Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-89-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Kenji Fujisaki
INRAE, Info&Sols, 45075, Orléans, France
Tiphaine Chevallier
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
Antonio Bispo
INRAE, Info&Sols, 45075, Orléans, France
Jean-Baptiste Laurent
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, 34398 Montpellier CEDEX 5, France
François Thevenin
Société Khaméos, 34170 Castelnau-le-Lez, France
Lydie Chapuis-Lardy
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
LMI IESOL, Dakar CP 18524, Senegal
Rémi Cardinael
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, Harare, Zimbabwe
Department of Plant Production Sciences and Technologies, University of
Zimbabwe, Harare, Zimbabwe
Christine Le Bas
INRAE, Info&Sols, 45075, Orléans, France
Vincent Freycon
Forêts & Sociétés, University of Montpellier, CIRAD, Montpellier,
France
CIRAD, UPR Forêts & Sociétés, 34398 Montpellier, France
Fabrice Bénédet
Forêts & Sociétés, University of Montpellier, CIRAD, Montpellier,
France
CIRAD, UPR Forêts & Sociétés, 34398 Montpellier, France
Vincent Blanfort
CIRAD, UMR SELMET, 34398 Montpellier, France
SELMET, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
Michel Brossard
UMR Eco&Sols, IRD, INRAE, CIRAD, Institut Agro, University of Montpellier, Montpellier, France
Marie Tella
US Analyses, University of Montpellier, CIRAD, Montpellier, France
CIRAD, US Analyses, 34398 Montpellier CEDEX 5, France
AIDA, Univ Montpellier, CIRAD, Montpellier, France
CIRAD, UPR AIDA, Turrialba 30501, Costa Rica
CATIE, Centro Agronómico Tropical de Investigación y
Enseñanza, Turrialba 30501, Costa Rica
Related authors
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Christophe Djemiel, Samuel Dequiedt, Walid Horrigue, Arthur Bailly, Mélanie Lelièvre, Julie Tripied, Charles Guilland, Solène Perrin, Gwendoline Comment, Nicolas P. A. Saby, Claudy Jolivet, Antonio Bispo, Line Boulonne, Antoine Pierart, Patrick Wincker, Corinne Cruaud, Pierre-Alain Maron, Sébastien Terrat, and Lionel Ranjard
SOIL, 10, 251–273, https://doi.org/10.5194/soil-10-251-2024, https://doi.org/10.5194/soil-10-251-2024, 2024
Short summary
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, and Laurent Thuriès
EGUsphere, https://doi.org/10.5194/egusphere-2024-541, https://doi.org/10.5194/egusphere-2024-541, 2024
Short summary
Short summary
We assessed the long-term impacts of no-till cropping systems on soil organic carbon and nitrogen dynamics down to 1 m depth under the annual upland crop productions (cassava, maize, and soybean) in the tropical climate of Cambodia. We showed that no-till systems combined with rotations and cover crops could store large amounts of carbon in top and subsoil, in both the mineral organic-matter and particulate organic matter fractions. It also questions nitrogen management in these systems.
Armwell Shumba, Regis Chikowo, Christian Thierfelder, Marc Corbeels, Johan Six, and Rémi Cardinael
SOIL, 10, 151–165, https://doi.org/10.5194/soil-10-151-2024, https://doi.org/10.5194/soil-10-151-2024, 2024
Short summary
Short summary
Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover, and improved rotations, is often promoted as a climate-smart practice. However, our knowledge of the impact of CA on top- and subsoil soil organic carbon (SOC) stocks in the low-input cropping systems of sub-Saharan Africa is rather limited. Using two long-term experimental sites with different soil types, we found that mulch could increase top SOC stocks, but no tillage alone had a slightly negative impact.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel P. Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
EGUsphere, https://doi.org/10.5194/egusphere-2024-197, https://doi.org/10.5194/egusphere-2024-197, 2024
Short summary
Short summary
This manuscript compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Rémi Cardinael, Bertrand Guenet, Tiphaine Chevallier, Christian Dupraz, Thomas Cozzi, and Claire Chenu
Biogeosciences, 15, 297–317, https://doi.org/10.5194/bg-15-297-2018, https://doi.org/10.5194/bg-15-297-2018, 2018
Short summary
Short summary
The introduction of trees in an agricultural field modifies organic matter (OM) inputs to the soil (litterfall, root litter), the microclimate, and the stabilization and decomposition processes of OM. These changes could affect soil organic carbon (SOC) storage, but the importance of each process is not well known. In a long-term agroforestry trial, we showed that SOC storage could be explained by high OM inputs to the soil but that enhanced decomposition could also have reduced this potential.
