Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-435-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-435-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Marco Panettieri
INRAE, AgroParisTech, UMR1402 ECOSYS, 78850 Thiverval-Grignon,
France
Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/Serrano 115-B,
28006 Madrid, Spain
Denis Courtier-Murias
GERS-LEE, Univ Gustave Eiffel, IFSTTAR, 44344 Bouguenais,
France
Cornelia Rumpel
UMR Institute of Ecology and Environmental Sciences Paris (iEES), CNRS, INRAE, Sorbonne Université, Paris, France
Marie-France Dignac
UMR Institute of Ecology and Environmental Sciences Paris (iEES), CNRS, INRAE, Sorbonne Université, Paris, France
Gonzalo Almendros
Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/Serrano 115-B,
28006 Madrid, Spain
Abad Chabbi
CORRESPONDING AUTHOR
INRAE, AgroParisTech, UMR1402 ECOSYS, 78850 Thiverval-Grignon,
France
INRAE, UR P3F, 86600 Lusignan, France
Related authors
No articles found.
Jérôme Raimbault, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, Thomas Bigot, Jaime Gil Roca, Béatrice Béchet, and Laurent Lassabatère
Hydrol. Earth Syst. Sci., 25, 671–683, https://doi.org/10.5194/hess-25-671-2021, https://doi.org/10.5194/hess-25-671-2021, 2021
Short summary
Short summary
Contaminant transport in soils is known to be affected by soil heterogeneities such as macropores. The transport properties of heterogeneous porous media can be studied in laboratory columns. However, the results reported in this study (a combination of breakthrough experiments, magnetic resonance imaging and computer simulations of transport) show that these properties can be largely affected by the boundary devices of the columns, thus highlighting the need to take their effect into account.
Cited articles
Álvaro-Fuentes, J., López, M. V., Cantero-Martinez, C., and
Arrúe, J. L.: Tillage effects on soil organic carbon fractions in
Mediterranean dryland agroecosystems, Soil Sci. Soc. Am. J., 72,
541–547, https://doi.org/10.2136/sssaj2007.0164, 2008.
Armas-Herrera, C. M., Dignac, M. F., Rumpel, C., Arbelo, C. D., and Chabbi,
A.: Management effects on composition and dynamics of cutin and suberin in
topsoil under agricultural use, Eur. J. Soil Sci., 67, 360–373,
https://doi.org/10.1111/ejss.12328, 2016.
Baldock, J. A. and Preston, C. M.: Chemistry of carbon decomposition
processes in forests as revealed by solid-state carbon-13 nuclear magnetic
resonance, in: Carbon forms and functions in forest soils, edited by:
Kelly, J. M. and McFee, W. W., 89–117, Soil Science Society of America,
Madison, WI, 1995.
Balesdent, J. and Mariotti, A.: Measurement of soil organic matter turnover
using 13C natural abundance, in: Mass spectrometry of soils, edited by:
Boutton, T. W. and Yamasaki, S. I., 83–111, Marcel Dekker, New York
(USA)., 1996.
Balesdent, J., Mariotti, A., and Guillet, B.: Natural 13C abundance as a
tracer for studies of soil organic matter dynamics, Soil Biol. Biochem.,
19, 25–30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987.
Basile-Doelsch, I., Balesdent, J., and Rose, J.: Are Interactions between
Organic Compounds and Nanoscale Weathering Minerals the Key Drivers of
Carbon Storage in Soils?, Environ. Sci. Technol., 49, 3997–3998,
https://doi.org/10.1021/acs.est.5b00650, 2015.
Bol, R., Poirier, N., Balesdent, J., and Gleixner, G.: Molecular turnover
time of soil organic matter in particle-size fractions of an arable soil,
Rapid Commun. Mass Sp., 23, 2551–2558, https://doi.org/10.1002/rcm.4124,
2009.
Bronick, C. J. and Lal, R.: Soil structure and management: A review,
Geoderma, 124, 3–22, 2005.
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.:
Integrating plant litter quality, soil organic matter stabilization, and the
carbon saturation concept, Glob. Change Biol., 21, 3200–3209,
https://doi.org/10.1111/gcb.12982, 2015.
