Original research article
15 Dec 2015
Original research article
| 15 Dec 2015
Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system
R. Hüppi et al.
Related authors
No articles found.
Tegawende Léa Jeanne Ilboudo, Lucien NGuessan Diby, Delwendé Innocent Kiba, Tor Gunnar Vågen, Leigh Ann Winowiecki, Hassan Bismarck Nacro, Johan Six, and Emmanuel Frossard
EGUsphere, https://doi.org/10.5194/egusphere-2022-209, https://doi.org/10.5194/egusphere-2022-209, 2022
Short summary
Short summary
Our results showed that at landscape level SOC stock variability was mainly explained by clay content. We found significant linear positive relationships between VC and SOC stocks for the land uses annual croplands, perennial croplands, grasslands and bushlands without soil depth restrictions until 110 cm. We concluded that in the forest-savanna transition zone, soil properties and topography determine land use, which in turn affects the stocks of SOC and TN and to some extent the VC stocks.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-107, https://doi.org/10.5194/amt-2022-107, 2022
Preprint under review for AMT
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health and indirectly climate. Historic NH3 monitoring was labour intensive and instruments complicated. Over the last decade, there has been a rapid technology development, including “plug and play” instruments. This study is an extensive field comparison of the current available technologies and provides recommendations on how to achieve high quality future routine monitoring of NH3.
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL Discuss., https://doi.org/10.5194/soil-2021-146, https://doi.org/10.5194/soil-2021-146, 2022
Revised manuscript accepted for SOIL
Short summary
Short summary
Soil amendment with artificial black carbon (BC, biomass transformed by incomplete combustion) has the potential to mitigate climate change. Nevertheless, the accurate quantification of BC in soil remains a critical issue. Here, we successfully used dynamic thermal analysis (DTA) to quantify centennial BC in soil. We demonstrate that DTA is largely under-exploited despite providing rapidly and at low cost quantitative information all over the range of soil organic matter.
Kristof Van Oost and Jo Six
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-1, https://doi.org/10.5194/bg-2022-1, 2022
Revised manuscript under review for BG
Short summary
Short summary
The direction and magnitude of the net erosion-induced land-atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source-sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Short summary
This work delivers openly accessible and validated calibrations for diagnosing 26 soil properties based on mid-infrared spectroscopy. These were developed for four regions in Burkina Faso and Côte d'Ivoire, including 80 fields of smallholder farmers. The models can help to site-specifically and cost-efficiently monitor soil quality and fertility constraints to ameliorate soils and yields of yam or other staple crops in the four regions between the humid forest and the northern Guinean savanna.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021, https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Short summary
We developed the Swiss mid-infrared spectral library and a statistical model collection across 4374 soil samples with reference measurements of 16 properties. Our library incorporates soil from 1094 grid locations and 71 long-term monitoring sites. This work confirms once again that nationwide spectral libraries with diverse soils can reliably feed information to a fast chemical diagnosis. Our data-driven reduction of the library has the potential to accurately monitor carbon at the plot scale.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Anatol Helfenstein, Philipp Baumann, Raphael Viscarra Rossel, Andreas Gubler, Stefan Oechslin, and Johan Six
SOIL, 7, 193–215, https://doi.org/10.5194/soil-7-193-2021, https://doi.org/10.5194/soil-7-193-2021, 2021
Short summary
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Long Ho, Ruben Jerves-Cobo, Matti Barthel, Johan Six, Samuel Bode, Pascal Boeckx, and Peter Goethals
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-311, https://doi.org/10.5194/bg-2020-311, 2020
Revised manuscript not accepted
Short summary
Short summary
Rivers are being polluted by human activities, especially in urban areas. We studied the greenhouse gas (GHG) emissions from an urban river system. The results showed a clear trend between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality worsened, its contribution to global warming can go up by 10 times. Urban rivers emitted 4-times more than of the amount of GHGs compared to rivers in natural sites.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Karl Voglmeier, Johan Six, Markus Jocher, and Christof Ammann
Biogeosciences, 16, 1685–1703, https://doi.org/10.5194/bg-16-1685-2019, https://doi.org/10.5194/bg-16-1685-2019, 2019
Tino Colombi, Florian Walder, Lucie Büchi, Marlies Sommer, Kexing Liu, Johan Six, Marcel G. A. van der Heijden, Raphaël Charles, and Thomas Keller
SOIL, 5, 91–105, https://doi.org/10.5194/soil-5-91-2019, https://doi.org/10.5194/soil-5-91-2019, 2019
Short summary
Short summary
The role of soil aeration in carbon sequestration in arable soils has only been explored little, especially at the farm level. The current study, which was conducted on 30 fields that belong to individual farms, reveals a positive relationship between soil gas transport capability and soil organic carbon content. We therefore conclude that soil aeration needs to be accounted for when developing strategies for carbon sequestration in arable soil.
Elizabeth Verhoeven, Matti Barthel, Longfei Yu, Luisella Celi, Daniel Said-Pullicino, Steven Sleutel, Dominika Lewicka-Szczebak, Johan Six, and Charlotte Decock
Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, https://doi.org/10.5194/bg-16-383-2019, 2019
Short summary
Short summary
This study utilized state-of-the-art measurements of nitrogen isotopes to evaluate nitrogen cycling and to assess the biological sources of the potent greenhouse gas, N2O, in response to water-saving practices in rice systems. Water-saving practices did emit more N2O, and high N2O production had a lower 15N isotope signature. Modeling and visual interpretation indicate that these emissions mostly came from denitrification or nitrifier denitrification, controlled upstream by nitrification rates.
