Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-71-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-71-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems
Pedro V. G. Batista
CORRESPONDING AUTHOR
Water and Soil Resource Research, Institute of Geography, University
of Augsburg, 86159, Augsburg, Germany
Daniel L. Evans
School of Water Energy & Environment, Cranfield University,
Cranfield, UK
Bernardo M. Cândido
Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA
Peter Fiener
Water and Soil Resource Research, Institute of Geography, University
of Augsburg, 86159, Augsburg, Germany
Related authors
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2024-1702, https://doi.org/10.5194/egusphere-2024-1702, 2024
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, are likely more significant for water losses by runoff leading to flooding and water scarcity and are therefore an important part the solution to mitigate floods, droughts, and heatwaves.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Jinshi Jian, Xuan Du, Juying Jiao, Xiaohua Ren, Karl Auerswald, Ryan Stewart, Zeli Tan, Jianlin Zhao, Daniel L. Evans, Guangju Zhao, Nufang Fang, Wenyi Sun, Chao Yue, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-87, https://doi.org/10.5194/essd-2022-87, 2022
Manuscript not accepted for further review
Short summary
Short summary
Field soil loss and sediment yield due to surface runoff observations were compiled into a database named AWESOME: Archive for Water Erosion and Sediment Outflow MEasurements. Annual soil erosion data from 1985 geographic sites and 75 countries have been compiled into AWESOME. This database aims to be an open framework for the scientific community to share field-based annual soil erosion measurements, enabling better understanding of the spatial and temporal variability of annual soil erosion.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Short summary
Policy to conserve thinning arable soils relies on a balance between the rates of soil erosion and soil formation. Our knowledge of the latter is meagre. Here, we present soil formation rates for an arable hillslope, the first of their kind globally, and a woodland hillslope, the first of their kind in Europe. Rates range between 26 and 96 mm kyr−1. On the arable site, erosion rates are 2 orders of magnitude greater, and in a worst-case scenario, bedrock exposure could occur in 212 years.
Peter Fiener, Florian Wilken, and Karl Auerswald
Adv. Geosci., 48, 31–48, https://doi.org/10.5194/adgeo-48-31-2019, https://doi.org/10.5194/adgeo-48-31-2019, 2019
Short summary
Short summary
An 8-year dataset of erosion monitoring (e.g. agricultural management, rainfall, runoff, sediment delivery) is made available. It covers 14 adjoining and partly nested watersheds (sizes 1–14 ha) that were cultivated following integrated (4 crops) and organic farming (7 crops and grassland) practices. Drivers of erosion and runoff were determined and with high spatial and temporal detail. The data set closes the gap between plot research and watershed research.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Florian Wilken, Peter Fiener, and Kristof Van Oost
Earth Surf. Dynam., 5, 113–124, https://doi.org/10.5194/esurf-5-113-2017, https://doi.org/10.5194/esurf-5-113-2017, 2017
Short summary
Short summary
This study presents a model that accounts for preferential erosion and transport of sediment and soil organic carbon in agricultural landscapes. We applied the model to a small catchment in Belgium for a period of 100 years. After a thorough model evaluation, these simulations shows that sediment and carbon export are highly episodic and that the temporal variability is largely influenced by selective erosion and deposition.
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
Related subject area
Soil degradation
Gully rehabilitation in southern Ethiopia – value and impacts for farmers
A millennium of arable land use – the long-term impact of tillage and water erosion on landscape-scale carbon dynamics
Sensitivity of source sediment fingerprinting to tracer selection methods
Response of soil nutrients and erodibility to slope aspect in the northern agro-pastoral ecotone, China
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Validating plutonium-239+240 as a novel soil redistribution tracer – a comparison to measured sediment yield
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution
The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (Triticum aestivum L.)
Potential effect of wetting agents added to agricultural sprays on the stability of soil aggregates
Environmental behaviors of (E) pyriminobac-methyl in agricultural soils
The effect of natural infrastructure on water erosion mitigation in the Andes
Spatial distribution of argan tree influence on soil properties in southern Morocco
Assessing soil redistribution of forest and cropland sites in wet tropical Africa using 239+240Pu fallout radionuclides
Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China
Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils
Complex soil food web enhances the association between N mineralization and soybean yield – a model study from long-term application of a conservation tillage system in a black soil of Northeast China
Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling
Variation of soil organic carbon, stable isotopes, and soil quality indicators across an erosion–deposition catena in a historical Spanish olive orchard
Impacts of land use and topography on soil organic carbon in a Mediterranean landscape (north-western Tunisia)
Spatial assessments of soil organic carbon for stakeholder decision-making – a case study from Kenya
How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling
Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication
Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions
Determination of hydrological roughness by means of close range remote sensing
Can we manipulate root system architecture to control soil erosion?
SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network
Gully geometry: what are we measuring?
Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming
Ecological soil quality affected by land use and management on semi-arid Crete
Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health
Wolde Mekuria, Euan Phimister, Getahun Yakob, Desalegn Tegegne, Awdenegest Moges, Yitna Tesfaye, Dagmawi Melaku, Charlene Gerber, Paul D. Hallett, and Jo U. Smith
SOIL, 10, 637–654, https://doi.org/10.5194/soil-10-637-2024, https://doi.org/10.5194/soil-10-637-2024, 2024
Short summary
Short summary
In Ethiopia, we studied (a) the effectiveness of low-cost gully rehabilitation measures in reducing soil loss and upward expansion of gully heads and (b) how farmers and communities view gully interventions. The tested low-cost gully rehabilitation measures were effective in mitigating the upward expansion of gully heads and in reducing soil loss. Farmers also perceive success, but scaling-out can be constrained by diverse challenges.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Yuxin Wu, Guodong Jia, Xinxiao Yu, Honghong Rao, Xiuwen Peng, Yusong Wang, Yushi Wang, and Xu Wang
SOIL, 10, 61–75, https://doi.org/10.5194/soil-10-61-2024, https://doi.org/10.5194/soil-10-61-2024, 2024
Short summary
Short summary
Vegetation restoration is an important method of ecological restoration that aims to control soil erosion and prevent soil degradation. Our study suggests that combinations of species such as C. korshinskii and L. bicolor are optimal for improving the soil nutrients and soil erodibility for any slope aspect. This study provides insight into the rational planning of vegetation restoration measures for slopes with various aspects in semi-arid areas of the northern agro-pastoral ecotone.
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023, https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Short summary
The present study used several different datasets, conducted a field survey, and paired the data with three different machine learning algorithms to construct spatial maps for areas at risk of land degradation for the Lut watershed in Iran. According to the land degradation map, almost the entire study region is at risk. A large fraction of 43 % of the area is prone to both high wind-driven and water-driven soil erosion.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023, https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Short summary
The response rate of soil organic matter (SOM) to the amount of straw return was inversely proportional to the initial SOM and the sand contents. From paddy to dryland, the SOM loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg-1 when the straw return amount reached 60–100%. The study revealed that straw return is beneficial to carbon sink in farmland and is a way to prevent a C source caused by the change of paddy field to upland.
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL, 8, 517–539, https://doi.org/10.5194/soil-8-517-2022, https://doi.org/10.5194/soil-8-517-2022, 2022
Short summary
Short summary
Although present in food security key areas, Arenosols carbon stocks are barely studied. A 150-year-old land use change in a Mediterranean Arenosol showed a loss from 50 Gt C ha-1 to 3 Gt C ha-1 after grape cultivation. 14C showed that deep ploughing in a vineyard plot redistributed the remaining microbial carbon both vertically and horizontally. Despite the drastic degradation of the organic matter pool, Arenosols would have a high carbon storage potential, targeting the 4 per 1000 initiative.
Vanesa Santás-Miguel, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Montserrat Díaz-Raviña, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 8, 437–449, https://doi.org/10.5194/soil-8-437-2022, https://doi.org/10.5194/soil-8-437-2022, 2022
Short summary
Short summary
A laboratory experiment was carried out for 42 d to study co-selection for tolerance of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr, and Pb). At high metal concentrations, the bacterial communities show tolerance to the metal itself, occurring for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals also showed long-term co-tolerance to TC, OTC, and CTC.
David Hobson, Mary Harty, Saoirse R. Tracy, and Kevin McDonnell
SOIL, 8, 391–408, https://doi.org/10.5194/soil-8-391-2022, https://doi.org/10.5194/soil-8-391-2022, 2022
Short summary
Short summary
Tillage practices and traffic management have significant implications for root architecture, plant growth, and, ultimately, crop yield. Soil cores were extracted from a long-term tillage trial to measure the relationship between soil physical properties and root growth. We found that no-traffic and low-tyre-pressure methods significantly increased rooting properties and crop yield under zero-tillage conditions compared to conventionally managed deep-tillage treatments with high tyre pressures.