Chabbi, A., Kögel-Knabner, I., and Rumpel, C.: Stabilised carbon in
subsoil horizons is located in spatially distinct parts of the soil profile,
Soil Biol. Biochem., 41, 256–261,
https://doi.org/10.1016/j.soilbio.2008.10.033, 2009.
Chen, J., Seven, J., Zilla, T., Dippold, M. A., Blagodatskaya, E., and
Kuzyakov, Y.: Microbial C : N : P stoichiometry and turnover depend on nutrients
availability in soil: A 14C, 15N and 33P triple labelling study, Soil
Biol. Biochem., 131, 206–216, https://doi.org/10.1016/j.soilbio.2019.01.017, 2019.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and
Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge
gaps and potential innovations, Soil Till. Res., 188, 41–52,
https://doi.org/10.1016/j.still.2018.04.011, 2019.
Clemente, J. S., Simpson, A. J., and Simpson, M. J.: Association of specific
organic matter compounds in size fractions of soils under different
environmental controls, Org. Geochem., 42, 1169–1180,
https://doi.org/10.1016/j.orggeochem.2011.08.010, 2011.
Compton, J. E., Boone, R. D., Motzkin, G., and Foster, D. R.: Soil carbon and
nitrogen in a pine-oak sand plain in central Massachusetts: Role of
vegetation and land-use history, Oecologia, 116, 536–542,
https://doi.org/10.1007/s004420050619, 1998.
Courtier-Murias, D., Simpson, A. J., Marzadori, C., Baldoni, G., Ciavatta,
C., Fernández, J. M., López-de-Sá, E. G., and Plaza, C.:
Unraveling the long-term stabilization mechanisms of organic materials in
soils by physical fractionation and NMR spectroscopy, Agr. Ecosyst.
Environ., 171, 9–18, https://doi.org/10.1016/J.AGEE.2013.03.010, 2013.
Courtier-Murias, D., Farooq, H., Longstaffe, J. G., Kelleher, B. P., Hart,
K. M., Simpson, M. J., and Simpson, A. J.: Cross polarization-single
pulse/magic angle spinning (CPSP/MAS): A robust technique for routine soil
analysis by solid-state NMR, Geoderma, 226–227, 405–414,
https://doi.org/10.1016/j.geoderma.2014.03.006, 2014.
Crème, A., Rumpel, C., Le Roux, X., Romian, A., Lan, T., and Chabbi, A.:
Ley grassland under temperate climate had a legacy effect on soil organic
matter quantity, biogeochemical signature and microbial activities, Soil
Biol. Biochem., 122, 203–210, https://doi.org/10.1016/j.soilbio.2018.04.018, 2018.
De Gryze, S., Six, J., Brits, C., and Merckx, R.: A quantification of short-term macroaggregate dynamics: Influences of wheat residue input and texture, Soil Biol. Biochem., 37, 55–66, https://doi.org/10.1016/j.soilbio.2004.07.024, 2005.
Derenne, S. and Nguyen Tu, T. T.: Characterizing the molecular structure of
organic matter from natural environments: An analytical challenge, CR Geosci., 346, 53–63, https://doi.org/10.1016/j.crte.2014.02.005, 2014.
Diekow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D. P., and
Kögel-Knabner, I.: Carbon and nitrogen stocks in physical fractions of a
subtropical Acrisol as influenced by long-term no-till cropping systems and
N fertilisation, Plant Soil, 268, 319–328, 2005.
Dignac, M. F., Bahri, H., Rumpel, C., Rasse, D. P., Bardoux, G., Balesdent,
J., Girardin, C., Chenu, C., and Mariotti, A.: Carbon-13 natural abundance as
a tool to study the dynamics of lignin monomers in soil: An appraisal at the
Closeaux experimental field (France), Geoderma, 128, 3–17,
https://doi.org/10.1016/j.geoderma.2004.12.022, 2005.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch, I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37,
14, https://doi.org/10.1007/s13593-017-0421-2, 2017.
Eclesia, R. P., Jobbagy, E. G., Jackson, R. B., Rizzotto, M., and
Piñeiro, G.: Stabilization of new carbon inputs rather than old carbon
decomposition determines soil organic carbon shifts following woody or
herbaceous vegetation transitions, Plant Soil, 409, 99–116,
https://doi.org/10.1007/s11104-016-2951-9, 2016.