Cédric Bader, Moritz Müller, Rainer Schulin, and Jens Leifeld
Biogeosciences, 15, 703–719, https://doi.org/10.5194/bg-15-703-2018, https://doi.org/10.5194/bg-15-703-2018, 2018
Short summary
Short summary
When drained, peatlands degrade and release large quantities of CO2, thereby contributing to global warming. Do land use or the chemical composition of peat control the rate of that release? We studied 21 sites from the temperate climate zone managed as croplands, grasslands, or forests and found that the CO2 release was high, but only slightly influenced by land use or peat composition. Hence, only keeping peatlands in their natural state prevents them from becoming strong CO2 sources.
Michael Bell, Chris Flechard, Yannick Fauvel, Christoph Häni, Jörg Sintermann, Markus Jocher, Harald Menzi, Arjan Hensen, and Albrecht Neftel
Atmos. Meas. Tech., 10, 1875–1892, https://doi.org/10.5194/amt-10-1875-2017, https://doi.org/10.5194/amt-10-1875-2017, 2017
Short summary
Short summary
This study applies horizontal concentration gradient measurements and inverse dispersion modelling to evaluate ammonia emissions from cattle grazing. The results can contribute to an emission factor for cattle grazing, where emissions where found to be towards the lower end of the range found in the limited number of existing studies. The influences of ammonia deposition, uneven urine patch distribution and climate conditions are discussed.
Jörg Sintermann, Klaus Dietrich, Christoph Häni, Michael Bell, Markus Jocher, and Albrecht Neftel
Atmos. Meas. Tech., 9, 2721–2734, https://doi.org/10.5194/amt-9-2721-2016, https://doi.org/10.5194/amt-9-2721-2016, 2016
Short summary
Short summary
We present a DOAS instrument optimised for open-path field measurements of ambient ammonia (NH3) alongside nitrogen oxide (NO) and sulfur dioxide (SO2). We use a temperature-controlled spectrometer, a deuterium light source and a modified optical arrangement. The system was set up in a robust, field-deployable, temperature-regulated housing. For the evaluation of light spectra a new high-pass filter routine based upon robust baseline extraction with local regression was used.
Robert F. Grant, Albrecht Neftel, and Pierluigi Calanca
Biogeosciences, 13, 3549–3571, https://doi.org/10.5194/bg-13-3549-2016, https://doi.org/10.5194/bg-13-3549-2016, 2016
Short summary
Short summary
The magnitude of N2O emissions from managed grasslands depends on weather and on harvesting and fertilizer practices. Modelling provides a means to predict these emissions under diverse weather and management types. In this modelling study, we show that N2O emissions depend on how weather affects temperatures and water contents of surface litter and near-surface soil. N2O emissions modelled from the grassland were increased by suboptimal harvesting practices, fertilizer timing and soil properties.
Lorenzo Menichetti, Thomas Kätterer, and Jens Leifeld
Biogeosciences, 13, 3003–3019, https://doi.org/10.5194/bg-13-3003-2016, https://doi.org/10.5194/bg-13-3003-2016, 2016
Short summary
Short summary
Soil organic carbon dynamics are crucial for the global greenhouse gas balance, but their complexity is difficult to model and understand. We therefore often rely on radiocarbon measurements for calibrating models, but their effect on our understanding of the processes is still unclear. We calibrated five model structures on data from a long-term Swiss field experiment in a Bayesian framework to assess the effect of radiocarbon on the parameter and structural uncertainty of a soil carbon model.
Raphael Felber, Daniel Bretscher, Andreas Münger, Albrecht Neftel, and Christof Ammann
Biogeosciences, 13, 2959–2969, https://doi.org/10.5194/bg-13-2959-2016, https://doi.org/10.5194/bg-13-2959-2016, 2016
Short summary
Short summary
We compare the carbon budget of a pasture using two different system boundaries: including and excluding grazing cows. We reveal the importance of non-CO2 fluxes as budget components depending on the chosen system boundaries and discuss the effect of their uncertainties. Budget components were directly measured or derived from cow related measured parameters like milk yield. The resulting carbon budgets of both approaches agree within the limits of uncertainty showing a near-neutral behavior.
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015, https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary
Short summary
Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
J. Leifeld and J. Mayer
SOIL, 1, 537–542, https://doi.org/10.5194/soil-1-537-2015, https://doi.org/10.5194/soil-1-537-2015, 2015
Short summary
Short summary
We present 14C data for field replicates of a controlled agricultural long-term experiment. We show that 14C variability is, on average, 12 times that of the analytical precision of the 14C measurement. Experimental 14C variability is related to neither management nor soil depth. Application of a simple carbon turnover model reveals that experimental variability of radiocarbon results in higher absolute uncertainties of estimated carbon turnover time for deeper soil layers.
G. Wohlfahrt, C. Amelynck, C. Ammann, A. Arneth, I. Bamberger, A. H. Goldstein, L. Gu, A. Guenther, A. Hansel, B. Heinesch, T. Holst, L. Hörtnagl, T. Karl, Q. Laffineur, A. Neftel, K. McKinney, J. W. Munger, S. G. Pallardy, G. W. Schade, R. Seco, and N. Schoon
Atmos. Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, https://doi.org/10.5194/acp-15-7413-2015, 2015
Short summary
Short summary
Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of plants as the major source and the reaction with OH as the major sink, global methanol budgets diverge considerably in terms of source/sink estimates. Here we present micrometeorological methanol flux data from eight sites in order to provide a first cross-site synthesis of the terrestrial methanol exchange.
R. Felber, A. Münger, A. Neftel, and C. Ammann
Biogeosciences, 12, 3925–3940, https://doi.org/10.5194/bg-12-3925-2015, https://doi.org/10.5194/bg-12-3925-2015, 2015
J. Sintermann and A. Neftel
Biogeosciences, 12, 3225–3240, https://doi.org/10.5194/bg-12-3225-2015, https://doi.org/10.5194/bg-12-3225-2015, 2015
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015, https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Short summary
Biogeochemical soil parameters are studied to detect peatland degradation along a land use gradient (intensive, extensive, near-natural). Stable carbon isotopes, radiocarbon ages and ash content confirm peat growth in the near-natural bog but also indicate previous degradation. When the bog is managed extensively or intensively as grassland, all parameters indicate degradation and substantial C loss of the order of 18.8 to 42.9 kg C m-2.
B. Wolf, L. Merbold, C. Decock, B. Tuzson, E. Harris, J. Six, L. Emmenegger, and J. Mohn
Biogeosciences, 12, 2517–2531, https://doi.org/10.5194/bg-12-2517-2015, https://doi.org/10.5194/bg-12-2517-2015, 2015
S. Doetterl, J.-T. Cornelis, J. Six, S. Bodé, S. Opfergelt, P. Boeckx, and K. Van Oost
Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, https://doi.org/10.5194/bg-12-1357-2015, 2015
Short summary
Short summary
We link the mineralogy of soils affected by erosion and deposition to the distribution of soil carbon fractions, their turnover and microbial activity. We show that the weathering status of soils and their history are controlling the stabilization of carbon with minerals. After burial, aggregated C is preserved more efficiently while non-aggregated C can be released and younger C re-sequestered more easily. Weathering changes the effectiveness of stabilization mechanism limiting this C sink.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
J. Sintermann, S. Schallhart, M. Kajos, M. Jocher, A. Bracher, A. Münger, D. Johnson, A. Neftel, and T. Ruuskanen
Biogeosciences, 11, 5073–5085, https://doi.org/10.5194/bg-11-5073-2014, https://doi.org/10.5194/bg-11-5073-2014, 2014
J. Leifeld, C. Bader, E. Borraz, M. Hoffmann, M. Giebels, M. Sommer, and J. Augustin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-12341-2014, https://doi.org/10.5194/bgd-11-12341-2014, 2014
Revised manuscript not accepted
J. P. Krüger, J. Leifeld, and C. Alewell
Biogeosciences, 11, 3369–3380, https://doi.org/10.5194/bg-11-3369-2014, https://doi.org/10.5194/bg-11-3369-2014, 2014
Related subject area
Soils and biogeochemical cycling
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations
Lithology- and climate-controlled soil aggregate-size distribution and organic carbon stability in the Peruvian Andes
Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: the case of a coffee agroforestry plantation on Andosols in Costa Rica
A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways
Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model – soil chemistry of three Swedish conifer sites from 1880 to 2080
Dynamic modelling of weathering rates – the benefit over steady-state modelling
Aluminium and base cation chemistry in dynamic acidification models – need for a reappraisal?
Challenges of soil carbon sequestration in the NENA region
Continental soil drivers of ammonium and nitrate in Australia
Comment on “Soil organic stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content” by Poeplau et al. (2017)
Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors
Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils
A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool
Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils
Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes
Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Timescales of carbon turnover in soils with mixed crystalline mineralogies
Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity
Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography
Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil
Soil fauna: key to new carbon models
Tillage-induced short-term soil organic matter turnover and respiration
Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model
Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis) – magnitude, components and controls
Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Gone or just out of sight? The apparent disappearance of aromatic litter components in soils
Soil properties and not inputs control carbon : nitrogen : phosphorus ratios in cropped soils in the long term
On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020, https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020, https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary
Short summary
Soils contain one of the largest and most dynamic pools of carbon on Earth, yet scientists still struggle to understand the reactivity and fate of soil organic matter upon disturbance. In this study, we found that with increasing thermal stability, the turnover time of organic matter increased from decades to centuries with a concurrent shift in chemical composition. In this proof-of-concept study, we found that ramped thermal analyses can provide new insights for understanding soil carbon.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Songyu Yang, Boris Jansen, Samira Absalah, Rutger L. van Hall, Karsten Kalbitz, and Erik L. H. Cammeraat
SOIL, 6, 1–15, https://doi.org/10.5194/soil-6-1-2020, https://doi.org/10.5194/soil-6-1-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes or how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall is dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when we study soil carbon storage in the Andes.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Katelyn A. Congreves, Trang Phan, and Richard E. Farrell
SOIL, 5, 265–274, https://doi.org/10.5194/soil-5-265-2019, https://doi.org/10.5194/soil-5-265-2019, 2019
Short summary
Short summary
There are surprising grey areas in the precise quantification of pathways that produce nitrous oxide, a potent greenhouse gas, as influenced by soil moisture. Here, we take a new look at a classic study but use isotopomers as a powerful tool to determine the source pathways of nitrous oxide as regulated by soil moisture. Our results support earlier research, but we contribute scientific advancements by providing models that enable quantifying source partitioning rather than just inferencing.