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395, https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary
Short summary
Soil C storage is currently discussed at a high political level. This paper discusses whether the concept of soil C saturation deficit can be appropriate to determine quantitatively the soil C storage potential and contribute to answer operational questions raised by policy makers. After a review of the literature, we conclude that for practical and conceptual reasons, the C saturation deficit is not appropriate for assessing quantitatively the soil total OC storage potential.
Related subject area
Soils and biogeochemical cycling
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
The six rights of how and when to test for soil C saturation
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology
Investigating the complementarity of thermal and physical soil organic carbon fractions
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios
Contrasting potential for biological N2 fixation at three polluted central European Sphagnum peat bogs: combining the 15N2-tracer and natural-abundance isotope approaches
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations
Lithology- and climate-controlled soil aggregate-size distribution and organic carbon stability in the Peruvian Andes
Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: the case of a coffee agroforestry plantation on Andosols in Costa Rica
A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways
Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model – soil chemistry of three Swedish conifer sites from 1880 to 2080
Dynamic modelling of weathering rates – the benefit over steady-state modelling
Aluminium and base cation chemistry in dynamic acidification models – need for a reappraisal?
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024, https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary
Short summary
Land use change to cropping is known to greatly reduced organic carbon and nitrogen concentrations, but much remains unknown about the mechanisms influencing their persistence in soil. In a soil from a subtropical Australian cropping system, we demonstrate that organic carbon is protected by mineral associations but not particulate forms. Importantly, we also show that reversion from cropping to pasture or plantation can partially restore this organic carbon.
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024, https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary
Short summary
Our soil incubation experiment demonstrates that dissolved labile carbon substrate is a significant contributor to the soil particulate organic carbon pool. Dissolved carbon flow to particulate organic carbon is regulated by microbial biomass carbon and soil texture. The soil carbon model underestimates soil carbon sequestration when carbon flow from dissolved substrates to particulate organic carbon through microbial processes is not considered.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024, https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Short summary
Cover crops have substantial impacts on soil properties, but so far it is not clear how long a legacy effect of cover cropping will remain in the soil. We found that cover crops attenuate negative effects on soil structure that come from soil cultivation. The combination of plants with different litter qualities and rhizodeposits in biodiverse cover crop mixtures can improve the positive effects of cover cropping on soil structure amelioration.
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, and Thomas W. Boutton
SOIL, 10, 93–108, https://doi.org/10.5194/soil-10-93-2024, https://doi.org/10.5194/soil-10-93-2024, 2024
Short summary
Short summary
Tree cover has increased in grasslands worldwide, with juniper and oak trees expanding in the southern Great Plains, USA. Here, we examine how these changes interact with geology to affect soil C, N, and P storage. Soil concentrations of these elements were significantly higher under trees than grasslands but increased more under trees growing on Edwards soils. Our results suggest that geology and vegetation change should be considered when predicting soil storage in dryland ecosystems globally.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel P. Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
EGUsphere, https://doi.org/10.5194/egusphere-2024-197, https://doi.org/10.5194/egusphere-2024-197, 2024
Short summary
Short summary
This manuscript compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Frantisek Veselovsky, Jan Curik, Eva Prechova, Arnost Komarek, and Leona Bohdalkova
SOIL, 9, 623–640, https://doi.org/10.5194/soil-9-623-2023, https://doi.org/10.5194/soil-9-623-2023, 2023
Short summary
Short summary
Biological N2 fixation helps to sustain carbon accumulation in peatlands and to remove CO2 from the atmosphere. Changes in N2 fixation may affect the dynamics of global change. Increasing inputs of reactive N from air pollution should lead to downregulation of N2 fixation. Data from three N-polluted peat bogs show an interplay of N2-fixation rates with 10 potential drivers of this process. N2 fixation was measurable only at one site characterized by high phosphorus and low sulfate availability.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023, https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Short summary
Across northern Europe, millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH, and initial soil SOC stocks (before liming).