Antonín Kintl, Vítězslav Vlček, Martin Brtnický, Jan Nedělník, and Jakub Elbl
SOIL, 8, 349–372, https://doi.org/10.5194/soil-8-349-2022, https://doi.org/10.5194/soil-8-349-2022, 2022
Short summary
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
Wenwen Zhou, Haoran Jia, Lang Liu, Baotong Li, Yuqi Li, and Meizhu Gao
SOIL, 8, 237–252, https://doi.org/10.5194/soil-8-237-2022, https://doi.org/10.5194/soil-8-237-2022, 2022
Short summary
Short summary
Our study focuses on (E) pyriminobac-methyl (EPM), a weedicide commonly applied to agricultural soils in China, which can potentially pose serious risks to groundwater quality once it percolates through the soil. We tested the adsorption–desorption, degradation, and leaching of this compound in five agricultural soils sampled from different provinces in China.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Mario Kirchhoff, Tobias Romes, Irene Marzolff, Manuel Seeger, Ali Aït Hssaine, and Johannes B. Ries
SOIL, 7, 511–524, https://doi.org/10.5194/soil-7-511-2021, https://doi.org/10.5194/soil-7-511-2021, 2021
Short summary
Short summary
This study found that the influence of argan trees on soil properties in southern Morocco is mostly limited to the area covered by the tree crown. However, the tree influences the bare soil outside the crown positively in specific directions because wind and water can move litter and soil particles from under the tree to the areas between the trees. These findings, based on soil samples around argan trees, could help structure reforestation measures.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Ming Lu, David S. Powlson, Yi Liang, Dave R. Chadwick, Shengbi Long, Dunyi Liu, and Xinping Chen
SOIL, 7, 333–346, https://doi.org/10.5194/soil-7-333-2021, https://doi.org/10.5194/soil-7-333-2021, 2021
Short summary
Short summary
Land use changes are an important anthropogenic perturbation that can cause soil degradation, but the impacts of land conversion from growing cereals to vegetables have received little attention. Using a combination of soil analyses from paired sites and data from farmer surveys, we found significant soil degradation in intensive vegetable cropping under paddy rice–oilseed rape rotation in southwestern China. This study may alert others to the potential land degradation in the subtropics.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Shixiu Zhang, Liang Chang, Neil B. McLaughlin, Shuyan Cui, Haitao Wu, Donghui Wu, Wenju Liang, and Aizhen Liang
SOIL, 7, 71–82, https://doi.org/10.5194/soil-7-71-2021, https://doi.org/10.5194/soil-7-71-2021, 2021
Short summary
Short summary
Long-term conservation tillage results in more complex and heterogeneous activities of soil organisms relative to conventional tillage. This study used an energetic food web modelling approach to calculate the mineralized N delivered by the whole soil community assemblages and highlighted the essential role of soil food web complexity in coupling N mineralization and soybean yield after a 14-year application of conservation tillage in a black soil of Northeast China.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
José A. Gómez, Gema Guzmán, Arsenio Toloza, Christian Resch, Roberto García-Ruíz, and Lionel Mabit
SOIL, 6, 179–194, https://doi.org/10.5194/soil-6-179-2020, https://doi.org/10.5194/soil-6-179-2020, 2020
Short summary
Short summary
The long-term evolution of soil organic carbon in an olive orchard (planted in 1856) was evaluated and compared to an adjacent undisturbed natural area. Total soil organic carbon in the top 40 cm of the soil in the orchard was reduced to 25 % of that in the undisturbed area. The deposition downslope in the orchard of sediment coming from the eroded upslope area did not increase the accumulation of organic carbon in soil, but it quadrupled available phosphorus and improved overall soil quality.
Donia Jendoubi, Hanspeter Liniger, and Chinwe Ifejika Speranza
SOIL, 5, 239–251, https://doi.org/10.5194/soil-5-239-2019, https://doi.org/10.5194/soil-5-239-2019, 2019
Short summary
Short summary
This paper is original research done in north-western Tunisia; it presents the impacts of the topography (slope and aspect) and the land use systems in the SOC storage in a Mediterranean area. It provides a soil spectral library, describes the variation of SOC under different conditions, and highlights the positive impact of agroforestry as good management in improving the SOC. Therefore this finding is very important to support decision making and inform sustainable land management in Tunisia.
Tor-Gunnar Vågen, Leigh Ann Winowiecki, Constance Neely, Sabrina Chesterman, and Mieke Bourne
SOIL, 4, 259–266, https://doi.org/10.5194/soil-4-259-2018, https://doi.org/10.5194/soil-4-259-2018, 2018
Short summary
Short summary
Land degradation impacts the health and livelihoods of about 1.5 billion people worldwide. The state of the environment and food security are strongly interlinked in tropical landscapes. This paper demonstrates the integration of soil organic carbon (SOC) and land health maps with socioeconomic datasets into an online, open-access platform called the Resilience Diagnostic and Decision Support Tool for Turkana County in Kenya.
