Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Kenji Fujisaki
INRAE, Info&Sols, 45075, Orléans, France
Tiphaine Chevallier
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
Antonio Bispo
INRAE, Info&Sols, 45075, Orléans, France
Jean-Baptiste Laurent
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, 34398 Montpellier CEDEX 5, France
François Thevenin
Société Khaméos, 34170 Castelnau-le-Lez, France
Lydie Chapuis-Lardy
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
LMI IESOL, Dakar CP 18524, Senegal
Rémi Cardinael
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, Harare, Zimbabwe
Department of Plant Production Sciences and Technologies, University of
Zimbabwe, Harare, Zimbabwe
Christine Le Bas
INRAE, Info&Sols, 45075, Orléans, France
Vincent Freycon
Forêts & Sociétés, University of Montpellier, CIRAD, Montpellier,
France
CIRAD, UPR Forêts & Sociétés, 34398 Montpellier, France
Fabrice Bénédet
Forêts & Sociétés, University of Montpellier, CIRAD, Montpellier,
France
CIRAD, UPR Forêts & Sociétés, 34398 Montpellier, France
Vincent Blanfort
CIRAD, UMR SELMET, 34398 Montpellier, France
SELMET, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
Michel Brossard
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
Marie Tella
US Analyses, University of Montpellier, CIRAD, Montpellier, France
CIRAD, US Analyses, 34398 Montpellier CEDEX 5, France
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, Turrialba 30501, Costa Rica
CATIE, Centro Agronómico Tropical de Investigación y
Enseñanza, Turrialba 30501, Costa Rica
Related authors
No articles found.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Herman Ravelojaona, Eric Verrecchia, Gergely Jakab, Dóra Zacháry, Florian Schneider, Luca Trombino, Raphaël J. Manlay, Julien Fouché, and Tiphaine Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4991, https://doi.org/10.5194/egusphere-2025-4991, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Adjusting Rock-Eval® cycle is needed to avoid the need for post-hoc corrections to estimate soil organic (SOC) and inorganic (SIC) carbon. PYRO520 is a cycle with a pyrolysis ending at 520°C instead of 650°C to avoid SIC decomposition while preserving the SOC characterization during pyrolysis. This cycle corrects the misallocation of the end-of-pyrolysis signals and thus repeatably and accurately estimates SOC and SIC contents without using corrections, while preserving the SOC characterization.
Seydina Mohamad Ba, Olivier Roupsard, Lydie Chapuis-Lardy, Frédéric Bouvery, Yélognissè Agbohessou, Maxime Duthoit, Aleksander Wieckowski, Torbern Tagesson, Mohamed Habibou Assouma, Espoir Koudjo Gaglo, Claire Delon, Bienvenu Sambou, and Dominique Serça
EGUsphere, https://doi.org/10.5194/egusphere-2025-2660, https://doi.org/10.5194/egusphere-2025-2660, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study offers a major advancement in understanding CO2 fluxes in Sahelian agro-silvo-pastoral systems by combining continuous high-frequency automated soil chambers and Eddy Covariance methods over one year. It reveals the critical role of Faidherbia albida trees in carbon cycling and ecosystem productivity, providing rare, high-resolution data to inform climate mitigation strategies and ecosystem models in semi-arid African landscapes.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, and Laurent Thuriès
SOIL, 10, 699–725, https://doi.org/10.5194/soil-10-699-2024, https://doi.org/10.5194/soil-10-699-2024, 2024
Short summary
Short summary
We assessed the long-term impacts of no-till cropping systems on soil organic carbon and nitrogen dynamics down to 1 m depth under the annual upland crop productions (cassava, maize, and soybean) in the tropical climate of Cambodia. We showed that no-till systems combined with rotations and cover crops could store large amounts of carbon in the top and subsoil in both the mineral organic matter and particulate organic matter fractions. We also question nitrogen management in these systems.
