Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-549-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-549-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling
Florian Wilken
CORRESPONDING AUTHOR
Department of Environmental Systems Science, Eidgenössische
Technische Hochschule Zürich, Zürich, Switzerland
Institute for Geography, Universität Augsburg, Augsburg, Germany
Michael Ketterer
Chemistry and Biochemistry, Northern Arizona University, Flagstaff,
USA
Sylvia Koszinski
Working Group Landscape Pedology, Leibniz-Centre for Agricultural
Landscape Research ZALF e.V., Müncheberg, Germany
Michael Sommer
Working Group Landscape Pedology, Leibniz-Centre for Agricultural
Landscape Research ZALF e.V., Müncheberg, Germany
Institute of Environmental Science and Geography, University of
Potsdam, Potsdam, Germany
Peter Fiener
Institute for Geography, Universität Augsburg, Augsburg, Germany
Related authors
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Hadi Shokati, Kay D. Seufferheld, Peter Fiener, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3146, https://doi.org/10.5194/egusphere-2025-3146, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Floods threaten lives and property and require rapid mapping. We compared two artificial intelligence approaches on aerial imagery: a fine‑tuned Segment Anything Model (SAM) guided by point or bounding box prompts, and a U‑Net network with ResNet‑50 and ResNet‑101 backbones. The point‑based SAM was the most accurate with precise boundaries. Faster and more reliable flood maps help rescue teams, insurers, and planners to act quickly.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
Hydrol. Earth Syst. Sci., 29, 2185–2200, https://doi.org/10.5194/hess-29-2185-2025, https://doi.org/10.5194/hess-29-2185-2025, 2025
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, is likely to be more significant for water losses by runoff leading to flooding and water scarcity and is therefore an important part of the solution to mitigate floods, droughts, and heatwaves.
Luis Alfredo Pires Barbosa, Martin Leue, Marc Wehrhan, and Michael Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-746, https://doi.org/10.5194/egusphere-2025-746, 2025
Short summary
Short summary
Healthy soils need plant biomass, especially roots, to function properly. Our study examined how different wheat varieties and soil erosion impact root growth and carbon storage. We found that tillage erosion significantly reduced total wheat biomass, while newer wheat varieties produced more grain but contributed less carbon to the soil. Simulations showed that modern varieties are more sensitive to dry conditions, highlighting a trade-off between higher yields and long-term soil health.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Cited articles
Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., and Ketterer, M. E.:
Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment
in mountain grasslands, Chemosphere, 103, 274–280,
https://doi.org/10.1016/j.chemosphere.2013.12.016, 2014.
Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.:
239+240Pu from “contaminant” to soil erosion tracer: Where do we stand?,
Earth-Sci. Rev., 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017.
Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE:
Chances, challenges and limitations of soil erosion modelling, International
Soil and Water Conservation Research, 7, 203–225,
https://doi.org/10.1016/j.iswcr.2019.05.004, 2019.
Auerswald, K., Fiener, P., Martin, W., and Elhaus, D.: Use and misuse of the
K factor equation in soil erosion modeling: An alternative equation for
determining USLE nomograph soil erodibility values, Catena, 118, 220–225,
2014.
Belyaev, V. R., Wallbrink, P. J., Golosov, V. N., Murray, A. S., and
Sidorchuk, A. Y.: A comparison of methods for evaluating soil redistribution
in the severely eroded Stavropol region, southern European Russia,
Geomorphology, 65, 173–193, https://doi.org/10.1016/j.geomorph.2004.09.001, 2005.
BGR: Erodierbarkeit der Ackerböden durch Wasser in Deutschland,
Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 2014a.
BGR: Erosivität der Niederschläge in Deutschland, Bundesanstalt
für Geowissenschaften und Rohstoffe, Hannover, 2014b.
Blume, H. P., Bruemmer, G. W., Horn, R., Kandeler, E., Koegel-Knabner, I.,
Kretzschmar, R., Stahr, K., and Wilke, B. M.: Scheffer/Schachtschabel
Lehrbuch der Bodenkunde, Springer Spektrum, Berlin, Germany, 2016.