Dick J. Brus and Jan J. H. van den Akker
SOIL, 4, 37–45, https://doi.org/10.5194/soil-4-37-2018, https://doi.org/10.5194/soil-4-37-2018, 2018
Short summary
Short summary
Subsoil compaction is an important soil threat. It is caused by heavy machines used in agriculture. The aim of this study was to estimate how large the area with overcompacted subsoils is in the Netherlands. This was done by selecting locations randomly and determining the porosity and bulk density of the soil at these locations. It appeared that 43 % of the soils in the Netherlands is overcompacted, and so we conclude that subsoil compaction is indeed a serious problem in the Netherlands.
Frederick Büks and Martin Kaupenjohann
SOIL, 2, 499–509, https://doi.org/10.5194/soil-2-499-2016, https://doi.org/10.5194/soil-2-499-2016, 2016
Short summary
Short summary
Soil aggregate stability and POM occlusion are integral markers for soil quality. Besides physico-chemical interactions, biofilms are considered to aggregate primary particles, but experimental proof is still missing. In our experiment, soil aggregate samples were treated with biofilm degrading enzymes and showed a reduced POM occlusion and an increased bacteria DNA release compared with untreated samples. Thus, biofilms are assumed to be an important factor of POM occlusion in soil aggregates.
E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden, and J. A. Gómez
SOIL, 1, 651–664, https://doi.org/10.5194/soil-1-651-2015, https://doi.org/10.5194/soil-1-651-2015, 2015
Short summary
Short summary
Biodiversity indices for spontaneous grass cover were measured in two olive orchards in southern Spain with contrasting site conditions and management to evaluate their potential for biodiversity metrics of soil degradation. Biodiversity indices were relatively high for agricultural areas. No correlation between the biodiversity indicators and soil quality features were observed. The mere use of vegetation presence as a proxy might mask relative intense soil degradation processes.
A. Kaiser, F. Neugirg, F. Haas, J. Schmidt, M. Becht, and M. Schindewolf
SOIL, 1, 613–620, https://doi.org/10.5194/soil-1-613-2015, https://doi.org/10.5194/soil-1-613-2015, 2015
A. Ola, I. C. Dodd, and J. N. Quinton
SOIL, 1, 603–612, https://doi.org/10.5194/soil-1-603-2015, https://doi.org/10.5194/soil-1-603-2015, 2015
Short summary
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
C. Castillo, M. R. James, M. D. Redel-Macías, R. Pérez, and J. A. Gómez
SOIL, 1, 583–594, https://doi.org/10.5194/soil-1-583-2015, https://doi.org/10.5194/soil-1-583-2015, 2015
Short summary
Short summary
- We present SF3M, a new graphical user interface for implementing a complete 3-D photo-reconstruction workflow based on freely available software, in combination with a low-cost survey design for the reconstruction of a several-hundred-metres-long gully network.
- This methodology implied using inexpensive means, little manpower, in a short time span, being a promising tool for gully erosion evaluation in scenarios with demanding budget and time constraints and reduced operator expertise.
J. Casalí, R. Giménez, and M. A. Campo-Bescós
SOIL, 1, 509–513, https://doi.org/10.5194/soil-1-509-2015, https://doi.org/10.5194/soil-1-509-2015, 2015
Short summary
Short summary
Despite gullies having been intensively studied in the past decades, there is no general consensus on such basic aspects as the correct determination of the geometry (width and depth) of these erosion features. Therefore, a measurement protocol is proposed to characterize the geometry of a gully by its effective width and effective depth, which, together with its length, would permit the definition of the equivalent prismatic gully (EPG); this would facilitate the comparison between gullies.
E. A. C. Costantini, A. E. Agnelli, A. Fabiani, E. Gagnarli, S. Mocali, S. Priori, S. Simoni, and G. Valboa
SOIL, 1, 443–457, https://doi.org/10.5194/soil-1-443-2015, https://doi.org/10.5194/soil-1-443-2015, 2015
Short summary
Short summary
Earthworks carried out before planting a new vineyard caused, in the surface soil layer, an increase in lime and a decline in soil OC and N contents, along with a reduction in the abundance and diversity of microbial and mesofauna communities. Five years after the new vineyard establishment, soil was still far from its original quality and this limited vine development. The reduced OM input resulting from the management and the poor residue biomass was a major factor in delaying soil resilience.
J. P. van Leeuwen, D. Moraetis, G. J. Lair, J. Bloem, N. P. Nikolaidis, L. Hemerik, and P. C. de Ruiter
SOIL Discuss., https://doi.org/10.5194/soild-2-187-2015, https://doi.org/10.5194/soild-2-187-2015, 2015
Manuscript not accepted for further review
R. Zornoza, J. A. Acosta, F. Bastida, S. G. Domínguez, D. M. Toledo, and A. Faz
SOIL, 1, 173–185, https://doi.org/10.5194/soil-1-173-2015, https://doi.org/10.5194/soil-1-173-2015, 2015
Cited articles
Anache, J. A. A., Flanagan, D. C., Srivastava, A., and Wendland, E. C.: Land
use and climate change impacts on runoff and soil erosion at the hillslope
scale in the Brazilian Cerrado, Sci. Total Environ., 622, 140–151,
https://doi.org/10.1016/j.scitotenv.2017.11.257, 2018.
