Articles | Volume 3, issue 3
SOIL, 3, 139–152, 2017
https://doi.org/10.5194/soil-3-139-2017
SOIL, 3, 139–152, 2017
https://doi.org/10.5194/soil-3-139-2017

Original research article 22 Aug 2017

Original research article | 22 Aug 2017

A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool

Ranae Dietzel et al.

Related subject area

Soils and biogeochemical cycling
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020,https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020,https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020,https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020,https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020,https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary

Cited articles

Badri, D. V. and Vivanco, J. M.: Regulation and function of root exudates, Plant Cell Environ., 32, 666–681, 2009.
Balesdent, J. and Balabane, M.: Major contribution of roots to soil carbon storage inferred from maize cultivated soils, Soil Biol. Biochem., 28, 1261–1263, 1996.
Beniston, J. W., DuPont, S. T., Glover, J. D., Lal, R., and Dungait, J. A.: Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems, Biogeochemistry, 120, 37–49, 2014.
Blackmer, A., Voss, R.D., and Mallarino, A.P.: Nitrogen fertilizer recommendations for corn in Iowa, Iowa State University Extension, Ames, Iowa, 1997.
Buyanovsky, G., Kucera, C., and Wagner, G.: Comparative analyses of carbon dynamics in native and cultivated ecosystems, Ecology, 68, 2023–2031, 1987.
Download
Short summary
Roots deeper in the soil are made up of more carbon and less nitrogen compared to roots at shallower depths, which may help explain deep-carbon origin. A comparison of prairie and maize rooting systems showed that in moving from prairie to maize, a large, structural-tissue-dominated root carbon pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root carbon pool with fast turnover evenly distributed in the soil profile.