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020, https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020, https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary
Short summary
Soils contain one of the largest and most dynamic pools of carbon on Earth, yet scientists still struggle to understand the reactivity and fate of soil organic matter upon disturbance. In this study, we found that with increasing thermal stability, the turnover time of organic matter increased from decades to centuries with a concurrent shift in chemical composition. In this proof-of-concept study, we found that ramped thermal analyses can provide new insights for understanding soil carbon.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Songyu Yang, Boris Jansen, Samira Absalah, Rutger L. van Hall, Karsten Kalbitz, and Erik L. H. Cammeraat
SOIL, 6, 1–15, https://doi.org/10.5194/soil-6-1-2020, https://doi.org/10.5194/soil-6-1-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes or how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall is dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when we study soil carbon storage in the Andes.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Katelyn A. Congreves, Trang Phan, and Richard E. Farrell
SOIL, 5, 265–274, https://doi.org/10.5194/soil-5-265-2019, https://doi.org/10.5194/soil-5-265-2019, 2019
Short summary
Short summary
There are surprising grey areas in the precise quantification of pathways that produce nitrous oxide, a potent greenhouse gas, as influenced by soil moisture. Here, we take a new look at a classic study but use isotopomers as a powerful tool to determine the source pathways of nitrous oxide as regulated by soil moisture. Our results support earlier research, but we contribute scientific advancements by providing models that enable quantifying source partitioning rather than just inferencing.
Eric McGivney, Jon Petter Gustafsson, Salim Belyazid, Therese Zetterberg, and Stefan Löfgren
SOIL, 5, 63–77, https://doi.org/10.5194/soil-5-63-2019, https://doi.org/10.5194/soil-5-63-2019, 2019
Short summary
Short summary
Forest management may lead to long-term soil acidification due to the removal of base cations during harvest. By means of the HD-MINTEQ model, we compared the acidification effects of harvesting with the effects of historical acid rain at three forested sites in Sweden. The effects of harvesting on pH were predicted to be much smaller than those resulting from acid deposition during the 20th century. There were only very small changes in predicted weathering rates due to acid rain or harvest.
Veronika Kronnäs, Cecilia Akselsson, and Salim Belyazid
SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, https://doi.org/10.5194/soil-5-33-2019, 2019
Short summary
Short summary
Weathering rates in forest soils are important for sustainable forestry but cannot be measured. In this paper, we have modelled weathering with the commonly used PROFILE model as well as with the dynamic model ForSAFE, better suited to a changing climate with changing human activities but never before tested for weathering calculations. We show that ForSAFE gives comparable weathering rates to PROFILE and that it shows the variation in weathering with time and works well for scenario modelling.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Cited articles
Abdalla, M., Hastings, A., Chadwick, D. R., Jones, D. L., Evans, C. D., Jones,
M. B., Rees, R. M., and Smith, P.: Critical review of the impacts of grazing
intensity on soil organic carbon storage and other soil quality indicators
in extensively managed grasslands, Agr. Ecosyst. Environ., 253, 62–81,
https://doi.org/10.1016/j.agee.2017.10.023, 2018.