Christophe Djemiel, Samuel Dequiedt, Walid Horrigue, Arthur Bailly, Mélanie Lelièvre, Julie Tripied, Charles Guilland, Solène Perrin, Gwendoline Comment, Nicolas P. A. Saby, Claudy Jolivet, Antonio Bispo, Line Boulonne, Antoine Pierart, Patrick Wincker, Corinne Cruaud, Pierre-Alain Maron, Sébastien Terrat, and Lionel Ranjard
SOIL, 10, 251–273, https://doi.org/10.5194/soil-10-251-2024, https://doi.org/10.5194/soil-10-251-2024, 2024
Short summary
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Cited articles
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones,
M. B., Rees, R. M., and Smith, P.: Critical review of the impacts of grazing
intensity on soil organic carbon storage and other soil quality indicators
in extensively managed grasslands, Agr. Ecosyst. Environ., 253, 62–81,
https://doi.org/10.1016/j.agee.2017.10.023, 2018.
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D.,
Yang, J., and Matocha, C.: Responses of soil carbon sequestration to
climate-smart agriculture practices: A meta-analysis, Glob. Change Biol.,
25, 2591–2606, https://doi.org/10.1111/gcb.14658, 2019.
Batjes, N. H.: Technologically achievable soil organic carbon sequestration
in world croplands and grasslands, Land Degrad. Dev., 30, 25–32, https://doi.org/10.1002/ldr.3209, 2019.
Beillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot,
A., Feder, F., and Demenois, J.: A global overview of studies about land
management, land-use change, and climate change effects on soil organic
carbon, Glob. Change Biol., 28, 1690-1702, https://doi.org/10.1111/gcb.15998, 2022.
Bernoux, M., Branca, G., Carro, A., Lipper, L., Smith, G., and Bockel, L.:
Ex-ante greenhouse gas balance of agriculture and forestry development
programs, Sci. Agr., 67, 31–40, https://doi.org/10.1590/S0103-90162010000100005, 2010.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and
VandenBygaart, A. J.: An approach for estimating net primary productivity
and annual carbon inputs to soil for common agricultural crops in Canada,
Ag. Ecosyst. Environ., 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec,
J., Tits, M., Tóth, Z., and Kätterer, T.: The effect of crop
residues, cover crops, manures and nitrogen fertilization on soil organic
carbon changes in agroecosystems: a synthesis of reviews, Mitig. Adapt.
Strateg. Glob. Chang., 25, 929–952, https://doi.org/10.1007/s11027-020-09916-3, 2020.
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J.,
Smith, P., Wood, S., Zomer, R. J., Von Unger, M., and Emmer, I. M.: The role
of soil carbon in natural climate solutions, Nat. Sustain., 3, 391–398,
https://doi.org/10.1038/s41893-020-0491-z, 2020.
Cardinael, R., Umulisa, V., Toudert, A., Olivier, A., Bockel, L., and
Bernoux, M.: Revisiting IPCC Tier 1 coefficients for soil organic and
biomass carbon storage in agroforestry systems, Environ. Res. Lett., 13,
124020, https://doi.org/10.1088/1748-9326/aaeb5f, 2018.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and
Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge
gaps and potential innovations, Soil Till. Res., 188, 41–52, https://doi.org/10.1016/j.still.2018.04.011, 2019.
Chotte, J. L., Aynekulu, E., Cowie, A., Campbell, E., Vlek, P., Lal, R.,
Kapovic-Solomun, M., Von Maltitz, G. P., Kust, G., and Barger, N.: Realising
the carbon benefits of sustainable land management practices: Guidelines for
estimation of soil organic carbon in the context of land degradation
neutrality planning and monitoring, A report of the Science-Policy
Interface, United Nations Convention to Combat Desertification (UNCCD),
Bonn, Germany, https://catalogue.unccd.int/1209_UNCCD_SPI_2019_Report_1.1.pdf (last access: 24 March 2022), 2019.
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K.: Grassland
management impacts on soil carbon stocks: a new synthesis, Ecol. Appl., 27,
662–668, https://doi.org/10.1002/eap.1473, 2017.
Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., and Torquebiau, E.:
The 4 per 1000 goal and soil carbon storage under agroforestry and
conservation agriculture systems in sub-Saharan Africa, Soil Till. Res.,
188, 16–26, https://doi.org/10.1016/j.still.2018.02.015, 2019.
Demenois, J., Fujisaki, K., Chevallier, T., Bispo, A., Laurent, J.-B., Thévenin, F., Chapuis-Lardy, L., Cardinael, R., Freycon, V., Bénédet, F., Le Bas, C., Tella, M., Blanfort, V., and Brossard, M.: DATA4C+ – A thesaurus to define land management practices in agriculture and forestry for soil carbon storage, CIRAD Dataverse [data set], https://doi.org/10.18167/DVN1/HMCPMF, 2022.
Erb, K.-H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones,
C. D., Marín-Spiotta, E., McCallum, I., Robertson, E., Seufert, V.,
Fritz, S., Valade, A., Wiltshire, A., and Dolman, A. J.: Land management:
data availability and process understanding for global change studies, Glob.
Change Biol., 23, 512–533, https://doi.org/10.1111/gcb.13443,
2017.
Eurostat: LUCAS Technical reference document C3 Classification (Land cover
and Land-use), 93 pp.,. https://ec.europa.eu/eurostat/documents/205002/6786255/ (last access: 24 March 2022),
2015.
FAO: World Programme for the Census of Agriculture 2020, Vol. 1,
Programme, Concepts and Definitions, FAO, Rome, https://www.fao.org/3/i4913e/i4913e.pdf (last access: 24 March 2022), 2015.
Fujisaki, K., Chevallier, T., Chapuis-Lardy, L., Albrecht, A., Razafimbelo,
T., Masse, D., Ndour, Y. B., and Chotte, J.-L.: Soil carbon stock changes in
tropical croplands are mainly driven by carbon inputs: A synthesis, Agr.
Ecosyst. Environ., 259, 147–158, https://doi.org/10.1016/j.agee.2017.12.008, 2018.
Gong, X., Marklund, L. G., and Tsuji, S.: Land-use classification proposed
to be used in the SEEA, in: 14th Meeting of the London Group on
Environmental Accounting, 27–30 April 2009, Canberra, LG/14/10,
https://unstats.un.org/unsd/envaccounting/londongroup/meeting14/LG14_10a.pdf (last access: 24 March 2022), 2009.
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E.,
Thomsen, I. K., Jørgensen, H. B., and Isberg, P.-E.: How does tillage
intensity affect soil organic carbon? A systematic review, Environ. Evid.,
6, 30, https://doi.org/10.1186/s13750-017-0108-9, 2017.
Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C.,
Bond-Lamberty, B., Lawrence, C. R., Loisel, J., Malhotra, A., Jackson, R. B.,
Ogle, S., Phillips, C., Ryals, R., Todd-Brown, K., Vargas, R., Vergara,
S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K. A., Crow, S. E., Silver, W. L.,
DeLonge, M., and Nave, L. E.: Networking our science to characterize the
state, vulnerabilities, and management opportunities of soil organic matter,
Glob. Change Biol., 24, e705–e718, https://doi.org/10.1111/gcb.13896, 2018.
Herold, M., Hubald, R., and Di Gregorio, A.: Translating and evaluating
land cover legends using the UN Land Cover Classification System (LCCS),
GOGC-GOLD Report 43, https://gofcgold.umd.edu/sites/default/files/docs/ReportSeries/GOLD_43.pdf (last access: 24 March 2022), 2009.
IPCC: IPCC Guidelines for national greenhouse gas inventories, Prepared by
the National Greenhouse Gas Inventories Programme, edited by: Eggleston, H. S., Buendia, L.,
Miwa, K., Ngara, T., and Tanabe, K., Hayama, Kanagawa, Japan, https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 24 March 2022), 2006.
IPCC: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R.,
Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts,
D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E.,
Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P.,
Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., https://www.ipcc.ch/srccl/ (last access: 24 March 2022), 2019.