Boulyga, S. F., and Becker, J. S.: Isotopic analysis of uranium and
plutonium using ICP-MS and estimation of burn-up of spent uranium in
contaminated environmental samples, J. Anal. Atom. Spectrom., 17, 1143–1147,
https://doi.org/10.1039/B202196J, 2002.
Calitri, F., Sommer, M., Norton, K., Temme, A., Brandova, D., Portes, R.,
Christl, M., Ketterer, M. E., and Egli, M.: Tracing the temporal evolution
of soil redistribution rates in an agricultural landscape using 239+240Pu
and 10Be, Earth Surf. Proc. Land., 44, 1783–1798, https://doi.org/10.1002/esp.4612,
2019.
Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby,
N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F. J.
P. M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo,
M. J., and Dostal, T.: Rates and spatial variations of soil erosion in
Europe: A study based on erosion plot data, Geomorphology, 122, 167–177,
https://doi.org/10.1016/j.geomorph.2010.06.011, 2010.
Chartin, C., Evrard, O., Salvador-Blanes, S., Hinschberger, F., Van Oost,
K., Lefevre, I., Daroussin, J., and Macaire, J. J.: Quantifying and
modelling the impact of land consolidation and field borders on soil
redistribution in agricultural landscapes (1954–2009), Catena, 110, 184–195,
https://doi.org/10.1016/j.catena.2013.06.006, 2013.
Ciampalini, R., Follain, S., and Le Bissonnais, Y.: LandSoil: A model for
analysing the impact of erosion on agricultural landscape evolution,
Geomorphology, 175, 25–37, https://doi.org/10.1016/j.geomorph.2012.06.014, 2012.
Deumlich, D.: Erosive Niederschläge und ihre Eintrittswahrscheinlichkeit
im Norden Deutschlands, Meteorol. Z., 8, 155–161, 1999.
Deumlich, D., Jha, A., and Kirchner, G.: Comparing measurements, 7Be
radiotracer technique and process-based erosion model for estimating
short-term soil loss from cultivated land in Northern Germany, Soil
Water Res., 12, 177–186, https://doi.org/10.17221/124/2016-swr, 2017.
Dlugoß, V., Fiener, P., Van Oost, K., and Schneider, K.: Model based
analysis of lateral and vertical soil C fluxes induced by soil
redistribution processes in a small agricultural watershed, Earth Surf.
Proc. Land., 37, 193–208, https://doi.org/10.1002/esp.2246, 2012.
Evangeliou, N., Hamburger, T., Talerko, N., Zibtsev, S., Bondar, Y., Stohl,
A., Balkanski, Y., Mousseau, T. A., and Moller, A. P.: Reconstructing the
Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique
database of air concentration and deposition measurements over Europe,
Environ. Pollut., 216, 408–418, https://doi.org/10.1016/j.envpol.2016.05.030, 2016.
Evrard, O., Chaboche, P.-A., Ramon, R., Foucher, A., and Laceby, J. P.: A
global review of sediment source fingerprinting research incorporating
fallout radiocesium (137Cs), Geomorphology, 362, 107103, https://doi.org/10.1016/j.geomorph.2020.107103, 2020.
Fachbereichsstandard-DDR: Verfahren der Pflanzenproduktion,
Bodenbearbeitung, Krumenbearbeitung, TGL 28∘759/03, Akademie der
Landwirtschaftswissenschaften, Berlin, 1985.
Fiener, P., Dlugoß, V., and Van Oost, K.: Erosion-induced carbon
redistribution, burial and mineralisation – Is the episodic nature of
erosion processes important?, Catena, 133, 282–292,
https://doi.org/10.1016/j.catena.2015.05.027, 2015.
Fiener, P., Wilken, F., Aldana-Jague, E., Deumlich, D., Gómez, J. A.,
Guzmán, G., Hardy, R. A., Quinton, J. N., Sommer, M., Van Oost, K., and
Wexler, R.: Uncertainties in assessing tillage erosion – How appropriate
are our measuring techniques?, Geomorphology, 304, 214–225, https://doi.org/10.1016/j.geomorph.2017.12.031, 2018.
Fiener, P., Wilken, F., and Auerswald, K.: Filling the gap between plot and landscape scale – eight years of soil erosion monitoring in 14 adjacent watersheds under soil conservation at Scheyern, Southern Germany, Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, 2019.