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D.,
Yang, J., and Matocha, C.: Responses of soil carbon sequestration to
climate-smart agriculture practices: A meta-analysis, Glob. Change Biol.,
25, 2591–2606, https://doi.org/10.1111/gcb.14658, 2019.
Batjes, N. H.: Technologically achievable soil organic carbon sequestration
in world croplands and grasslands, Land Degrad. Dev., 30, 25–32, https://doi.org/10.1002/ldr.3209, 2019.
Beillouin, D., Cardinael, R., Berre, D., Boyer, A., Corbeels, M., Fallot,
A., Feder, F., and Demenois, J.: A global overview of studies about land
management, land-use change, and climate change effects on soil organic
carbon, Glob. Change Biol., 28, 1690-1702, https://doi.org/10.1111/gcb.15998, 2022.
Bernoux, M., Branca, G., Carro, A., Lipper, L., Smith, G., and Bockel, L.:
Ex-ante greenhouse gas balance of agriculture and forestry development
programs, Sci. Agr., 67, 31–40, https://doi.org/10.1590/S0103-90162010000100005, 2010.
Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A., and
VandenBygaart, A. J.: An approach for estimating net primary productivity
and annual carbon inputs to soil for common agricultural crops in Canada,
Ag. Ecosyst. Environ., 118, 29–42, https://doi.org/10.1016/j.agee.2006.05.013, 2007.
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec,
J., Tits, M., Tóth, Z., and Kätterer, T.: The effect of crop
residues, cover crops, manures and nitrogen fertilization on soil organic
carbon changes in agroecosystems: a synthesis of reviews, Mitig. Adapt.
Strateg. Glob. Chang., 25, 929–952, https://doi.org/10.1007/s11027-020-09916-3, 2020.
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J.,
Smith, P., Wood, S., Zomer, R. J., Von Unger, M., and Emmer, I. M.: The role
of soil carbon in natural climate solutions, Nat. Sustain., 3, 391–398,
https://doi.org/10.1038/s41893-020-0491-z, 2020.
Cardinael, R., Umulisa, V., Toudert, A., Olivier, A., Bockel, L., and
Bernoux, M.: Revisiting IPCC Tier 1 coefficients for soil organic and
biomass carbon storage in agroforestry systems, Environ. Res. Lett., 13,
124020, https://doi.org/10.1088/1748-9326/aaeb5f, 2018.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and
Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge
gaps and potential innovations, Soil Till. Res., 188, 41–52, https://doi.org/10.1016/j.still.2018.04.011, 2019.
Chotte, J. L., Aynekulu, E., Cowie, A., Campbell, E., Vlek, P., Lal, R.,
Kapovic-Solomun, M., Von Maltitz, G. P., Kust, G., and Barger, N.: Realising
the carbon benefits of sustainable land management practices: Guidelines for
estimation of soil organic carbon in the context of land degradation
neutrality planning and monitoring, A report of the Science-Policy
Interface, United Nations Convention to Combat Desertification (UNCCD),
Bonn, Germany, https://catalogue.unccd.int/1209_UNCCD_SPI_2019_Report_1.1.pdf (last access: 24 March 2022), 2019.
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K.: Grassland
management impacts on soil carbon stocks: a new synthesis, Ecol. Appl., 27,
662–668, https://doi.org/10.1002/eap.1473, 2017.
Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., and Torquebiau, E.:
The 4 per 1000 goal and soil carbon storage under agroforestry and
conservation agriculture systems in sub-Saharan Africa, Soil Till. Res.,
188, 16–26, https://doi.org/10.1016/j.still.2018.02.015, 2019.
Demenois, J., Fujisaki, K., Chevallier, T., Bispo, A., Laurent, J.-B., Thévenin, F., Chapuis-Lardy, L., Cardinael, R., Freycon, V., Bénédet, F., Le Bas, C., Tella, M., Blanfort, V., and Brossard, M.: DATA4C+ – A thesaurus to define land management practices in agriculture and forestry for soil carbon storage, CIRAD Dataverse [data set], https://doi.org/10.18167/DVN1/HMCPMF, 2022.