Jansen, L. J. M. and Gregorio, A. D.: Parametric land cover and land-use
classifications as tools for environmental change detection, Agr. Ecosyst.
Environ., 91, 89–100, https://doi.org/10.1016/S0167-8809(01)00243-2, 2002.
Jian, J., Du, X., and Stewart, R. D.: A database for global soil health
assessment, Sci. Data, 7, 16, https://doi.org/10.1038/s41597-020-0356-3, 2020.
Krupnik, T. J., Andersson, J. A., Rusinamhodzi, L., Corbeels, M., Shennan, C.,
and Gérard, B.: Does size matter? a critical review of meta-analysis in
agronomy, Exp. Agr., 55, 200–229, https://doi.org/10.1017/S0014479719000012, 2019.
Laurent, J.-B. and Thevenin, F.: DATA4C+ thesaurus programs, GitLab [code], https://gitlab.cirad.fr/jean-baptiste.laurent/data4c, last access: 24 March 2022.
Lawrence, C. R., J. Beem-Miller, Hoyt, A. M., Monroe, G., Sierra, C. A.,
Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G.,
Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K.,
Rasmussen, C., Hicks Pries, C.E., Schädel, C., McFarlane, K., Doetterl,
S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S.,
Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen,
Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel,
J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source
database for the synthesis of soil radiocarbon data: International Soil
Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12,
61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Li, Y., Shi, S., Waqas, M. A., Zhou, X., Li, J., Wan, Y., Qin, X., Gao, Q.,
Liu, S., and Wilkes, A.: Long-term (≥20 years) application of
fertilizers and straw return enhances soil carbon storage: a meta-analysis,
Mitig. Adapt. Strateg. Glob. Chang., 23, 603–619, https://doi.org/10.1007/s11027-017-9751-2, 2018.
Maia, S. M. F., Ogle, S. M., Cerri, C. E. P., and Cerri, C. C.: Effect of
grassland management on soil carbon sequestration in Rondônia and Mato
Grosso states, Brazil, Geoderma, 149, 84–91, https://doi.org/10.1016/j.geoderma.2008.11.023, 2009.
Maillard, É. and Angers, D. A.: Animal manure application and soil
organic carbon stocks: a meta-analysis, Glob. Change Biol., 20, 666–679, https://doi.org/10.1111/gcb.12438, 2014.
Malhotra, A., Todd-Brown, K., Nave, L. E., Batjes, N. H., Holmquist, J. R.,
Hoyt, A. M., Iversen, C. M., Jackson, R. B., Lajtha, K., Lawrence, C.,
Vindušková, O., Wieder, W., Williams, M., Hugelius, G., and Harden,
J.: The landscape of soil carbon data: Emerging questions, synergies and
databases, Prog. Phys. Geogr. Earth Environ., 43, 707–719, https://doi.org/10.1177/0309133319873309, 2019.
Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L.,
Ferreira, G. W. D., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P.,
Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J. A., Vanguelova,
E. I., and Vesterdal, L.: Tamm Review: Influence of forest management
activities on soil organic carbon stocks: A knowledge synthesis, Forest Ecol.
Manag., 466, 118127, https://doi.org/10.1016/j.foreco.2020.118127, 2020.
Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler,
S. J., Buck, S., Chambers, C. D., Chin, G., Christensen, G., Contestabile, M.,
Dafoe, A., Eich, E., Freese, J., Glennerster, R., Goroff, D., Green, D. P.,
Hesse, B., Humphreys, M., Ishiyama, J., Karlan, D., Kraut, A., Lupia, A.,
Mabry, P., Madon, T., Malhotra, N., Mayo-Wilson, E., McNutt, M., Miguel, E.,
Levy Paluck, E., Simonsohn, U., Soderberg, C., Spellman, B. A., Turitto, J.,
VandenBos, G., Vazire, S., Wagenmakers, E. J., Wilson, R., and Yarkoni, T.:
Promoting an open research culture, Science, 348, 1422–1425, https://doi.org/10.1126/science.aab2374, 2015.