Forstner, B. and Isermeyer, F.: Transformation of Agriculture in East
Germany, in: Agriculture in Germany, edited by: Tangermann, S., DLG Verlag,
Frankfurt a. Main, Germany, 61–90, 2000.
Gerke, H. H., Koszinski, S., Kalettka, T., and Sommer, M.: Structures and
hydrologic function of soil landscapes with kettle holes using an integrated
hydropedological approach, J. Hydrol., 393, 123–132,
https://doi.org/10.1016/j.jhydrol.2009.12.047, 2010.
Govers, G., Vandaele, K., Desmet, P., Poesen, J., and Bunte, K.: The role of
tillage in soil redistribution on hillslopes, Eur. J. Soil Sci., 45,
469–478, https://doi.org/10.1111/j.1365-2389.1994.tb00532.x, 1994.
Heckrath, G., Djurhuus, J., Quine, T. A., Van Oost, K., Govers, G., and
Zhang, Y.: Tillage erosion and its effect on soil properties and crop yield
in Denmark, J. Environ. Qual., 34, 312–324, 2005.
Hengl, T. and MacMillan, R. A.: Predictive soil mapping with R, OpenGeoHub
foundation, Wageningen, the Netherlands, 2019.
Herbrich, M., Gerke, H. H., Bens, O., and Sommer, M.: Water balance and
leaching of dissolved organic and inorganic carbon of eroded Luvisols using
high precision weighing lysimeters, Soil Till. Res., 165, 144–160,
https://doi.org/10.1016/j.still.2016.08.003, 2017.
Hu, Y. and Kuhn, N. J.: Aggregates reduce transport distance of soil organic carbon: are our balances correct?, Biogeosciences, 11, 6209–6219, https://doi.org/10.5194/bg-11-6209-2014, 2014.
Hu, Y. X., Berhe, A. A., Fogel, M. L., Heckrath, G. J., and Kuhn, N. J.:
Transport-distance specific SOC distribution: Does it skew erosion induced C
fluxes?, Biogeochemistry, 128, 339–351, https://doi.org/10.1007/s10533-016-0211-y, 2016.
IUSS: World reference base for soil resources 2014. Update 2015.
International soil classification system for naming soils and creating
legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome,
2015.
Kappler, C., Kaiser, K., Tanski, P., Klos, F., Fulling, A., Mrotzek, A.,
Sommer, M., and Bens, O.: Stratigraphy and age of colluvial deposits
indicating Late Holocene soil erosion in northeastern Germany, Catena, 170,
224–245, https://doi.org/10.1016/j.catena.2018.06.010, 2018.
Kashparov, V. A., Ahamdach, N., Zvarich, S. I., Yoschenko, V. I., Maloshtan,
I. M., and Dewiere, L.: Kinetics of dissolution of Chernobyl fuel particles
in soil in natural conditions, J. Environ. Radioactiv., 72, 335–353,
https://doi.org/10.1016/j.jenvrad.2003.08.002, 2004.
Keller, T., Sandin, M., Colombi, T., Horn, R., and Or, D.: Historical
increase in agricultural machinery weights enhanced soil stress levels and
adversely affected soil functioning, Soil Till. Res., 194,
https://doi.org/10.1016/j.still.2019.104293, 2019.
Kelley, J. M., Bond, L. A., and Beasley, T. M.: Global distribution of Pu
isotopes and 237Np, Sci. Total Environ., 238, 483–500,
https://doi.org/10.1016/s0048-9697(99)00160-6, 1999.
Ketterer, M. E., Hafer, K. M., Link, C. L., Kolwaite, D., Wilson, J., and
Mietelski, J. W.: Resolving global versus local/regional Pu sources in the
environment using sector ICP-MS, J. Anal. At. Spectrom., 19, 241–245,
https://doi.org/10.1039/b302903d, 2004.
Krasa, J., Dostal, T., Jachymova, B., Bauer, M., and Devaty, J.: Soil
erosion as a source of sediment and phosphorus in rivers and reservoirs –
Watershed analyses using WaTEM/SEDEM, Environ. Res., 171, 470–483,
https://doi.org/10.1016/j.envres.2019.01.044, 2019.
