouis, B., Pies, C., Achten, C., and Hofmann, T.: Identification
of carbonaceous geosorbents for PAHs by organic petrography in river
floodplain soils, Chemosphere, 71, 2158–2167,
https://doi.org/10.1016/j.chemosphere.2008.01.010, 2008.
Yu, L., Duan, L., Naidu, R., and Semple, K. T.: Abiotic factors controlling
bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in
soil: Putting together a bigger picture, Sci. Total Environ., 613–614,
1140–1153, https://doi.org/10.1016/j.scitotenv.2017.09.025, 2018.
Yuan, K., Wang, X., Lin, L., Zou, S., Li, Y., Yang, Q., and Luan, T.:
Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the
Pearl River Estuary, Daya Bay and northern South China Sea: Influence of
riverine input, Environ. Pollut., 199, 66–72,
https://doi.org/10.1016/j.envpol.2015.01.017, 2015.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D.,
and Sylvestre, S.: PAHs in the Fraser River basin: a critical appraisal of
PAH ratios as indicators of PAH source and composition, Org. Geochem.,
33, 489–515, https://doi.org/10.1016/S0146-6380(02)00002-5, 2002.
Yunker, M. B., McLaughlin, F. A., Fowler, M. G., and Fowler, B. R.: Source
apportionment of the hydrocarbon background in sediment cores from Hecate
Strait, a pristine sea on the west coast of British Columbia, Canada, Org.
Geochem., 76, 235–258, https://doi.org/10.1016/j.orggeochem.2014.08.010, 2014.
Zhang, R., Li, T., Russell, J., Zhang, F., Xiao, X., Cheng, Y., Liu, Z.,
Guan, M., and Han, Q.: Source apportionment of polycyclic aromatic
hydrocarbons in continental shelf of the East China Sea with dual
compound-specific isotopes (δ13C and δ2H), Sci. Total
Environ., 704, 135459, https://doi.org/10.1016/j.scitotenv.2019.135459, 2020.
Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., and Liu, S. Z.: Source
Diagnostics of Polycyclic Aromatic Hydrocarbons Based on Species Ratios: A
Multimedia Approach, Environ. Sci. Technol., 39, 9109–9114,
https://doi.org/10.1021/es0513741, 2005.
Zheng, T., Ran, Y., and Chen, L.: Polycyclic aromatic hydrocarbons (PAHs) in
rural soils of Dongjiang River Basin: Occurrence, source apportionment, and
potential human health risk, J. Soils Sediments, 14, 110–120,
https://doi.org/10.1007/s11368-013-0753-8, 2014.
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic...