Articles | Volume 1, issue 2
SOIL, 1, 707–717, 2015
SOIL, 1, 707–717, 2015

Original research article 15 Dec 2015

Original research article | 15 Dec 2015

Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system

R. Hüppi1,2, R. Felber1, A. Neftel1, J. Six2, and J. Leifeld1 R. Hüppi et al.
  • 1Climate and Air Pollution Group, Agroscope Institute for SustaInability Sciences, Zurich, Switzerland
  • 2Department of Environmental Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

Abstract. Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesised mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize cropping system, we set up a field trial with a 20t ha−1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment (pH 6.5), and a control treatment without any addition (pH 6.1). An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg N ha−1 in three applications of 40, 80 and 40 kg N ha−1 as ammonium nitrate.

Cumulative N2O emissions were 52 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.27) because of the large variability in the data set. Limed soils emitted similar mean cumulative amounts of N2O as the control. There is no evidence that reduced N2O emissions with biochar relative to the control is solely caused by a higher soil pH.

Short summary
Biochar is considered an opportunity to tackle major environmental issues in agriculture. Adding pyrolised organic residues to soil may sequester carbon, increase yields and reduce nitrous oxide emissions from soil. It is unknown, whether the latter is induced by changes in soil pH. We show that biochar application substantially reduces nitrous oxide emissions from a temperate maize cropping system. However, the reduction was only achieved with biochar but not with liming.