Lal, R., Ahmadi, M., and Bajracharya, R. M.: Erosional impacts on soil
properties and corn yield on Alfisols in central Ohio, Land Degrad. Dev.,
11, 575–585, 2000.
Li, S., Lobb, D. A., Lindstrom, M. J., and Farenhorst, A.: Tillage and water
erosion on different landscapes in the northern North American Great Plains
evaluated using Cs137 technique and soil erosion models, Catena, 70,
493–505, https://doi.org/10.1016/j.catena.2006.12.003, 2007.
Li, S., Lobb, D. A., Lindstrom, M. J., and Farenhorst, A.: Patterns of water
and tillage erosion on topographically complex landscapes in the North
American Great Plains, J. Soil Water Conserv., 63, 37–46, 2008.
Lust, M. and Realo, E.: Determination of dose rate from Chernobyl-derived
radiocaesium in Estonian soil, J. Environ. Radioactiv., 112, 118–124,
https://doi.org/10.1016/j.jenvrad.2012.05.021, 2012.
Mabit, L., Meusburger, K., Fulajtar, E., and Alewell, C.: The usefulness of
137Cs as a tracer for soil erosion assessment: A critical reply to Parsons
and Foster (2011), Earth-Sci. Rev., 127, 300–307,
https://doi.org/10.1016/j.earscirev.2013.05.008, 2013.
Mabit, L., Benmansour, M., Abril, J. M., Walling, D. E., Meusburger, K.,
Iurian, A. R., Bernard, C., Tarjan, S., Owens, P. N., Blake, W. H., and
Alewell, C.: Fallout 210Pb as a soil and sediment tracer in catchment
sediment budget investigations: A review, Earth-Sci. Rev., 138, 335–351,
https://doi.org/10.1016/j.earscirev.2014.06.007, 2014.
Matsunaga, T. and Nagao, S.: Environmental behavior of plutonium isotopes
studied in the area affected by the Chernobyl accident, Humic Substances
Research, 5/6, 19–33, 2009.
Meusburger, K., Mabit, L., Ketterer, M., Park, J. H., Sandor, T., Porto, P.,
and Alewell, C.: A multi-radionuclide approach to evaluate the suitability
of 239+240Pu as soil erosion tracer, Sci. Total Environ.,
566, 1489–1499, https://doi.org/10.1016/j.scitotenv.2016.06.035, 2016.
Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., and Vargas, R.: World's soils are under threat, SOIL, 2, 79–82, https://doi.org/10.5194/soil-2-79-2016, 2016.
Muramatsu, Y., Ruhm, W., Yoshida, S., Tagami, K., Uchida, S., and Wirth, E.:
Concentrations of 239Pu and 240Pu and their isotopic ratios determined by
ICP-MS in soils collected from the Chernobyl 30-km zone, Environ. Sci.
Technol., 34, 2913–2917, https://doi.org/10.1021/es0008968, 2000.
Nadeu, E., Gobin, A., Fiener, P., Van Wesemael, B., and Van Oost, K.:
Modelling the impact of agricultural management on soil carbon stocks at the
regional scale: the role of lateral fluxes, Glob. Change Biol., 21,
3181–3192, https://doi.org/10.1111/gcb.12889, 2015.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models: Part I. A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nie, X. J., Zhang, H. B., and Su, Y. Y.: Soil carbon and nitrogen fraction
dynamics affected by tillage erosion, Sci. Rep., 9, 16601,
https://doi.org/10.1038/s41598-019-53077-6, 2019.
Olson, K. R., Gennadiyev, A. N., Jones, R. L., and Chernyanskii, S.: Erosion
patterns on cultivated and reforested hillslopes in Moscow region, Russia,
Soil Sci. Soc. Am. J., 66, 193–201, https://doi.org/10.2136/sssaj2002.0193, 2002.
Papiernik, S. K., Lindstrom, M. J., Schumacher, J. A., Farenhorst, A., Stephens, K. D., Schumacher, T. E., and Lobb, D. A.: Variation in soil properties and crop yield across an eroded prairie landscape, J. Soil Water Conserv., 60, 388–395, 2005.