Erb, K.-H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster,
S., Kuemmerle, T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones,
C. D., Marín-Spiotta, E., McCallum, I., Robertson, E., Seufert, V.,
Fritz, S., Valade, A., Wiltshire, A., and Dolman, A. J.: Land management:
data availability and process understanding for global change studies, Glob.
Change Biol., 23, 512–533, https://doi.org/10.1111/gcb.13443,
2017.
Eurostat: LUCAS Technical reference document C3 Classification (Land cover
and Land-use), 93 pp.,. https://ec.europa.eu/eurostat/documents/205002/6786255/ (last access: 24 March 2022),
2015.
FAO: World Programme for the Census of Agriculture 2020, Vol. 1,
Programme, Concepts and Definitions, FAO, Rome, https://www.fao.org/3/i4913e/i4913e.pdf (last access: 24 March 2022), 2015.
Fujisaki, K., Chevallier, T., Chapuis-Lardy, L., Albrecht, A., Razafimbelo,
T., Masse, D., Ndour, Y. B., and Chotte, J.-L.: Soil carbon stock changes in
tropical croplands are mainly driven by carbon inputs: A synthesis, Agr.
Ecosyst. Environ., 259, 147–158, https://doi.org/10.1016/j.agee.2017.12.008, 2018.
Gong, X., Marklund, L. G., and Tsuji, S.: Land-use classification proposed
to be used in the SEEA, in: 14th Meeting of the London Group on
Environmental Accounting, 27–30 April 2009, Canberra, LG/14/10,
https://unstats.un.org/unsd/envaccounting/londongroup/meeting14/LG14_10a.pdf (last access: 24 March 2022), 2009.
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E.,
Thomsen, I. K., Jørgensen, H. B., and Isberg, P.-E.: How does tillage
intensity affect soil organic carbon? A systematic review, Environ. Evid.,
6, 30, https://doi.org/10.1186/s13750-017-0108-9, 2017.
Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C.,
Bond-Lamberty, B., Lawrence, C. R., Loisel, J., Malhotra, A., Jackson, R. B.,
Ogle, S., Phillips, C., Ryals, R., Todd-Brown, K., Vargas, R., Vergara,
S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K. A., Crow, S. E., Silver, W. L.,
DeLonge, M., and Nave, L. E.: Networking our science to characterize the
state, vulnerabilities, and management opportunities of soil organic matter,
Glob. Change Biol., 24, e705–e718, https://doi.org/10.1111/gcb.13896, 2018.
Herold, M., Hubald, R., and Di Gregorio, A.: Translating and evaluating
land cover legends using the UN Land Cover Classification System (LCCS),
GOGC-GOLD Report 43, https://gofcgold.umd.edu/sites/default/files/docs/ReportSeries/GOLD_43.pdf (last access: 24 March 2022), 2009.
IPCC: IPCC Guidelines for national greenhouse gas inventories, Prepared by
the National Greenhouse Gas Inventories Programme, edited by: Eggleston, H. S., Buendia, L.,
Miwa, K., Ngara, T., and Tanabe, K., Hayama, Kanagawa, Japan, https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (last access: 24 March 2022), 2006.
IPCC: Climate Change and Land: an IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R.,
Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts,
D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E.,
Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P.,
Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., https://www.ipcc.ch/srccl/ (last access: 24 March 2022), 2019.
Jansen, L. J. M. and Gregorio, A. D.: Parametric land cover and land-use
classifications as tools for environmental change detection, Agr. Ecosyst.
Environ., 91, 89–100, https://doi.org/10.1016/S0167-8809(01)00243-2, 2002.