Helfrich, M., Ludwig, B., Buurman, P., and Flessa, H.: Effect of land use on
the composition of soil organic matter in density and aggregate fractions as
revealed by solid-state 13C NMR spectroscopy, Geoderma, 136,
331–341, https://doi.org/10.1016/j.geoderma.2006.03.048, 2006.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/bf00333714, 1996.
Knicker, H.: Solid state CPMAS 13C and 15N NMR spectroscopy in
organic geochemistry and how spin dynamics can either aggravate or improve
spectra interpretation, Org. Geochem., 42, 867–890, 2011.
Knicker, H. and Lüdemann, H. D.: N-15 and C-13 CPMAS and solution NMR
studies of N-15 enriched plant material during 600 days of microbial
degradation, Org. Geochem., 23, 329–341, 1995.
Knicker, H., Nikolova, R., Dick, D. P., and Dalmolin, R. S. D.: Alteration of
quality and stability of organic matter in grassland soils of Southern
Brazil highlands after ceasing biannual burning, Geoderma, 181–182, 11–21,
2012.
Kölbl, A. and Kögel-Knabner, I.: Content and composition of free and
occluded particulate organic matter in a differently textured arable
Cambisol as revealed by solid-state 13C NMR spectroscopy, J. Plant
Nutr. Soil Sc., 167, 45–53, 2004.
Kumar, A., Kuzyakov, Y., and Pausch, J.: Maize rhizosphere priming: field
estimates using 13C natural abundance, Plant Soil, 409, 87–97,
https://doi.org/10.1007/s11104-016-2958-2, 2016.
Kunrath, T. R., de Berranger, C., Charrier, X., Gastal, F., de Faccio
Carvalho, P. C., Lemaire, G., Emile, J. C., and Durand, J. L.: How much do
sod-based rotations reduce nitrate leaching in a cereal cropping system?,
Agr. Water Manage., 150, 46–56, https://doi.org/10.1016/j.agwat.2014.11.015, 2015.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in
soil: Concept & review, Soil Biol. Biochem., 83, 184–199,
https://doi.org/10.1016/J.SOILBIO.2015.01.025, 2015.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma,
123, 1–22, https://doi.org/10.1016/J.GEODERMA.2004.01.032, 2004.
Lal, R.: Sequestration of atmospheric CO2 in global carbon pools, Energ.
Environ. Sci., 1, 86–100, 2008.
Le Bissonnais, Y.: Aggregate stability and assessment of soil crustability
and erodibility: I. Theory and methodology – Stabilité structurale et
évaluation de la sensibilité des sols à la battance et à
l'érosion: I: Théorie et méthologie, Eur. J. Soil Sci., 47,
425–437, https://doi.org/10.1111/j.1365-2389.1996.tb01843.x, 1996.
Leifeld, J. and Kögel-Knabner, I.: Soil organic matter fractions as
early indicators for carbon stock changes under different land-use?,
Geoderma, 124, 143–155,
https://doi.org/10.1016/j.geoderma.2004.04.009, 2005.
Lemaire, G., Jeuffroy, M. H., and Gastal, F.: Diagnosis tool for plant and
crop N status in vegetative stage. Theory and practices for crop N
management, Eur. J. Agron., 28, 614–624, https://doi.org/10.1016/j.eja.2008.01.005,
2008.
Lemaire, G., Franzluebbers, A., Carvalho, P. C. de F., and Dedieu, B.:
Integrated crop-livestock systems: Strategies to achieve synergy between
agricultural production and environmental quality, Agr. Ecosyst. Environ.,
190, 4–8, https://doi.org/10.1016/j.agee.2013.08.009, 2014.
Lüdemann, H. D. and Nimz, H.: Carbon 13 nuclear magnetic resonance spectra
of lignins, Biochem. Biophys. Res. Commun., 52, 1162–1169, 1973.
Ludwig, M., Achtenhagen, J., Miltner, A., Eckhardt, K.-U., Leinweber, P.,
Emmerling, C., and Thiele-Bruhn, S.: Microbial contribution to SOM quantity
and quality in density fractions of temperate arable soils, Soil Biol.
Biochem., 81, 311–322, https://doi.org/10.1016/j.soilbio.2014.12.002,
2015.
Matos, E. S., Freese, D., Mendonça, E. S., Slazak, A., and Hüttl, R.