Parsons, A. J. and Foster, I. D. L.: What can we learn about soil erosion
from the use of 137Cs?, Earth-Sci. Rev., 108, 101–113, 2011.
Pebesma, E. J.: Mutivariable geostatistics in S: the gstat package, Comput.
Geosci., 30, 683–691, 2004.
Pennock, D. J.: Terrain attributes, landform segmentation, and soil
redistribution, Soil Till. Res., 69, 15–26, 2003.
Pimentel, D. and Burgess, M.: Soil erosion threatens food production,
Agriculture, 3, 443–463, https://doi.org/10.3390/agriculture3030443, 2013.
Porto, P. and Walling, D. E.: Using plot experiments to test the validity
of mass balance models employed to estimate soil redistribution rates from
137Cs and 210Pb-ex measurements, Appl. Radiat. Isotopes., 70, 2451–2459,
https://doi.org/10.1016/j.apradiso.2012.06.012, 2012.
Quine, T. A., Desmet, P. J. J., Govers, G., Vandaele, K., and Walling, D.
E.: A comparison of the roles of tillage and water erosion in landform
development and sediment export on agricultural land near Leuven, Belgium,
IAHS Publications, 224, 77–86, 1994.
Quine, T. A. and and Zhang, Y.: An investigation of spatial variation in soil erosion, soil properties, and crop production within an agricultural field in Devon, United Kingdom, J. Soil Water Conserv., 57, 55–65, 2002.
R Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 27 October 2020), 2019.
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D.
C.: Predicting soil erosion by water: A guide to conservation planning with
the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook 703,
USDA-ARS, Washington DC, 1996.
Schimmack, W., Auerswald, K., and Bunzl, K.: Can 239+240Pu replace 137Cs
as an erosion tracer in agricultural landscapes contaminated with Chernobyl
fallout?, J. Environ. Radioactiv., 53, 41–57, https://doi.org/10.1016/S0265-931X(00)00117-X,
2001.
Schwertmann, U., Vogl, W., and Kainz, M.: Bodenerosion durch Wasser –
Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, Ulmer Verlag,
Stuttgart, 64 pp., 1990.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis
– A “time split” approach for hummocky agricultural landscapes,
Geoderma, 145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012, 2008.
Tiessen, K. H. D., Lobb, D. A., Mehuys, G. R., and Rees, H. W.: Tillage
erosion within potato production in Atlantic Canada: II – Erosivity of
primary and secondary tillage operations, Soil Till. Res., 95, 320–331,
https://doi.org/10.1016/j.still.2007.02.009, 2007a.
Tiessen, K. H. D., Mehuys, G. R., Lobb, D. A., and Rees, H. W.: Tillage
erosion within potato production systems in Atlantic Canada – I. Measurement
of tillage translocation by implements used in seedbed preparation, Soil
Till. Res., 95, 308–319, https://doi.org/10.1016/j.still.2007.02.003, 2007b.
Troegel, T. and Schulz, C.: Ergebnisse der Agrarstrukturerhebung 2016
für das Land Brandenburg, Zeitschrift für amtliche Statistik Berlin
Brandenburg, 1, 44–60, 2018.
Van der Meij, W. M., Temme, A., Wallinga, J., Hierold, W., and Sommer, M.:
Topography reconstruction of eroding landscapes – A case study from a
hummocky ground moraine (CarboZALF-D), Geomorphology, 295, 758–772,
https://doi.org/10.1016/j.geomorph.2017.08.015, 2017.
van der Meij, W. M., Reimann, T., Vornehm, V. K., Temme, A., Wallinga, J.,
van Beek, R., and Sommer, M.: Reconstructing rates and patterns of colluvial
soil redistribution in agrarian (hummocky) landscapes, Earth Surf. Proc.
Land., 44, 2408–2422, https://doi.org/10.1002/esp.4671, 2019.
Van Oost, K. and Govers, G.: Tillage erosion, in: Soil erosion in Europe,
edited by: Boardman, J. and Poesen, J., Wiley, Chichester, 599–608, 2006.
Van Oost, K., Govers, G., and Desmet, P.: Evaluating the effects of changes
in landscape structure on soil erosion by water and tillage, Landscape
Ecol., 15, 577–589, 2000.