Eric McGivney, Jon Petter Gustafsson, Salim Belyazid, Therese Zetterberg, and Stefan Löfgren
SOIL, 5, 63–77, https://doi.org/10.5194/soil-5-63-2019, https://doi.org/10.5194/soil-5-63-2019, 2019
Short summary
Short summary
Forest management may lead to long-term soil acidification due to the removal of base cations during harvest. By means of the HD-MINTEQ model, we compared the acidification effects of harvesting with the effects of historical acid rain at three forested sites in Sweden. The effects of harvesting on pH were predicted to be much smaller than those resulting from acid deposition during the 20th century. There were only very small changes in predicted weathering rates due to acid rain or harvest.
Veronika Kronnäs, Cecilia Akselsson, and Salim Belyazid
SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, https://doi.org/10.5194/soil-5-33-2019, 2019
Short summary
Short summary
Weathering rates in forest soils are important for sustainable forestry but cannot be measured. In this paper, we have modelled weathering with the commonly used PROFILE model as well as with the dynamic model ForSAFE, better suited to a changing climate with changing human activities but never before tested for weathering calculations. We show that ForSAFE gives comparable weathering rates to PROFILE and that it shows the variation in weathering with time and works well for scenario modelling.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Talal Darwish, Thérèse Atallah, and Ali Fadel
SOIL, 4, 225–235, https://doi.org/10.5194/soil-4-225-2018, https://doi.org/10.5194/soil-4-225-2018, 2018
Short summary
Short summary
This paper is part of the GSP-ITPS effort to produce a global SOC map and update information on C stocks using old and new soil information to assess the potential for enhanced C sequestration in dry land areas of the NENA region. We used the DSMW from FAO-UNESCO (2007), focusing on organic and inorganic content in 0.3 m of topsoil and 0.7 m of subsoil, to discuss the human factors affecting the accumulation of organic C and the fate of inorganic C.
Juhwan Lee, Gina M. Garland, and Raphael A. Viscarra Rossel
SOIL, 4, 213–224, https://doi.org/10.5194/soil-4-213-2018, https://doi.org/10.5194/soil-4-213-2018, 2018
Short summary
Short summary
Soil nitrogen (N) is an essential element for plant growth, but its plant-available forms are subject to loss from the environment by leaching and gaseous emissions. Still, factors controlling soil mineral N concentrations at large spatial scales are not well understood. We determined and discussed primary soil controls over the concentrations of NH4+ and NO3− at the continental scale of Australia while considering specific dominant land use patterns on a regional basis.
Eleanor Ursula Hobley, Brian Murphy, and Aaron Simmons
SOIL, 4, 169–171, https://doi.org/10.5194/soil-4-169-2018, https://doi.org/10.5194/soil-4-169-2018, 2018
Short summary
Short summary
This research evaluates equations to calculate soil organic carbon (SOC) stocks. Although various equations exist for SOC stock calculations, we recommend using the simplest equation with THE lowest associated errors. Adjusting SOC stock calculations for rock content is essential. Using the mass proportion of rocks to do so minimizes error.
Cora Vos, Angélica Jaconi, Anna Jacobs, and Axel Don
SOIL, 4, 153–167, https://doi.org/10.5194/soil-4-153-2018, https://doi.org/10.5194/soil-4-153-2018, 2018
Short summary
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.
Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel
SOIL, 3, 161–176, https://doi.org/10.5194/soil-3-161-2017, https://doi.org/10.5194/soil-3-161-2017, 2017
Short summary
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.
Ranae Dietzel, Matt Liebman, and Sotirios Archontoulis
SOIL, 3, 139–152, https://doi.org/10.5194/soil-3-139-2017, https://doi.org/10.5194/soil-3-139-2017, 2017
Short summary
Short summary
Roots deeper in the soil are made up of more carbon and less nitrogen compared to roots at shallower depths, which may help explain deep-carbon origin. A comparison of prairie and maize rooting systems showed that in moving from prairie to maize, a large, structural-tissue-dominated root carbon pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root carbon pool with fast turnover evenly distributed in the soil profile.
Julie N. Weitzman and Jason P. Kaye
SOIL, 3, 95–112, https://doi.org/10.5194/soil-3-95-2017, https://doi.org/10.5194/soil-3-95-2017, 2017
Short summary
Short summary
Prior research found nitrate losses in mid-Atlantic streams following drought but no mechanistic explanation. We aim to understand how legacy sediments influence soil–stream nitrate transfer. We found that surface legacy sediments do not retain excess nitrate inputs well; once exposed, previously buried soils experience the largest drought-induced nitrate losses; and, restoration that reconnects stream and floodplain via legacy sediment removal may initially cause high losses of nitrate.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017, https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Jonathan Sanderman, Courtney Creamer, W. Troy Baisden, Mark Farrell, and Stewart Fallon
SOIL, 3, 1–16, https://doi.org/10.5194/soil-3-1-2017, https://doi.org/10.5194/soil-3-1-2017, 2017
Short summary
Short summary
Knowledge of how soil carbon stocks and flows change in response to agronomic management decisions is a critical step in devising management strategies that best promote food security while mitigating greenhouse gas emissions. Here, we present 40 years of data demonstrating that increasing productivity both leads to greater carbon stocks and accelerates the decomposition of soil organic matter, thus providing more nutrients back to the crop.
