Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., and Bernoux, M.:
Soils, a sink for
N2O? A review, Glob. Change Biol., 13, 1–17,
https://doi.org/10.1111/j.1365-2486.2006.01280.x, 2007.
Clough, T. J., Sherlock, R. R., and Rolston, D. E.: A Review of the Movement
and Fate of
N2O in the Subsoil, Nutr. Cycl. Agroecosys., 72,
3–11, https://doi.org/10.1007/s10705-004-7349-z, 2005.
Davidson, E. A.: Fluxes of nitrous oxide and nitric oxide from terrestrial
ecosystems, in: Microbial Production
and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and
Halomethanes, edited by: Rogers, J. E. and Whitman, W. B., Am.
Soc. Microbiol., Washington, DC, 219–235, 1991.
Decock, C. and Six, J.: How reliable is the intramolecular distribution of
15N in
N2O to source partition
N2O emitted from soil?, Soil
Biol. Biochem., 65, 114–127, https://doi.org/10.1016/j.soilbio.2013.05.012, 2013a.
Decock, C. and Six, J.: On the potential of
δ18O and
δ15N to assess
N2O reduction to
N2 in soil, Eur. J. Soil
Sci., 64, 610–620, https://doi.org/10.1111/ejss.12068, 2013b.
Denk, T. R. A., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E.,
Butterbach-Bahl, K., Kiese, R., and Wolf, B.: The nitrogen cycle: A review of
isotope effects and isotope modeling approaches, Soil Biol. Biochem., 105,
121–137, https://doi.org/10.1016/J.SOILBIO.2016.11.015, 2017.
Deppe, M., Well, R., Giesemann, A., Spott, O., and Flessa, H.: Soil
N2O
fluxes and related processes in laboratory incubations simulating ammonium
fertilizer depots, Soil Biol. Biochem., 104, 68–80,
https://doi.org/10.1016/j.soilbio.2016.10.005, 2017.
Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David,
M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Neilsen, L. P., and Voytek,
M. A.: Methods for measuring denitrification: Diverse approaches to a
difficult problem, Ecol. Appl., 16, 2091–2122, 2006.
IUPAC: Compendium of Chemical Terminology, 2nd Edn. (the “Gold Book”), compiled by: McNaught, A. D. and Wilkinson, A., Blackwell Scientific Publications, Oxford, Online version (2019), created by: Chalk, S. J., ISBN 0-9678550-9-8, https://doi.org/10.1351/goldbook, 1997.
Jinuntuya-Nortman, M., Sutka, R. L., Ostrom, P. H., Gandhi, H., and Ostrom,
N. E.: Isotopologue fractionation during microbial reduction of
N2O
within soil mesocosms as a function of water-filled pore space, Soil Biol.
Biochem., 40, 2273–2280, https://doi.org/10.1016/J.SOILBIO.2008.05.016, 2008.
Lewicka-Szczebak, D., Well, R., Köster, J. R., Fuß, R., Senbayram,
M., Dittert, K., and Flessa, H.: Experimental determinations of isotopic
fractionation factors associated with
N2O production and reduction
during denitrification in soils, Geochim. Cosmochim. A., 134, 55–73,
https://doi.org/10.1016/J.GCA.2014.03.010, 2014.
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., and Well, R.: Quantifying
N2O reduction to
N2 based on
N2O isotopocules – validation with independent methods (helium incubation and
15N gas flux method), Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, 2017.
Linn, D. M. and Doran, J. W.: Effect of water-filled pore space on carbon
dioxide and nitrous oxide production in tilled and nontilled soils, Soil
Sci. Soc. Am. J., 48, 1267–1272,
https://doi.org/10.2136/sssaj1984.03615995004800060013x, 1984.
Maynard, D., Kalra, Y., and Crumbaugh, J.: Nitrate and exchangeable ammonium
nitrogen, in: Soil Sampling and Methods of Analysis, edited by: Carter, M. R.
and Gregorich, E. G., CRC Press, Boca Raton, Florida,
71–80, 2007.
Mohn, J., Wolf, B., Toyoda, S., Lin, C.-T., Liang, M.-C., Brüggemann,
N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L., Ostrom, N. E.,
Casciotti, K. L., Forbes, M., Giesemann, A., Well, R., Doucett, R. R.,
Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N.: Interlaboratory
assessment of nitrous oxide isotopomer analysis by isotope ratio mass
spectrometry and laser spectroscopy: current status and perspectives, Rapid
Commun. Mass Sp., 28, 1995–2007, https://doi.org/10.1002/rcm.6982, 2014.
Ostrom, N. E. and Ostrom, P. H.: The Isotopomers of Nitrous Oxide:
Analytical Considerations and Application to Resolution of Microbial
Production Pathways, in: Handbook of Environmental Isotope Geochemistry,
Springer Berlin Heidelberg, Berlin, Heidelberg, 453–476, 2012.