OCDE: “Making Open Science a Reality”, OECD Science, Technology and
Industry Policy Papers, no. 25, Éditions OCDE, Paris,
https://doi.org/10.1787/5jrs2f963zs1-en, 2015.
Paradelo, R., Virto, I., and Chenu, C.: Net effect of liming on soil
organic carbon stocks: A review, Agr. Ecosyst. Environ., 202, 98–107, https://doi.org/10.1016/j.agee.2015.01.005, 2015.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers,
D., Augusto, L., Balesdent, J., Basile-Doelsch, I., and Bellassen, V. :
Stocker du carbone dans les sols français. Quel potentiel au regard de
l'objectif 4 pour 1000 et à quel coût ? (Rapport scientifique de
l'étude), INRA, France, https://www.inrae.fr/sites/default/files/pdf/Rapport Etude 4p1000.pdf (last access: 24 March 2022),
2020.
Pesce, V., Tennison, J., Mey, L., Jonquet, C., Toulet, A., Aubin, S., and
Panagiotis, Z.: A map of agri-food data standards, https://hal-lirmm.ccsd.cnrs.fr/lirmm-01964791/document (last access: 24 March 2022), 2018.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via
cultivation of cover crops – A meta-analysis, Agr. Ecosyst. Environ.,
200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., and Jat, M. L.:
Does conservation agriculture deliver climate change mitigation through soil
carbon sequestration in tropical agro-ecosystems?, Agr. Ecosyst. Environ.,
220, 164–174, https://doi.org/10.1016/j.agee.2016.01.005,
2016.
Rosenstock, T. S., Lamanna, C., Chesterman, S., Bell, P., Arslan, A.,
Richards, M., Rioux, J., Akinleye, A. O., Champalle, C., Cheng, Z.,
Corner-Dolloff, C., Dohn, J., English, W., Eyrich, A.-S., Girvetz, E. H.,
Kerr, A., Lizarazo, M., Madalinska, A.,McFatridge, S., Morris, K. S., Namoi,
N., Poultouchidou, A., Ravina da Silva, M, Rayess, S., Ström, H., Tully
K. L., and Zhou, W.: The scientific basis of climate-smart agriculture: A
systematic review protocol. CCAFS Working Paper no. 136, CGIAR Research
Program on Climate Change, Agriculture and Food Security (CCAFS),
Copenhagen, Denmark, https://cgspace.cgiar.org/bitstream/handle/10568/70967/CCAFSWP138.pdf (last access: 24 March 2022),
2016.
Sanz, M. J., De Vente, J., Chotte, J.-L., Bernoux, M., Kust, G. S., Ruiz, I.,
Almagro, M., Alloza, J.-A., Vallejo, R., and Castillo, V.: Sustainable Land
Management contribution to successful land-based climate change adaptation
and mitigation, A Report of the Science-Policy Interface, United Nations
Convention to Combat Desertification (UNCCD), Bonn, Germany, 178 pp.,
https://www.unccd.int/sites/default/files/documents/2017-09/UNCCD_Report_SLM_web_v2.pdf (last access: 24 March 2022), 2017.
SEEA: System of Environmental-Economic Accounting 2012: Central Framework.
United Nations, European Commission, Food and Agriculture Organization of
the United Nations, International Monetary Fund, Organisation for Economic
Co-operation and Development, World Bank, 378 pp., https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf (last access: 24 March 2022), 2012.
Shi, L., Feng, W., Xu, J., and Kuzyakov, Y.: Agroforestry systems:
Meta-analysis of soil carbon stocks, sequestration processes, and future
potentials, Land Degrad. Dev., 29, 3886–3897, https://doi.org/10.1002/ldr.3136, 2018.
