Articles | Volume 6, issue 2
SOIL, 6, 435–451, 2020
https://doi.org/10.5194/soil-6-435-2020
SOIL, 6, 435–451, 2020
https://doi.org/10.5194/soil-6-435-2020

Original research article 29 Sep 2020

Original research article | 29 Sep 2020

Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs

Marco Panettieri et al.

Related authors

The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts
Justine Barthod, Cornélia Rumpel, Remigio Paradelo, and Marie-France Dignac
SOIL, 2, 673–683, https://doi.org/10.5194/soil-2-673-2016,https://doi.org/10.5194/soil-2-673-2016, 2016
Short summary

Related subject area

Soils and biogeochemical cycling
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020,https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020,https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020,https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020,https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020,https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary

Cited articles

Álvaro-Fuentes, J., López, M. V., Cantero-Martinez, C., and Arrúe, J. L.: Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems, Soil Sci. Soc. Am. J., 72, 541–547, https://doi.org/10.2136/sssaj2007.0164, 2008. 
Armas-Herrera, C. M., Dignac, M. F., Rumpel, C., Arbelo, C. D., and Chabbi, A.: Management effects on composition and dynamics of cutin and suberin in topsoil under agricultural use, Eur. J. Soil Sci., 67, 360–373, https://doi.org/10.1111/ejss.12328, 2016. 
Baldock, J. A. and Preston, C. M.: Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance, in: Carbon forms and functions in forest soils, edited by: Kelly, J. M. and McFee, W. W., 89–117, Soil Science Society of America, Madison, WI, 1995. 
Balesdent, J. and Mariotti, A.: Measurement of soil organic matter turnover using 13C natural abundance, in: Mass spectrometry of soils, edited by: Boutton, T. W. and Yamasaki, S. I., 83–111, Marcel Dekker, New York (USA)., 1996. 
Balesdent, J., Mariotti, A., and Guillet, B.: Natural 13C abundance as a tracer for studies of soil organic matter dynamics, Soil Biol. Biochem., 19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987. 
Download
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.