Anselmetti, F. S., Hodell, D. A., Ariztequi, D., Brenner, M., and Rosenmeier,
M. F.: Quantification of soil erosion rates related to ancient Maya
deforestation, Geology, 35, 915–918, https://doi.org/10.1130/G23834A.1, 2007.
Auerswald, K., Fiener, P., Martin, W., and Elhaus, D.: Use and misuse of the
K factor equation in soil erosion modeling: An alternative equation for
determining USLE nomograph soil erodibility values, Catena, 118, 220–225,
https://doi.org/10.1016/j.catena.2014.01.008, 2014.
Batista, P. V. G., Evans, D. L., Cândido, B. M., and Fiener, P.:
Erosion Feedback System – Soil Thinning MMMF Model (2.0), Zenodo [code],
https://doi.org/10.5281/zenodo.7326882, 2022.
Benaud, P., Anderson, K., Evans, M., Farrow, L., Glendell, M., James, M.,
Quine, T., Quinton, J., Rawlins, B., Rickson, J., and Brazier, R.:
National-scale geodata describe widespread accelerated soil erosion.,
Geoderma, 371, 114378, https://doi.org/10.1016/j.geoderma.2020.114378,
2020.
Berry, P. M., Kendall, S., Rutterford, Z., Orford, S., and Griffiths, S.:
Historical analysis of the effects of breeding on the height of winter wheat
(Triticum aestivum) and consequences for lodging, Euphytica, 203,
375–383, https://doi.org/10.1007/s10681-014-1286-y, 2015.
Beven, K. J.: Environmental Modelling: An Uncertain Future, Routledge,
Oxon, ISBN 10: 0-415-46302-5, 2009.
Beven, K. J.: Rainfall-Runoff Modelling, 2nd ed., John Wiley & Sons,
Chichester, ISBN 13: 9780470714591, 2012.
Bonetti, J. A., Anghinoni, I., Moraes, M. T., and Fink, J. R.: Resilience
of soils with different texture, mineralogy and organic matter under
long-term conservation systems, Soil Tillage Res., 174, 104–112,
https://doi.org/10.1016/j.still.2017.06.008, 2017.
Bot, A. J., Nachtergaele, F. O., and Young, A.: Land resource potential and
constraints at regional and country levels, in: World Soil Resources Reports, edited by: FAO,
90, 1–114, Rome, 2000.
Bouchoms, S., Wang, Z., Vanacker, V., and Van Oost, K.: Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach, SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, 2019.
Brandt, C. J.: Simulation of the size distribution and erosivity of
raindrops and throughfall drops, Earth Surf. Proc. Land., 15,
687–698, https://doi.org/10.1002/esp.3290150803, 1990.
Ciampalini, R., Constantine, J. A., Walker-Springett, K. J., Hales, T. C.,
Ormerod, S. J., and Hall, I. R.: Modelling soil erosion responses to climate
change in three catchments of Great Britain, Sci. Total Environ., 749,
141657, https://doi.org/10.1016/j.scitotenv.2020.141657, 2020.
Cousin, I., Nicoullaud, B., and Coutadeur, C.: Influence of rock fragments on
the water retention and water percolation in a calcareous soil, Catena,
53, 97–114, https://doi.org/10.1016/S0341-8162(03)00037-7, 2003.
De Roo, A. P. J., Wesseling, C. G., and Ritsema, C. J.: Lisem: a single-event
physically based hydrological and soil erosion model for drainage basins, I:
theory, input and output, Hydrol. Process., 10, 1107–1117, 1996.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.:
Erosion, deposition and soil carbon: A review of process-level controls,
experimental tools and models to address C cycling in dynamic landscapes,
Earth-Sci. Rev., 154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005,
2016.
Dunne, T. and Black, R. D.: An experimental investigation of runoff
production in permeable soils, Water Resour. Res., 6, 478–490, 1970.
Eekhout, J. P. C., Millares-Valenzuela, A., Martínez-Salvador, A.,
García-Lorenzo, R., Pérez-Cutillas, P., Conesa-García, C., and
de Vente, J.: A process-based soil erosion model ensemble to assess model
uncertainty in climate-change impact assessments, L. Degrad. Dev., 32,
2409–2422, https://doi.org/10.1002/ldr.3920, 2021.