Barry G. Rawlins, Joanna Wragg, Christina Reinhard, Robert C. Atwood, Alasdair Houston, R. Murray Lark, and Sebastian Rudolph
SOIL, 2, 659–671, https://doi.org/10.5194/soil-2-659-2016, https://doi.org/10.5194/soil-2-659-2016, 2016
Short summary
Short summary
We do not understand processes by which soil bacteria and fungi feed on soil organic matter (SOM). Previous research suggests the location of SOM in aggregates may influence whether bacteria can feed on it more easily. We did an experiment to identify the distribution of SOM on very small scales within nine soil aggregates. There was no clear evidence that the distribution of organic matter influenced how easily the organic matter was fed upon by bacteria.
Anne B. Jansen-Willems, Gary J. Lanigan, Timothy J. Clough, Louise C. Andresen, and Christoph Müller
SOIL, 2, 601–614, https://doi.org/10.5194/soil-2-601-2016, https://doi.org/10.5194/soil-2-601-2016, 2016
Short summary
Short summary
Legacy effects of increased temperature on both nitrogen (N) transformation rates and nitrous oxide (N2O) emissions from permanent temperate grassland soil were evaluated. A new source-partitioning model showed the importance of oxidation of organic N as a source of N2O. Gross organic (and not inorganic) N transformation rates decreased in response to the prior soil warming treatment. This was also reflected in reduced N2O emissions associated with organic N oxidation and denitrification.
Juliane Filser, Jack H. Faber, Alexei V. Tiunov, Lijbert Brussaard, Jan Frouz, Gerlinde De Deyn, Alexei V. Uvarov, Matty P. Berg, Patrick Lavelle, Michel Loreau, Diana H. Wall, Pascal Querner, Herman Eijsackers, and Juan José Jiménez
SOIL, 2, 565–582, https://doi.org/10.5194/soil-2-565-2016, https://doi.org/10.5194/soil-2-565-2016, 2016
Short summary
Short summary
Soils store more than 3 times as much carbon than the atmosphere, but global carbon models still suffer from large uncertainty. We argue that this may be due to the fact that soil animals are not taken into account in such models. They dig, eat and distribute dead organic matter and microorganisms, and the quantity of their activity is often huge. Soil animals affect microbial activity, soil water content, soil structure, erosion and plant growth – and all of this affects carbon cycling.
Sebastian Rainer Fiedler, Peter Leinweber, Gerald Jurasinski, Kai-Uwe Eckhardt, and Stephan Glatzel
SOIL, 2, 475–486, https://doi.org/10.5194/soil-2-475-2016, https://doi.org/10.5194/soil-2-475-2016, 2016
Short summary
Short summary
We applied Py-FIMS, CO2 measurements and hot-water extraction on farmland to investigate short-term effects of tillage on soil organic matter (SOM) turnover. SOM composition changed on the temporal scale of days and the changes varied significantly under different types of amendment. Particularly obvious were the turnover of lignin-derived substances and depletion of carbohydrates due to soil respiration. The long-term impact of biogas digestates on SOM stocks should be examined more closely.
Louise C. Andresen, Anna-Karin Björsne, Samuel Bodé, Leif Klemedtsson, Pascal Boeckx, and Tobias Rütting
SOIL, 2, 433–442, https://doi.org/10.5194/soil-2-433-2016, https://doi.org/10.5194/soil-2-433-2016, 2016
Short summary
Short summary
In soil the constant transport of nitrogen (N) containing compounds from soil organic matter and debris out into the soil water, is controlled by soil microbes and enzymes that literally cut down polymers (such as proteins) into single amino acids (AA), hereafter microbes consume AAs and excrete ammonium back to the soil. We developed a method for analysing N turnover and flow of organic N, based on parallel 15N tracing experiments. The numerical model gives robust and simultaneous quantification.
Luitgard Schwendenmann and Cate Macinnis-Ng
SOIL, 2, 403–419, https://doi.org/10.5194/soil-2-403-2016, https://doi.org/10.5194/soil-2-403-2016, 2016
Short summary
Short summary
This is the first study quantifying total soil CO2 efflux, heterotrophic and autotrophic respiration in an old-growth kauri forest. Root biomass explained a high proportion of the spatial variation suggesting that soil CO2 efflux in this forest is not only directly affected by the amount of autotrophic respiration but also by the supply of C through roots and mycorrhiza. Our findings also suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.
Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe
SOIL, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016, https://doi.org/10.5194/soil-2-351-2016, 2016
Short summary
Short summary
Using laboratory heating, we studied effects of fire intensity on important topsoil characteristics. This study identifies critical temperature thresholds for significant physical and chemical changes in soils that developed under different climate regimes. Findings from this study will contribute towards estimating the amount and rate of change in essential soil properties that can be expected from topsoil exposure to different intensity fires under anticipated climate change scenarios.
Thimo Klotzbücher, Karsten Kalbitz, Chiara Cerli, Peter J. Hernes, and Klaus Kaiser
SOIL, 2, 325–335, https://doi.org/10.5194/soil-2-325-2016, https://doi.org/10.5194/soil-2-325-2016, 2016
Short summary
Short summary
Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. Here, we summarize and discuss the inconsistencies and propose research options to clear them.