Smith, P., Martino, D., Cai, Z., O'Mara, F., Rice, C.,
Scholes, B., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Rose, S.,
Schneider, U., Towprayoon, S., Wattenbach, M., Rypdal, K., Martino, D., Cai,
Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice,
C., Scholes, B., and Sirotenko, O.: Agriculture, in: Climate Change 2007:
Mitigation, Contribution of Working Group III to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Metz, B.,
Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 44 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg3-chapter8-1.pdf (last access: 24 March 2022),
2007.
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G.,
Korotkov, V., Hoang, A. L., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N.,
Soussana, J.-F., Taboada, M. A., Manning, F. C., Nampanzira, D.,
Arias-Navarro, C., Vizzarri, M., House, J., Roe, S., Cowie, A., Rounsevell,
M., and Arneth, A.: Which practices co-deliver food security, climate
change mitigation and adaptation, and combat land degradation and
desertification?, Glob. Change Biol., 26, 1532–1575, https://doi.org/10.1111/gcb.14878, 2020.
Sumberg, J. and Giller, K. E.: What is `conventional' agriculture?, Glob.
Food Sec., 32, 100617, https://doi.org/10.1016/j.gfs.2022.100617, 2022.
Todd-Brown, K. E. O., Abramoff, R. Z., Beem-Miller, J., Blair, H. K., Earl, S.,
Frederick, K. J., Fuka, D. R., Guevara Santamaria, M., Harden, J. W.,
Heckman, K., Heran, L. J., Holmquist, J. R., Hoyt, A. M., Klinges, D. H.,
LeBauer, D. S., Malhotra, A., McClelland, S. C., Nave, L. E., Rocci, K. S.,
Schaeffer, S. M., Stoner, S., van Gestel, N., von Fromm, S. F., and Younger,
M. L.: Reviews and syntheses: The promise of big diverse soil data, moving
current practices towards future potential, Biogeosciences, 19, 3505–3522,
https://doi.org/10.5194/bg-19-3505-2022, 2022.
UN General Assembly: Transforming our world: the 2030 Agenda for
Sustainable Development, 21 October 2015, A/RES/70/1,
https://www.refworld.org/docid/57b6e3e44.html (last access: 24 March 2022), 2015.
W3C: SKOS Simple Knowledge Organization System Reference, W3C
Recommendation 18 August 2009, https://www.w3.org/TR/skos-reference/ (last access: 24 March 2022), 2009.
Wadoux, A. M.-C., Román-Dobarco, M., and McBratney, A. B.: Perspectives
on data-driven soil research, Eur. J. Soil Sci., 72, 1–15, https://doi.org/10.1111/ejss.13071, 2020.
Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., Berhe, A. A., Billings, S. A., Brigham, L. M., Chacon, S. S., Fraterrigo, J., Frey, S. D., Georgiou, K., de Graaff, M.-A., Grandy, A. S., Hartman, M. D., Hobbie, S. E., Johnson, C., Kaye, J., Kyker-Snowman, E., Litvak, M. E., Mack, M. C., Malhotra, A., Moore, J. A. M., Nadelhoffer, K., Rasmussen, C., Silver, W. L., Sulman, B. N., Walker, X., and Weintraub, S.: SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0, Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, 2021.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils - A review of drivers and
indicators at various scales, Geoderma 333, 149–162, https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wilkinson, M., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Boume,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray,
A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t'Hoeen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18,
2016.
Yang, H., Li, S., Chen, J., Zhang, X., and Xu, S.: The Standardization and
Harmonization of Land Cover Classification Systems towards Harmonized
Datasets: A Review, ISPRS Int. J. Geo.-Inf., 6, 154 https://doi.org/10.3390/ijgi6050154, 2017.
Executive editor
This paper describes the development of a thesaurus for land use/ management terms as they relate to soil organic carbon. The output of the work is an openly available database, DATA4C+, which can be accessed online and downloaded. Imprecise terminology does hinder the development of this field, this paper aims to improve consistency in the terms used to describe land management interventions.
This paper describes the development of a thesaurus for land use/ management terms as they...
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
This paper presents a first comprehensive thesaurus for management practices driving soil...