Jian, J., Du, X., and Stewart, R. D.: A database for global soil health
assessment, Sci. Data, 7, 16, https://doi.org/10.1038/s41597-020-0356-3, 2020.
Krupnik, T. J., Andersson, J. A., Rusinamhodzi, L., Corbeels, M., Shennan, C.,
and Gérard, B.: Does size matter? a critical review of meta-analysis in
agronomy, Exp. Agr., 55, 200–229, https://doi.org/10.1017/S0014479719000012, 2019.
Laurent, J.-B. and Thevenin, F.: DATA4C+ thesaurus programs, GitLab [code], https://gitlab.cirad.fr/jean-baptiste.laurent/data4c, last access: 24 March 2022.
Lawrence, C. R., J. Beem-Miller, Hoyt, A. M., Monroe, G., Sierra, C. A.,
Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G.,
Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K.,
Rasmussen, C., Hicks Pries, C.E., Schädel, C., McFarlane, K., Doetterl,
S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S.,
Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen,
Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel,
J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source
database for the synthesis of soil radiocarbon data: International Soil
Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12,
61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Li, Y., Shi, S., Waqas, M. A., Zhou, X., Li, J., Wan, Y., Qin, X., Gao, Q.,
Liu, S., and Wilkes, A.: Long-term (≥20 years) application of
fertilizers and straw return enhances soil carbon storage: a meta-analysis,
Mitig. Adapt. Strateg. Glob. Chang., 23, 603–619, https://doi.org/10.1007/s11027-017-9751-2, 2018.
Maia, S. M. F., Ogle, S. M., Cerri, C. E. P., and Cerri, C. C.: Effect of
grassland management on soil carbon sequestration in Rondônia and Mato
Grosso states, Brazil, Geoderma, 149, 84–91, https://doi.org/10.1016/j.geoderma.2008.11.023, 2009.
Maillard, É. and Angers, D. A.: Animal manure application and soil
organic carbon stocks: a meta-analysis, Glob. Change Biol., 20, 666–679, https://doi.org/10.1111/gcb.12438, 2014.
Malhotra, A., Todd-Brown, K., Nave, L. E., Batjes, N. H., Holmquist, J. R.,
Hoyt, A. M., Iversen, C. M., Jackson, R. B., Lajtha, K., Lawrence, C.,
Vindušková, O., Wieder, W., Williams, M., Hugelius, G., and Harden,
J.: The landscape of soil carbon data: Emerging questions, synergies and
databases, Prog. Phys. Geogr. Earth Environ., 43, 707–719, https://doi.org/10.1177/0309133319873309, 2019.
Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L.,
Ferreira, G. W. D., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P.,
Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J. A., Vanguelova,
E. I., and Vesterdal, L.: Tamm Review: Influence of forest management
activities on soil organic carbon stocks: A knowledge synthesis, Forest Ecol.
Manag., 466, 118127, https://doi.org/10.1016/j.foreco.2020.118127, 2020.
Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler,
S. J., Buck, S., Chambers, C. D., Chin, G., Christensen, G., Contestabile, M.,
Dafoe, A., Eich, E., Freese, J., Glennerster, R., Goroff, D., Green, D. P.,
Hesse, B., Humphreys, M., Ishiyama, J., Karlan, D., Kraut, A., Lupia, A.,
Mabry, P., Madon, T., Malhotra, N., Mayo-Wilson, E., McNutt, M., Miguel, E.,
Levy Paluck, E., Simonsohn, U., Soderberg, C., Spellman, B. A., Turitto, J.,
VandenBos, G., Vazire, S., Wagenmakers, E. J., Wilson, R., and Yarkoni, T.:
Promoting an open research culture, Science, 348, 1422–1425, https://doi.org/10.1126/science.aab2374, 2015.
OCDE: “Making Open Science a Reality”, OECD Science, Technology and
Industry Policy Papers, no. 25, Éditions OCDE, Paris,
https://doi.org/10.1787/5jrs2f963zs1-en, 2015.