Emmanuel Frossard, Nina Buchmann, Else K. Bünemann, Delwende I. Kiba, François Lompo, Astrid Oberson, Federica Tamburini, and Ouakoltio Y. A. Traoré
SOIL, 2, 83–99, https://doi.org/10.5194/soil-2-83-2016, https://doi.org/10.5194/soil-2-83-2016, 2016
H. C. Hombegowda, O. van Straaten, M. Köhler, and D. Hölscher
SOIL, 2, 13–23, https://doi.org/10.5194/soil-2-13-2016, https://doi.org/10.5194/soil-2-13-2016, 2016
Short summary
Short summary
Incorporating trees into agriculture systems provides numerous environmental services. In this chronosequence study conducted across S. India, we found that agroforestry systems (AFSs), specifically home gardens, coffee, coconut and mango, can cause soil organic carbon (SOC) to rebound to forest levels. We established 224 plots in 56 clusters and compared the SOC between natural forests, agriculture and AFSs. SOC sequestered depending on AFS type, environmental conditions and tree diversity.
Cited articles
Anderson, C. R., Hamonts, K., Clough, T. J., and Condron, L. M.: Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria, Agr. Ecosyst. Environ., 191, 64–72, https://doi.org/10.1016/j.agee.2014.02.021, 2014.
Angst, T. E., Six, J., Reay, D. S., and Sohi, S. P.: Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in California, Agr. Ecosyst. Environ., 191, 17–26, https://doi.org/10.1016/j.agee.2014.03.009, 2014.
Bakken, L. R., Bergaust, L., Liu, B., and Frostegard, A.: Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils, Philos. Trans. B, 367, 1226–1234, https://doi.org/10.1098/rstb.2011.0321, 2012.
Biederman, L. A. and Harpole, W. S.: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis, GCB Bioenergy, 5, 202–214, https://doi.org/10.1111/gcbb.12037, 2013.
Case, S. D. C., McNamara, N. P., Reay, D. S., Stott, A. W., Grant, H. K., and Whitaker, J.: Biochar suppresses N}2O emissions while maintaining {N availability in a sandy loam soil, Soil Biol. Biochem., 81, https://doi.org/10.1016/j.soilbio.2014.11.012, 2014.
Cavigelli, M. A. and Robertson, G. P.: Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem, Soil Biol. Biochem., 33, 297–310, 2001.
Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., and Lehmann, J.: Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?, Scientific Reports, 3, 1732, https://doi.org/10.1038/srep01732, 2013.
Cayuela, M. L., Jeffery, S., and van Zwieten, L.: The molar H}:Corg ratio of biochar is a key factor in mitigating {N2O emissions from soil, Agr. Ecosyst. Environ., 202, 135–138, https://doi.org/10.1016/j.agee.2014.12.015, 2015.
Clough, T., Condron, L., Kammann, C., and Müller, C.: A Review of Biochar and Soil Nitrogen Dynamics, Agronomy, 3, 275–293, https://doi.org/10.3390/agronomy3020275, 2013.
Crane-Droesch, A., Abiven, S., Jeffery, S., and Torn, M. S.: Heterogeneous global crop yield response to biochar: a meta-regression analysis, Environ. Res. Lett., 8, 044049, https://doi.org/10.1088/1748-9326/8/4/044049, 2013.
Čuhel, J., Šimek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., and Philippot, L.: Insights into the Effect of Soil pH on N}2O and N2 Emissions and Denitrifier {Community Size and Activity, Appl. Environ. Microbiol., 76, 1870–1878, https://doi.org/10.1128/AEM.02484-09, 2010.
EBC, H.: European Biochar Certificate – Guidelines for a Sustainable Production of Biochar, European Biochar Fondation (EBC), Arbaz, Switzerland, available at: http://www.european-biochar.org/en/download (last access: 25 March 2015), 2012.
FAL, R.: Schweizerische Referenzmethoden der Eidgenossischen Landwirtschaftlichen Forschungsanstalten, FAL-Eigenverlag, Zurich, 1996.
Felber, R., Leifeld, J., Horák, J., and Neftel, A.: Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments, Eur. J. Soil Sci., 65, 128–138, https://doi.org/10.1111/ejss.12093, 2013.
Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., and Fuhrer, J.: Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices, Global Change Biol., 11, 2114–2127, https://doi.org/10.1111/j.1365-2486.2005.01056.x, 2005.
Fuss, R.: ecoRoland/gasfluxes, available at: https://bitbucket.org/ecoRoland/gasfluxes (last access: 24 February 2015), 2015.
Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L.: Nitrogen-Doped Carbon Nanotube} Arrays with High Electrocatalytic Activity for Oxygen {Reduction, Science, 323, 760–764, https://doi.org/10.1126/science.1168049, 2009.
Güereña, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., and Riha, S.: Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system, Plant Soil, 365, 239–254, https://doi.org/10.1007/s11104-012-1383-4, 2013.
Harter, J., Krause, H.-M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., and Behrens, S.: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community, The ISME Journal, 8, 660–674, https://doi.org/10.1038/ismej.2013.160, 2014.
Huber, P. and Ronchetti, E.: Robust Statistics, ser, Wiley Series in Probability and Mathematical Statistics. New York, NY, USA, Wiley-IEEE, 52, 54, 1981.