Van Oost, K., Govers, G., and Van Muysen, W.: A process-based conversion
model for caesium-137 derived erosion rates on agricultural land: An
integrated spatial approach, Earth Surf. Proc. Land., 28, 187–207, 2003.
Van Oost, K., Quine, T., Govers, G., and Heckrath, G.: Modeling soil erosion
induced carbon fluxes between soil and atmosphere on agricultural land using
SPEROS-C, in: Advances in soil science. Soil erosion and carbon dynamics,
edited by: Roose, E. J., Lal, R., Feller, C., Barthes, B., and Stewart, B.
A., CRC Press, Boca Raton, 37–51, 2005a.
Van Oost, K., Van Muysen, W., Govers, G., Deckers, J., and Quine, T. A.:
From water to tillage erosion dominated landform evolution, Geomorphology,
72, 193–203, https://doi.org/10.1016/j.geomorph.2005.05.010, 2005b.
Van Oost, K., Govers, G., De Alba, S., and Quine, T. A.: Tillage erosion: a
review of controlling factors and implications for soil quality, Prog. Phys.
Geogr., 30, 443–466, https://doi.org/10.1191/0309133306pp487ra, 2006.
Van Rompaey, A. J. J., Verstraeten, G., Van Oost, K., Govers, G., and
Poesen, J.: Modelling mean annual sediment yield using a distributed
approach, Earth Surf. Proc. Land., 26, 1221–1236, 2001.
Wallbrink, P. J. and Murray, A. S.: Use of radionuclides as indicators of
erosion processes, Hydrol. Process., 7, 297–304, https://doi.org/10.1002/hyp.3360070307,
1993.
Walling, D. E., Zhang, Y., and He, Q.: Models for deriving estimates of
erosion and deposition rates from fallout radionuclide (caesium-137, excess
lead-210, and beryllium-7) measurements and the development of user-friendly
software for model implementation, Impact of soil conservation measures on
erosion control and soil quality, Vienna, Austria, 11–33, 2011.
Wilken, F., Fiener, P., and Van Oost, K.: Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model, Earth Surf. Dynam., 5, 113–124, https://doi.org/10.5194/esurf-5-113-2017, 2017a.
Wilken, F., Sommer, M., Van Oost, K., Bens, O., and Fiener, P.: Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes, SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, 2017b.
Wilken, F., Baur, M., Sommer, M., Deumlich, D., Bens, O., and Fiener, P.:
Uncertainties in rainfall kinetic energy-intensity relations for soil
erosion modelling, Catena, 171, 234–244, https://doi.org/10.1016/j.catena.2018.07.002, 2018.
Winnige, B.: Ergebnisse zur Bodenverlagerung durch Bearbeitungserosion in
der Jungmoraenenlandschaft Nordostdeutschlands: Investigations of soil
movement by tillage as a type of soil erosion in the young moraine soil
landscape of Northeast Germany, Arch. Agron. Soil Sci., 50,
319–327, https://doi.org/10.1080/03650340410001663864, 2004.
Wolz, A.: The organisation of agricultural production in East Germany since
World War II: Historical roots and present situation, Leibniz-Institut
für Agrarentwicklung in Mittel- und Osteuropa (IAMO), Halle, Germany,
2013.
Wysocka-Czubaszek, A. and Czubaszek, R.: Tillage erosion: The principles,
controlling factors and main implications for future research, J. Ecol.
Eng., 15, 150–159, https://doi.org/10.12911/22998993.1125470, 2014.
Xu, Y. H., Pan, S. M., Wu, M. M., Zhang, K. X., and Hao, Y. P.: Association
of plutonium isotopes with natural soil particles of different size and
comparison with 137Cs, Sci. Total Environ., 581, 541–549,
10.1016/j.scitotenv.2016.12.162, 2017.
Zhao, P. Z., Li, S., Wang, E. H., Chen, X. W., Deng, J. F., and Zhao, Y. S.:
Tillage erosion and its effect on spatial variations of soil organic carbon
in the black soil region of China, Soil Till. Res., 178, 72–81,
https://doi.org/10.1016/j.still.2017.12.022, 2018.
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Soil redistribution by water and tillage erosion processes on arable land is a major threat to...