F.: Carbon, nitrogen and organic C fractions in topsoil affected by
conversion from silvopastoral to different land use systems, Agroforest. Syst.,
81, 203–211, https://doi.org/10.1007/s10457-010-9314-y, 2011.
Meyer, S., Leifeld, J., Bahn, M., and Fuhrer, J.: Land-use change in subalpine grassland soils: Effect on particulate organic carbon fractions and aggregation, J. Plant Nutr. Soil Sci., 175, 401–409, https://doi.org/10.1002/jpln.201100220, 2012.
Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM
genesis: Microbial biomass as a significant source, Biogeochemistry,
111, 41–55, 2012.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D.,
Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J.,
Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin,
M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C.,
Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I.,
Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G.,
van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292,
59–86, https://doi.org/10.1016/J.GEODERMA.2017.01.002, 2017.
Moni, C., Rumpel, C., Virto, I., Chabbi, A., and Chenu, C.: Relative
importance of sorption versus aggregation for organic matter storage in
subsoil horizons of two contrasting soils, Eur. J. Soil Sci., 61,
958–969, https://doi.org/10.1111/j.1365-2389.2010.01307.x, 2010.
Nannipieri, P. and Eldor, P.: The chemical and functional characterization
of soil N and its biotic components, Soil Biol. Biochem., 41,
2357–2369, 2009.
Panettieri, M., Knicker, H., Berns, A. E. E., Murillo, J. M. M., and
Madejón, E.: Moldboard plowing effects on soil aggregation and soil
organic matter quality assessed by 13C CPMAS NMR and biochemical
analyses, Agr. Ecosyst. Environ., 177, 48–57,
https://doi.org/10.1016/j.agee.2013.05.025, 2013.
Panettieri, M., Knicker, H., Murillo, J. M., Madejón, E., and Hatcher, P.
G.: Soil organic matter degradation in an agricultural chronosequence under
different tillage regimes evaluated by organic matter pools, enzymatic
activities and CPMAS 13C NMR, Soil Biol. Biochem., 78, 170–181,
https://doi.org/10.1016/j.soilbio.2014.07.021, 2014.
Panettieri, M., Rumpel, C., Dignac, M.-F., and Chabbi, A.: Does grassland
introduction into cropping cycles affect carbon dynamics through changes of
allocation of soil organic matter within aggregate fractions?, Sci. Total
Environ., 576, 251–263, https://doi.org/10.1016/j.scitotenv.2016.10.073, 2017.
Plaza, C., Fernández, J. M., Pereira, E. I. P., and Polo, A.: A
comprehensive method for fractionating soil organic matter not protected and
protected from decomposition by physical and chemical mechanisms, Clean –
Soil, Air, Water, 40, 134–139, 2012.
Plaza, C., Courtier-Murias, D., Fernández, J. M., Polo, A., and Simpson,
A. J.: Physical, chemical, and biochemical mechanisms of soil organic matter
stabilization under conservation tillage systems: A central role for
microbes and microbial by-products in C sequestration, Soil Biol. Biochem.,
57, 124–134, https://doi.org/10.1016/j.soilbio.2012.07.026, 2013.
Poeplau, C. and Don, A.: Effect of ultrasonic power on soil organic carbon
fractions, J. Plant Nutr. Soil Sci., 177, 137–140,
https://doi.org/10.1002/jpln.201300492, 2014.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., van Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating organic
carbon fractions with varying turnover rates in temperate agricultural soils
– A comprehensive method comparison, Soil Biol. Biochem., 125, 10–26,
https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D.
W., Whitmore, A. P., Hirsch, P. R., and Goulding, K. W. T.: Soil management
in relation to sustainable agriculture and ecosystem services, Food Policy,
36, S72–S87, https://doi.org/10.1016/J.FOODPOL.2010.11.025, 2011.
Puget, P., Chenu, C., and Balesdent, J.: Total and young organic matter
distributions in aggregates of silty cultivated soils, Eur. J. Soil Sci.,
46, 449–459, 1995.
Puget, P., Chenu, C., and Balesdent, J.: Dynamics of soil organic matter
associated with particle-size fractions of water-stable aggregates, Eur. J.
Soil Sci., 51, 595–605, https://doi.org/10.1046/j.1365-2389.2000.00353.x, 2000.