IAASTD, McIntyre, B. D., Herren, H. R., Wakhungu, R., and Watson, R. T.: Agriculture at a Crossroads – International Assessment} of Agricultural {Knowledge, Science and Technology for Development, Synthesis Report, HD1428.I547 2008, IAASTD, Washington DC, available at: http://www.unep.org/dewa/assessments/ecosystems/iaastd/tabid/
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups} I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate {Change, Tech. rep., IPCC, Geneva, Switzerland, available at: https://www.ipcc.ch/report/ar5/syr/ (last access: 26 March 2015), 2014.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, World Soil Resources Reports No. 106. FAO, International soil classification system for naming soils and creating legends for soil maps, Rome, 2014.
Jay, C. N., Fitzgerald, J. D., Hipps, N. A., and Atkinson, C. J.: Why short-term biochar application has no yield benefits: evidence from three field-grown crops, Soil Use Manage., 31, 241–250, https://doi.org/10.1111/sum.12181, 2015.
Jeffery, S., Verheijen, F., van der Velde, M., and Bastos, A.: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, Agr. Ecosyst. Environ., 144, 175–187, https://doi.org/10.1016/j.agee.2011.08.015, 2011.
Joseph, S., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B., Lehmann, J., Foidl, N., Smernik, R., and Amonette, J.: An investigation into the reactions of biochar in soil, Aust. J. Soil Res., 48, 501–515, https://doi.org/10.1071/SR10009, 2010.
Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., and Behrens, S.: Biochar as an Electron Shuttle between Bacteria and Fe}(III) {Minerals, Environ. Sci. Technol. Lett., 1, 339–344, https://doi.org/10.1021/ez5002209, 2014.
Karhu, K., Mattila, T., Bergstroem, I., and Regina, K.: Biochar addition to agricultural soil increased CH}4 uptake and water holding capacity – {Results from a short-term pilot field study, Agr. Ecosyst. Environ., 140, 309–313, https://doi.org/10.1016/j.agee.2010.12.005, 2011.
Klüpfel, L., Keiluweit, M., Kleber, M., and Sander, M.: Redox Properties of Plant Biomass-Derived Black Carbon (Biochar), Environ. Sci. Technol., 48, 5601–5611, https://doi.org/10.1021/es500906d, 2014.
Lal, R., Delgado, J. A., Groffman, P. M., Millar, N., Dell, C., and Rotz, A.: Management to mitigate and adapt to climate change, J. Soil Water Conserv., 66, 276–285, https://doi.org/10.2489/jswc.66.4.276, 2011.
Lehmann, J.: Bio-energy in the black, Front. Ecol. Environ., 5, 381–387, 2007.
Lehmann, J. and Joseph, S.: Biochar for Environmental Management: Science, Technology and Implementation, Routledge, 2015.
Leiber-Sauheitl, K., Fuß, R., Voigt, C., and Freibauer, A.: High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients, Biogeosciences, 11, 749–761, https://doi.org/10.5194/bg-11-749-2014, 2014.
Liu, J., Shen, J., Li, Y., Su, Y., Ge, T., Jones, D. L., and Wu, J.: Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system, Euro. J. Soil Biol., 65, 30–39, https://doi.org/10.1016/j.ejsobi.2014.09.001, 2014.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., and Paz-Ferreiro, J.: Biochar's effect on crop productivity and the dependence on experimental condition'a meta-analysis of literature data, Plant Soil, 373, 1–12, https://doi.org/10.1007/s11104-013-1806-x, 2013.
Liu, X.-Y., Qu, J.-J., Li, L.-Q., Zhang, A.-F., Jufeng, Z., Zheng, J.-W., and Pan, G.-X.: Can biochar amendment be an ecological engineering technology to depress N}2O emission in rice paddies? – A cross site field experiment from South {China, Ecol. Eng., 42, 168–173, https://doi.org/10.1016/j.ecoleng.2012.01.016, 2012.
Meteoswiss: Climate normals Zurich}/{Affoltern, Tech. rep., Meteoswiss, Zurich, available at: http://www.meteoschweiz.admin.ch/files/kd/climsheet/en/REH_norm8110.pdf (last access: 12 August 2014), 2013.
Meteoswiss: Climate report 2014, Tech. rep., Meteoswiss, Zurich, available at: http://www.meteoswiss.admin.ch/home/climate/present-day/climate-reports.html (last access: 20 March 2015), 2015.
Mukherjee, A., Lal, R., and Zimmerman, A. R.: Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil, Sci. Total Environ., 487, 26–36, https://doi.org/10.1016/j.scitotenv.2014.03.141, 2014.
Mulcahy, D. N., Mulcahy, D. L., and Dietz, D.: Biochar soil amendment increases tomato seedling resistance to drought in sandy soils, J. Arid Environ., 88, 222–225, https://doi.org/10.1016/j.jaridenv.2012.07.012, 2013.
Neftel, A., Ammann, C., Fischer, C., Spirig, C., Conen, F., Emmenegger, L., Tuzson, B., and Wahlen, S.: N2O exchange over managed grassland: Application of a quantum cascade laser spectrometer for micrometeorological flux measurements, Agr. Forest Meteorol., 150, 775–785, https://doi.org/10.1016/j.agrformet.2009.07.013, 2010.
Peake, L. R., Reid, B. J., and Tang, X.: Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils, Geoderma, 235–236, 182–190, https://doi.org/10.1016/j.geoderma.2014.07.002, 2014.