Evans, D. L., Quinton, J. N., Tye, A. M., Rodés, Á., Davies, J. A. C., Mudd, S. M., and Quine, T. A.: Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom, SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, 2019.
Evans, D. L., Quinton, J. N., Davies, J. A. C., Zhao, J., and Govers, G.:
Soil lifespans and how they can be extended by land use and management
change, Environ. Res. Lett., 15, 0940b2, https://doi.org/10.1088/1748-9326/aba2fd, 2020.
Fernández, C. and Vega, J. A.: Evaluation of the rusle and disturbed
wepp erosion models for predicting soil loss in the first year after
wildfire in NW Spain, Environ. Res., 165, 279–285,
https://doi.org/10.1016/j.envres.2018.04.008, 2018.
Fiener, P., Govers, G., and Van Oost, K.: Evaluation of a dynamic multi-class
sediment transport model in a catchment, Earth Surf. Proc. Land., 33,
1639–1660, 2008.
Fiener, P., Auerswald, K., and Van Oost, K.: Spatio-temporal patterns in land
use and management affecting surface runoff response of agricultural
catchments-A review, Earth-Sci. Rev., 106, 92–104,
https://doi.org/10.1016/j.earscirev.2011.01.004, 2011.
Finke, P. A.: Modeling the genesis of luvisols as a function of topographic
position in loess parent material, Quat. Int., 265, 3–17,
https://doi.org/10.1016/j.quaint.2011.10.016, 2012.
Govers, G., Van Oost, K., and Poesen, J.: Responses of a semi-arid landscape
to human disturbance: A simulation study of the interaction between rock
fragment cover, soil erosion and land use change, Geoderma, 133,
19–31, https://doi.org/10.1016/j.geoderma.2006.03.034, 2006.
Hamza, M. A. and Anderson, W. K.: Soil compaction in cropping systems A
review of the nature, causes and possible solutions, Soil Tillage Res., 82,
121–145, https://doi.org/10.1016/j.still.2004.08.009, 2005.
Hao, H., Wei, Y., Cao, D., Guo, Z., and Shi, Z.: Vegetation
restoration and fine roots promote soil infiltrability in heavy-textured
soils, Soil Tillage Res., 198, 104542,
https://doi.org/10.1016/j.still.2019.104542, 2020.
Herbrich, M., Gerke, H. H., and Sommer, M.: Root development of winter wheat
in erosion-affected soils depending on the position in a hummocky ground
moraine soil landscape, J. Plant Nutr. Soil Sci., 181, 147–157,
https://doi.org/10.1002/jpln.201600536, 2018.
Hodgson, J. M.: Soil Survey field handbook: describing and sampling soil
profiles, Cranfield, Cranfield University, ISBN 0901128821, 1997.
Hoag, D. L.: The intertemporal impact of soil erosion on non-uniform soil
profiles: A new direction in analyzing erosion impacts, Agr. Syst., 56,
415–429, https://doi.org/10.1016/S0308-521X(97)00056-5, 1998.
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Sparks, T., and
Garforth, J.: State of the UK Climate 2020, Int. J. Climatol., 41,
1–76, https://doi.org/10.1002/joc.7285, 2021.
Koiter, A. J., Owens, P. N., Petticrew, E. L., and Lobb, D. A.: The role of
soil surface properties on the particle size and carbon selectivity of
interrill erosion in agricultural landscapes, Catena, 153, 194–206,
https://doi.org/10.1016/j.catena.2017.01.024, 2017.
LandIS: The Land Information System,
https://www.landis.org.uk/, last access: 18 March 2022.
Le Bissonnais, Y.: Aggregate stability and assessment of soil crustability
and erodibility: I. Theory and methodology, Eur. J. Soil Sci., 67,
11–21, https://doi.org/10.1111/ejss.4_ 12311, 2016.
Lewis, D. T. and Witte, D. A.: Properties and Classification of an Eroded
Soil in Southeastern Nebraska, Soil Sci. Soc. Am. J., 44, 583–586,
https://doi.org/10.2136/sssaj1980.03615995004400030030x, 1980.
Lowery, B., Swan, J., Schumacher, T., and Jones, A.: Physical properties of
selected soils by erosion class, J. Soil Water Conserv., 50, 306–311,
1995.
Merritt, W. S., Letcher, R. A., and Jakeman, A. J.: A review of erosion and
sediment transport models, Environ. Model. Softw., 18, 761–799,
https://doi.org/10.1016/S1364-8152(03)00078-1, 2003.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. USA, 104, 13268–13272, https://doi.org/10.1073/pnas.0611508104,
2007.
Moraes, J. M., de Schuler, A. E., Dunne, T., Figueiredo, R. O., and Victoria,
R. L.: Water storage and runoff processes in plinthic soils under forest and
pasture in Eastern Amazonia, Hydrol. Process., 20, 2509–2526,
https://doi.org/10.1002/hyp, 2010.