Rabbi, S. M. F., Linser, R., Hook, J. M., Wilson, B. R., Lockwood, P. V.,
Daniel, H., and Young, I. M.: Characterization of Soil Organic Matter in
Aggregates and Size-Density Fractions by Solid State 13C CPMAS NMR
Spectroscopy, Commun. Soil Sci. Plan., 45, 1523–1537,
https://doi.org/10.1080/00103624.2014.904335, 2014.
Rumpel, C., Chabbi, A., Nunan, N., and Dignac, M. F.: Impact of landuse
change on the molecular composition of soil organic matter, J. Anal. Appl.
Pyrol., 85, 431–434, https://doi.org/10.1016/j.jaap.2008.10.011, 2009.
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M.,
Koutika, L. S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B.,
Soussana, J. F., Whitehead, D., and Wollenberg, E.: The 4p1000 initiative:
Opportunities, limitations and challenges for implementing soil organic
carbon sequestration as a sustainable development strategy, Ambio, 49, 350–360,
https://doi.org/10.1007/s13280-019-01165-2, 2019.
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil
carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Shu, J., Li, P., Chen, Q., and Zhang, S.: Quantitative Measurement of Polymer
Compositions by NMR Spectroscopy:Targeting Polymers with Marked Difference
in Phase Mobility, Macromolecules, 43, 8993–8996,
https://doi.org/10.1021/ma101711f, 2010.
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., and Richter, A.: Carbon use
efficiency of microbial communities: stoichiometry, methodology and
modelling, Ecol. Lett., 16, 930–939,
https://doi.org/10.1111/ele.12113, 2013.
Six, J., Paustian, K., Elliott, E. T., and Combrink, C.: Soil structure and
organic matter: I. Distribution of aggregate-size classes and
aggregate-associated carbon, Soil Sci. Soc. Am. J., 64, 681–689, 2000.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on
the link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31, 2004.
Sleutel, S., De Neve, S., Singier, B., and Hofman, G.: Organic C levels in
intensively managed arable soils – long-term regional trends and
characterization of fractions, Soil Use Manag., 22, 188–196,
https://doi.org/10.1111/j.1475-2743.2006.00019.x, 2006.
Smith, P.: Do grasslands act as a perpetual sink for carbon?, Glob. Change
Biol., 20, 2708–2711, https://doi.org/10.1111/gcb.12561, 2014.
Smith, P.: Soil carbon sequestration and biochar as negative emission
technologies, Glob. Change Biol., 22, 1315–1324, https://doi.org/10.1111/gcb.13178,
2016.
Solomon, D., Lehman, J., Kinyangi, J., Amelung, W., Lobe, I., Pell, A.,
Riha, S., Ngoze, S., Verchot, L., Mbugua, D., Skjemstad, J., and Schafer, T.:
Long-term impacts of anthropogenic perturbations on dynamics and speciation
of organic carbon in tropical forest and subtropical grassland ecosystems,
Glob. Change Biol., 13, 511–530, https://doi.org/10.1111/j.1365-2486.2006.01304.x,
2007.
Tisdall, J. M. and Oades, J. M.: Organic matter and water-stable aggregates
in soils, J. Soil Sci., 33, 141–163, 1982.
van Bavel, C. H. M.: Mean Weight-Diameter of Soil Aggregates as a
Statistical Index of Aggregation1, Soil Sci. Soc. Am. J., 14, 20–23,
https://doi.org/10.2136/sssaj1950.036159950014000c0005x, 1950.
von Haden, A. C., Kucharik, C. J., Jackson, R. D., and Marín-Spiotta,
E.: Litter quantity, litter chemistry, and soil texture control changes in
soil organic carbon fractions under bioenergy cropping systems of the North
Central U.S., Biogeochemistry, 143, 313–326,
https://doi.org/10.1007/s10533-019-00564-7, 2019.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils – A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Yamashita, T., Flessa, H., John, B., Helfrich, M., and Ludwig, B.: Organic
matter in density fractions of water-stable aggregates in silty soils:
Effect of land use, Soil Biol. Biochem., 38, 3222–3234,
https://doi.org/10.1016/j.soilbio.2006.04.013, 2006.
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
In the context of global change, soil has been identified as a potential C sink, depending on...