Pedersen, A. R., Petersen, S. O., and Schelde, K.: A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers, European J. Soil Sci., 61, 888–902, https://doi.org/10.1111/j.1365-2389.2010.01291.x, 2010.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide (N2O): The Dominant Ozone}-Depleting {Substance Emitted in the 21st Century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Sánchez-Garc\'ia, M., Roig, A., Sánchez-Monedero, M. A., and Cayuela, M. L.: Biochar increases soil N2O emissions produced by nitrification-mediated pathways, Soil Process., 2, 25, https://doi.org/10.3389/fenvs.2014.00025, 2014.
Scheer, C., Grace, P., Rowlings, D., Kimber, S., and Van Zwieten, L.: Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia, Plant Soil, 345, 47–58, https://doi.org/10.1007/s11104-011-0759-1, 2011.
Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., and Kammann, C.: Biochar, hydrochar and uncarbonized feedstock application to permanent grassland – Effects on greenhouse gas emissions and plant growth, Agr. Ecosyst. Environ., 191, 39–52, https://doi.org/10.1016/j.agee.2014.03.027, 2014.
Shen, J., Tang, H., Liu, J., Wang, C., Li, Y., Ge, T., Jones, D. L., and Wu, J.: Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems, Agr. Ecosyst. Environ., 188, 264–274, https://doi.org/10.1016/j.agee.2014.03.002, 2014.
Simek, M. and Cooper, J. E.: The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years, Euro. J. Soil Sci., 53, 345–354, https://doi.org/10.1046/j.1365-2389.2002.00461.x, 2002.
Singh, B., Hatton, B., Singh, B., Cowie, A., and Kathuria, A.: Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils, J. Environ. Quality, 39, 1224–1235, 2010.
Steiner, C., Glaser, B., Geraldes Teixeira, W., Lehmann, J., Blum, W. E., and Zech, W.: Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal, J. Plant Nutr. Soil Sci., 171, 893–899, https://doi.org/10.1002/jpln.200625199, 2008.
Stevens, R., Laughlin, R., and Malone, J.: Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen, Soil Biol. Biochem., 30, 1119–1126, https://doi.org/10.1016/S0038-0717(97)00227-7, 1998.
Suddick, E. C. and Six, J.: An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation, Sci. Total Environ., 65, 298–307, https://doi.org/10.1016/j.scitotenv.2013.01.094, 2013.
Taghizadeh-Toosi, A., Clough, T. J., Condron, L. M., Sherlock, R. R., Anderson, C. R., and Craigie, R. A.: Biochar Incorporation into Pasture Soil Suppresses in situ Nitrous Oxide Emissions from Ruminant Urine Patches, J. Environ. Quality, 40, 468–476, https://doi.org/10.2134/jeq2010.0419, 2011.
Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., and Van Kessel, C.: Towards an agronomic assessment of N2O emissions: a case study for arable crops, Eur. J. Soil Sci. 61, 903–913, https://doi.org/10.1111/j.1365-2389.2009.01217.x, 2010.
Vanek, S. J. and Lehmann, J.: Phosphorus availability to beans via interactions between mycorrhizas and biochar, Plant Soil, 395, 1–19, 105–123, https://doi.org/10.1007/s11104-014-2246-y, 2014.
van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., and Scheer, C.: Influence of biochars on flux of N}2O and CO2 from {Ferrosol, Aust. J. Soil Res., 48, 555–568, https://doi.org/10.1071/SR10004, 2010.
Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., and Morris, S.: An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application, Agr. Ecosyst. Environ., 191, 53–62, https://doi.org/10.1016/j.agee.2014.02.030, 2014.
Van Zwieten, L., Kammann, C., Cayuela, M. L., Singh, B. P., Joseph, S., Kimber, S., Donne, S., Clough, T., and Spokas, K. A.: Biochar effects on nitrous oxide and methane emissions from soil, in: Biochar for environmental management: science, technology and implementation, Routledge, New York, 2015.
Verhoeven, E. and Six, J.: Biochar does not mitigate field-scale N}2O emissions in a Northern {California vineyard: An assessment across two years, Agr. Ecosyst. Environ., 191, 27–38, https://doi.org/10.1016/j.agee.2014.03.008, 2014.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S.: Sustainable biochar to mitigate global climate change, Nat. Commun., 1, 56, https://doi.org/10.1038/ncomms1053, 2010.
Yanai, Y., Toyota, K., and Okazasi, M.: Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments, Soil Sci. Plant Nutr., 53, 181–188, https://doi.org/10.1111/j.1747-0765.2007.00123.x, 2007.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., and Crowley, D.: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China, Agr. Ecosyst. Environ., 139, 469–475, https://doi.org/10.1016/j.agee.2010.09.003, 2010.
Zheng, J., Stewart, C. E., and Cotrufo, M. F.: Biochar and Nitrogen Fertilizer Alters Soil Nitrogen Dynamics and Greenhouse Gas Fluxes from Two Temperate Soils, J. Environ. Qual., 41, 1361, https://doi.org/10.2134/jeq2012.0019, 2012.
Short summary
Biochar is considered an opportunity to tackle major environmental issues in agriculture. Adding pyrolised organic residues to soil may sequester carbon, increase yields and reduce nitrous oxide emissions from soil. It is unknown, whether the latter is induced by changes in soil pH. We show that biochar application substantially reduces nitrous oxide emissions from a temperate maize cropping system. However, the reduction was only achieved with biochar but not with liming.
Biochar is considered an opportunity to tackle major environmental issues in agriculture. Adding...