Paradelo, R., Virto, I., and Chenu, C.: Net effect of liming on soil
organic carbon stocks: A review, Agr. Ecosyst. Environ., 202, 98–107, https://doi.org/10.1016/j.agee.2015.01.005, 2015.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers,
D., Augusto, L., Balesdent, J., Basile-Doelsch, I., and Bellassen, V. :
Stocker du carbone dans les sols français. Quel potentiel au regard de
l'objectif 4 pour 1000 et à quel coût ? (Rapport scientifique de
l'étude), INRA, France, https://www.inrae.fr/sites/default/files/pdf/Rapport Etude 4p1000.pdf (last access: 24 March 2022),
2020.
Pesce, V., Tennison, J., Mey, L., Jonquet, C., Toulet, A., Aubin, S., and
Panagiotis, Z.: A map of agri-food data standards, https://hal-lirmm.ccsd.cnrs.fr/lirmm-01964791/document (last access: 24 March 2022), 2018.
Poeplau, C. and Don, A.: Carbon sequestration in agricultural soils via
cultivation of cover crops – A meta-analysis, Agr. Ecosyst. Environ.,
200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., and Jat, M. L.:
Does conservation agriculture deliver climate change mitigation through soil
carbon sequestration in tropical agro-ecosystems?, Agr. Ecosyst. Environ.,
220, 164–174, https://doi.org/10.1016/j.agee.2016.01.005,
2016.
Rosenstock, T. S., Lamanna, C., Chesterman, S., Bell, P., Arslan, A.,
Richards, M., Rioux, J., Akinleye, A. O., Champalle, C., Cheng, Z.,
Corner-Dolloff, C., Dohn, J., English, W., Eyrich, A.-S., Girvetz, E. H.,
Kerr, A., Lizarazo, M., Madalinska, A.,McFatridge, S., Morris, K. S., Namoi,
N., Poultouchidou, A., Ravina da Silva, M, Rayess, S., Ström, H., Tully
K. L., and Zhou, W.: The scientific basis of climate-smart agriculture: A
systematic review protocol. CCAFS Working Paper no. 136, CGIAR Research
Program on Climate Change, Agriculture and Food Security (CCAFS),
Copenhagen, Denmark, https://cgspace.cgiar.org/bitstream/handle/10568/70967/CCAFSWP138.pdf (last access: 24 March 2022),
2016.
Sanz, M. J., De Vente, J., Chotte, J.-L., Bernoux, M., Kust, G. S., Ruiz, I.,
Almagro, M., Alloza, J.-A., Vallejo, R., and Castillo, V.: Sustainable Land
Management contribution to successful land-based climate change adaptation
and mitigation, A Report of the Science-Policy Interface, United Nations
Convention to Combat Desertification (UNCCD), Bonn, Germany, 178 pp.,
https://www.unccd.int/sites/default/files/documents/2017-09/UNCCD_Report_SLM_web_v2.pdf (last access: 24 March 2022), 2017.
SEEA: System of Environmental-Economic Accounting 2012: Central Framework.
United Nations, European Commission, Food and Agriculture Organization of
the United Nations, International Monetary Fund, Organisation for Economic
Co-operation and Development, World Bank, 378 pp., https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf (last access: 24 March 2022), 2012.
Shi, L., Feng, W., Xu, J., and Kuzyakov, Y.: Agroforestry systems:
Meta-analysis of soil carbon stocks, sequestration processes, and future
potentials, Land Degrad. Dev., 29, 3886–3897, https://doi.org/10.1002/ldr.3136, 2018.
Smith, P., Martino, D., Cai, Z., O'Mara, F., Rice, C.,
Scholes, B., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Rose, S.,
Schneider, U., Towprayoon, S., Wattenbach, M., Rypdal, K., Martino, D., Cai,
Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice,
C., Scholes, B., and Sirotenko, O.: Agriculture, in: Climate Change 2007:
Mitigation, Contribution of Working Group III to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Metz, B.,
Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 44 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg3-chapter8-1.pdf (last access: 24 March 2022),
2007.