Morgan, R. P. C.: A simple approach to soil loss prediction: A revised
Morgan-Morgan-Finney model, Catena, 44, 305–322,
https://doi.org/10.1016/S0341-8162(00)00171-5, 2001.
Morgan, R. P. C.: Soil Erosion & Conservation, 3rd ed., Blackwell,
Oxford, ISBN 1-4051-1781-8, 2005.
Morgan, R. P. C. and Duzant, J. H.: Modified MMF (Morgan–Morgan–Finney)
model for evaluating effects of crops and vegetation cover on soil erosion,
Earth Surf. Proc. Land., 34, 613–628, https://doi.org/10.1002/esp, 2008.
Morgan, R. P. C., Morgan, D. D. V., and Finney, H. J.: A predictive model for
the assessment of soil erosion risk, J. Agric. Eng. Res., 30, 245–253,
https://doi.org/10.1016/S0021-8634(84)80025-6, 1984.
Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W.
A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E.: The European
soil erosion model (EUROSEM): a dynamic approach for predicting sediment
transport from fields and small catchments, Earth Surf. Proc. Land.,
23, 527–544, https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<
527::AID-ESP868>3.0.CO;2-5, 1998.
Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, a.,
Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler,
C. S., Souchère, V., and van Oost, K.: Modeling response of soil erosion
and runoff to changes in precipitation and cover, Catena, 61,
131–154, https://doi.org/10.1016/j.catena.2005.03.007, 2005.
Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C.: Process-based
soil erosion model for USDA-water erosion prediction project technology,
Trans. Am. Soc. Agric. Eng., 32, 1587–1593, https://doi.org/10.13031/2013.31195,
1989.
Olson, K. R. and Nizeyimana, E.: Effects of Soil Erosion on Corn Yields of
Seven Illinois Soils, J. Prod. Agric., 1, 13–19,
https://doi.org/10.2134/jpa1988.0013, 1988.
Öttl, L. K., Wilken, F., Auerswald, K., Sommer, M., Wehrhan, M., and
Fiener, P.: Tillage erosion as an important driver of in-field biomass
patterns in an intensively used hummocky landscape, L. Degrad. Dev., 32,
3077–3091, https://doi.org/10.1002/ldr.3968, 2021.
Panagos, P., Ballabio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos,
M., Poesen, J., and Borrelli, P.: Projections of soil loss by water erosion
in Europe by 2050, Environ. Sci. Policy, 124, 380–392,
https://doi.org/10.1016/j.envsci.2021.07.012, 2021.
Papiernik, S. K., Schumacher, T. E., Lobb, D. A., Lindstrom, M. J., Lieser,
M. L., Eynard, A., and Schumacher, J. A.: Soil properties and productivity as
affected by topsoil movement within an eroded landform, Soil Tillage Res.,
102, 67–77, https://doi.org/10.1016/j.still.2008.07.018, 2009.
Parsons, A. J., Abrahams, A. D., and Luk, S.-H: Size characteristics of
sediment in interrill overland flow on a semiarid hillslope, Southern
Arizona, Earth Surf. Proc. Land., 16, 143–152,
https://doi.org/10.1002/esp.3290160205, 1991.
Peñuela, A., Sellami, H., and Smith, H. G.: A model for catchment soil
erosion management in humid agricultural environments, Earth Surf. Proc. Land., 622,
608–622, https://doi.org/10.1002/esp.4271, 2018.
Quansah, C.: Laboratory experimentation for the statistical derivation of
equations for soil erosion modelling and soil conservation design, PhD Thesis, 1982.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of
agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3,
311–314, https://doi.org/10.1038/ngeo838, 2010.
Radziuk, H. and Switoniak, M.: Soil erodibility factor (K) in soils under
varying stages of truncation, Soil Sci. Annu., 72, 134621,
https://doi.org/10.37501/soilsa/134621, 2021.
Rhoton, F. E. and Tyler, D. D.: Erosion-Induced Changes in the Properties of
a Fragipan Soil, Soil Sci. Soc. Am. J., 54, 223–228,
https://doi.org/10.2136/sssaj1990.03615995005400010035x, 1990.
Rieke-Zapp, D., Poesen, J., and Nearing, M. A.: Effects of rock fragments
incorporated in the soil matrix on concentrated, Earth Surf. Proc. Land., 32, 1063–41076, https://doi.org/10.1002/esp.1469, 2007.
Schneider, S. K., Cavers, C. G., Duke, S. E., Schumacher, J. A., Schumacher,
T. E., and Lobb, D. A.: Crop responses to topsoil replacement within eroded
landscapes, Agron. J., 113, 2938–2949, https://doi.org/10.1002/agj2.20635, 2021.