Ostrom, N. E., Pitt, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga,
K. M., and Robertson, G. P.: Isotopologue effects during
N2O reduction
in soils and in pure cultures of denitrifiers, J. Geophys. Res., 112,
G02005, https://doi.org/10.1029/2006JG000287, 2007.
Ostrom, N. E., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M.,
Gandhi, H., von Fischer, J. C., and Robertson, G. P.: Isotopologue data
reveal bacterial denitrification as the primary source of
N2O during a
high flux event following cultivation of a native temperate grassland, Soil
Biol. Biochem., 42, 499–506, https://doi.org/10.1016/J.SOILBIO.2009.12.003, 2010.
Perez, T., Trumbore, S. E., Tyler, S. C., Matson, P. a., Ortiz-Monasterio,
I., Rahn, T., and Griffith, D. W. T.: Identifying the agricultural imprint on
the global
N2O budget using stable isotopes, J. Geophys. Res., 106,
9869–9878, https://doi.org/10.1029/2000JD900809, 2001.
Popp, B. N., Westley, M. B., Toyoda, S., Miwa, T., Dore, J. E., Yoshida, N.,
Rust, T. M., Sansone, F. J., Russ, M. E., Ostrom, N. E., and Ostrom, P. H.:
Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air
flux of
N2O in the oligotrophic subtropical North Pacific gyre, Global
Biogeochem. Cy., 16, 12-1–12-10, https://doi.org/10.1029/2001GB001806, 2002.
Reynolds, W. D. and Topp, G. C.: Soil Water Desorption and Imbibition?: Long
Column, in: Soil Sampling and Methods of Analysis, edited by: Carter, M. R. and
Gregorich, E. G., 999–1006, 2007.
Stevens, R. J. and Laughlin, R. J.: Measuring the contributions of
nitrification and denitrification to the flux of nitrous oxide from soil, Soil Biol. Biochem.,
29, 139–151, 1997.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H.,
Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production from
nitrification and denitrification on the basis of isotopomer abundances,
Appl. Environ. Microbiol., 72, 638–44,
https://doi.org/10.1128/AEM.72.1.638-644.2006, 2006.
Toyoda, S. and Yoshida, N.: Determination of nitrogen isotopomers of nitrous
oxide on a modified isotope ratio mass spectrometer, Anal. Chem., 71,
4711–4718, https://doi.org/10.1021/ac9904563, 1999.
Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.:
Fractionation of
N2O isotopomers during production by denitrifier, Soil
Biol. Biochem., 37, 1535–1545, https://doi.org/10.1016/j.soilbio.2005.01.009, 2005.
Van Groenigen, J. W., Huygens, D., Boeckx, P., Kuyper, T. W., Lubbers, I.
M., Rütting, T., and Groffman, P. M.: The soil N cycle: new insights and
key challenges, Soil, 1, 235–256, https://doi.org/10.5194/soil-1-235-2015, 2015.
Wagner-Riddle, C., Congreves, K. A., Abalos, D., Berg, A. A., Brown, S. E.,
Ambadan, J. T., Gao, X., and Tenuta, M.: Globally important nitrous oxide
emissions from croplands induced by freeze-thaw cycles, Nat. Geosci., 10, 279–283,
https://doi.org/10.1038/ngeo2907, 2017.
Well, R. and Flessa, H.: Isotopologue signatures of
N2O produced by
denitrification in soils, J. Geophys. Res.-Biogeo., 114, 11 pp.,
https://doi.org/10.1029/2008JG000804, 2009.
Winther, M., Balslev-Harder, D., Christensen, S., Priemé, A., Elberling, B., Crosson, E., and Blunier, T.: Continuous measurements of nitrous oxide isotopomers during incubation experiments, Biogeosciences, 15, 767–780, https://doi.org/10.5194/bg-15-767-2018, 2018.
Yamulki, S., Toyoda, S., Yoshida, N., Veldkamp, E., Grant, B., and Bol, R.:
Diurnal fluxes and the isotopomer ratios of
N2O in a temperate
grassland following urine amendment, Rapid Commun. Mass Sp., 15,
1263–1269, https://doi.org/10.1002/rcm.352, 2001.
Yoshida, N. and Toyoda, S.: Constraining the atmospheric
N2O budget
from intramolecular site preference in
N2O isotopomers, Nature,
405, 330–334, https://doi.org/10.1038/35012558, 2000.
Zou, Y., Hirono, Y., Yanai, Y., Hattori, S., Toyoda, S., and Yoshida, N.:
Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea
(Camellia sinensis) in Shizuoka, central Japan, Soil Biol. Biochem., 77,
276–291, https://doi.org/10.1016/j.soilbio.2014.06.016, 2014.