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G.,
Korotkov, V., Hoang, A. L., Lwasa, S., McElwee, P., Nkonya, E., Saigusa, N.,
Soussana, J.-F., Taboada, M. A., Manning, F. C., Nampanzira, D.,
Arias-Navarro, C., Vizzarri, M., House, J., Roe, S., Cowie, A., Rounsevell,
M., and Arneth, A.: Which practices co-deliver food security, climate
change mitigation and adaptation, and combat land degradation and
desertification?, Glob. Change Biol., 26, 1532–1575, https://doi.org/10.1111/gcb.14878, 2020.
Sumberg, J. and Giller, K. E.: What is `conventional' agriculture?, Glob.
Food Sec., 32, 100617, https://doi.org/10.1016/j.gfs.2022.100617, 2022.
Todd-Brown, K. E. O., Abramoff, R. Z., Beem-Miller, J., Blair, H. K., Earl, S.,
Frederick, K. J., Fuka, D. R., Guevara Santamaria, M., Harden, J. W.,
Heckman, K., Heran, L. J., Holmquist, J. R., Hoyt, A. M., Klinges, D. H.,
LeBauer, D. S., Malhotra, A., McClelland, S. C., Nave, L. E., Rocci, K. S.,
Schaeffer, S. M., Stoner, S., van Gestel, N., von Fromm, S. F., and Younger,
M. L.: Reviews and syntheses: The promise of big diverse soil data, moving
current practices towards future potential, Biogeosciences, 19, 3505–3522,
https://doi.org/10.5194/bg-19-3505-2022, 2022.
UN General Assembly: Transforming our world: the 2030 Agenda for
Sustainable Development, 21 October 2015, A/RES/70/1,
https://www.refworld.org/docid/57b6e3e44.html (last access: 24 March 2022), 2015.
W3C: SKOS Simple Knowledge Organization System Reference, W3C
Recommendation 18 August 2009, https://www.w3.org/TR/skos-reference/ (last access: 24 March 2022), 2009.
Wadoux, A. M.-C., Román-Dobarco, M., and McBratney, A. B.: Perspectives
on data-driven soil research, Eur. J. Soil Sci., 72, 1–15, https://doi.org/10.1111/ejss.13071, 2020.
Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., Berhe, A. A., Billings, S. A., Brigham, L. M., Chacon, S. S., Fraterrigo, J., Frey, S. D., Georgiou, K., de Graaff, M.-A., Grandy, A. S., Hartman, M. D., Hobbie, S. E., Johnson, C., Kaye, J., Kyker-Snowman, E., Litvak, M. E., Mack, M. C., Malhotra, A., Moore, J. A. M., Nadelhoffer, K., Rasmussen, C., Silver, W. L., Sulman, B. N., Walker, X., and Weintraub, S.: SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0, Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, 2021.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils - A review of drivers and
indicators at various scales, Geoderma 333, 149–162, https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wilkinson, M., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Boume,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray,
A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., t'Hoeen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18,
2016.
Yang, H., Li, S., Chen, J., Zhang, X., and Xu, S.: The Standardization and
Harmonization of Land Cover Classification Systems towards Harmonized
Datasets: A Review, ISPRS Int. J. Geo.-Inf., 6, 154 https://doi.org/10.3390/ijgi6050154, 2017.
Executive editor
This paper describes the development of a thesaurus for land use/ management terms as they relate to soil organic carbon. The output of the work is an openly available database, DATA4C+, which can be accessed online and downloaded. Imprecise terminology does hinder the development of this field, this paper aims to improve consistency in the terms used to describe land management interventions.
This paper describes the development of a thesaurus for land use/ management terms as they...
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
This paper presents a first comprehensive thesaurus for management practices driving soil...