Articles | Volume 5, issue 2
Original research article
19 Sep 2019
Original research article |  | 19 Sep 2019

A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways

Katelyn A. Congreves, Trang Phan, and Richard E. Farrell

Related subject area

Soils and biogeochemical cycling
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531,,, 2023
Short summary
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459,,, 2023
Short summary
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Tatjana Carina Speckert, Jeannine Suremann, Konstantin Gavazov, Maria Joao Santos, Frank Hagedorn, and Guido Lars Bruno Wiesenberg
EGUsphere,,, 2023
Short summary
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229,,, 2023
Short summary
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188,,, 2023
Short summary

Cited articles

Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., Meenken, E. D., and Ross, J. G.: Changes in Relative Gas Diffusivity Explain Soil Nitrous Oxide Flux Dynamics, Soil Sci. Soc. Am. J., 77, 1496–1505,, 2013. 
Banerjee, S., Helgason, B., Wang, L., Winsley, T., Ferrari, B. C., and Siciliano, S. D.: Legacy effects of soil moisture on microbial community structure and N2O emissions, Soil Biol. Biochem., 95, 40–50,, 2016. 
Barnard, R., Leadley, P. W., and Hungate, B. A.: Global change, nitrification, and denitrification: A review, Global Biogeochem. Cy., 19, 13 pp.,, 2005. 
Bateman, E. and Baggs, E.: Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space, Biol. Fertil. Soils, 41, 379–388,, 2005. 
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, Philos. T. R. Soc. Lond. B, 368, 20130122,, 2013. 
Short summary
There are surprising grey areas in the precise quantification of pathways that produce nitrous oxide, a potent greenhouse gas, as influenced by soil moisture. Here, we take a new look at a classic study but use isotopomers as a powerful tool to determine the source pathways of nitrous oxide as regulated by soil moisture. Our results support earlier research, but we contribute scientific advancements by providing models that enable quantifying source partitioning rather than just inferencing.