Sharmeen, S. and Willgoose, G. R.: A one-dimensional model for simulating
armouring and erosion on hillslopes: 2. Long term erosion and armouring
predictions for two contrasting mine spoils, Earth Surf. Proc. Land.,
32, 1437–1453, https://doi.org/10.1002/esp, 2007.
Smith, H. G., Peñuela, A., Sangster, H., Sellami, H., Boyle, J.,
Chiverrell, R., Schillereff, D., and Riley, M.: Simulating a century of soil
erosion for agricultural catchment management, Earth Surf. Proc. Land., 43, 2089–2105, https://doi.org/10.1002/esp.4375, 2018.
Smith, R. E. and Goodrich, D. C.: Rainfall Excess Overland Flow,
Encyclopedia of Hydrological Sciences, https://doi.org/10.1002/0470848944.hsa117, 2005.
Sommer, M., Gerke, H. H., and Deumlich, D.: Modelling soil landscape genesis
– A “time split” approach for hummocky agricultural landscapes, Geoderma,
145, 480–493, https://doi.org/10.1016/j.geoderma.2008.01.012, 2008.
Stone, J. R., Gilliam, J. W., Cassel, D. K., Daniels, R. B., Nelson, L. A.,
and Kleiss, H. J.: Effect of Erosion and Landscape Position on the
Productivity of Piedmont Soils, Soil Sci. Soc. Am. J., 49, 987–991,
https://doi.org/10.2136/sssaj1985.03615995004900040039x, 1985.
Strauss, P. and Klaghofer, E.: Effects of soil erosion on soil
characteristics and productivity, Bodenkultur, 52, 147–153, 2001.
Świtoniak, M.: Use of soil profile truncation to estimate influence of
accelerated erosion on soil cover transformation in young morainic
landscapes, North-Eastern Poland, Catena, 116, 173–184,
https://doi.org/10.1016/j.catena.2013.12.015, 2014.
Świtoniak, M., Mroczek, P., and Bednarek, R.: Luvisols or Cambisols?
Micromorphological study of soil truncation in young morainic landscapes –
Case study: Brodnica and Chełmno Lake Districts (North Poland), Catena,
137, 583–595, https://doi.org/10.1016/j.catena.2014.09.005, 2016.
Tanner, S., Katra, I., Argaman, E., and Ben-Hur, M.: Erodibility of waste
(Loess) soils from construction sites under water and wind erosional forces,
Sci. Total Environ., 616, 1524–1532,
https://doi.org/10.1016/j.scitotenv.2017.10.161, 2018.
Townsend, T. J., Ramsden, S. J., and Wilson, P.: How do we cultivate in
England? Tillage practices in crop production systems, Soil Use Manag.,
32, 106–117, https://doi.org/10.1111/sum.12241, 2016.
Vanacker, V., Ameijeiras-Mariño, Y., Schoonejans, J., Cornélis, J.
T., Minella, J. P. G., Lamouline, F., Vermeire, M. L., Campforts, B.,
Robinet, J., Van de Broek, M., Delmelle, P., and Opfergelt, S.: Land use
impacts on soil erosion and rejuvenation in Southern Brazil, Catena,
178, 256–266, https://doi.org/10.1016/j.catena.2019.03.024, 2019.
Vanwalleghem, T., Gómez, J. A., Infante Amate, J., González de
Molina, M., Vanderlinden, K., Guzmán, G., Laguna, A., and Giráldez,
J. V.: Impact of historical land use and soil management change on soil
erosion and agricultural sustainability during the Anthropocene,
Anthropocene, 17, 13–29, https://doi.org/10.1016/j.ancene.2017.01.002, 2017.
van der Meij, W. M., Temme, A. J. A. M., Wallinga, J., and Sommer, M.: Modeling soil and landscape evolution – the effect of rainfall and land-use change on soil and landscape patterns, SOIL, 6, 337–358, https://doi.org/10.5194/soil-6-337-2020, 2020.
Veihe, A., Rey, J., Quinton, J. N., Strauss, P., Sancho, F. M., and
Somarriba, M.: Modelling of event-based soil erosion in Costa Rica,
Nicaragua and Mexico: Evaluation of the EUROSEM model, Catena, 44,
187–203, https://doi.org/10.1016/S0341-8162(00)00158-2, 2001.
Willgoose, G. R. and Sharmeen, S.: A One-dimensional model for simulating
armouring and erosion on hillslopes: 1. Model development and event-scale
dynamics, Earth Surf. Proc. Land., 31, 970–991,
https://doi.org/10.1002/esp.1398, 2006.
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning....