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Abstract. Soil erosion rates on arable land frequently exceed the pace at which new soil is formed. This im-
balance leads to soil thinning (i.e. truncation), whereby subsoil horizons and their underlying parent material
become progressively closer to the land surface. As soil erosion is a selective process and subsurface horizons
often have contrasting properties to the original topsoil, truncation-induced changes to soil properties might
affect erosion rates and runoff formation through a soil erosion feedback system. However, the potential inter-
actions between soil erosion and soil truncation are poorly understood due to a lack of empirical data and the
neglection of long-term erodibility dynamics in erosion simulation models. Here, we present a novel model-
based exploration of the soil erosion feedback system over a period of 500 years using measured soil properties
from a diversified database of 265 agricultural soil profiles in the UK. For this, we adapted the Modified Morgan–
Morgan–Finney model (MMMF) to perform a modelling experiment in which topography, climate, land cover,
and crop management parameters were held constant throughout the simulation period. As selective soil ero-
sion processes removed topsoil layers, the model gradually mixed subsurface soil horizons into a 0.2 m plough
layer and updated soil properties using mass-balance mixing models. Further, we estimated the uncertainty in
model simulations with a forward error assessment. We found that modelled erosion rates in 99 % of the soil
profiles were sensitive to truncation-induced changes in soil properties. The soil losses in all except one of the
truncation-sensitive profiles displayed a decelerating trend, which depicted an exponential decay in erosion rates
over the simulation period. This was largely explained by decreasing silt contents in the soil surface due to selec-
tive removal of this more erodible particle size fraction and the presence of clayey or sandy substrata. Moreover,
the soil profiles displayed an increased residual stone cover, which armoured the land surface and reduced soil
detachment. Contrastingly, the soils with siltier subsurface horizons continuously replenished the plough layer
with readily erodible material, which prevented the decline of soil loss rates over time. Although our results
are limited by the edaphoclimatic conditions represented in our data, as by our modelling assumptions, we have
demonstrated how modelled soil losses can be sensitive to erosion-induced changes in soil properties. These
findings are likely to affect how we calculate soil lifespans and make long-term projections of land degradation.
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1 Introduction

Rates of soil erosion on agricultural land often exceed the
rates at which new soil is formed (Evans et al., 2019; Mont-
gomery, 2007). This imbalance is one which, left unchecked,
can pose a critical threat to the sustainability of global soil
resources and their ability to deliver vital ecosystem services
across environments and society (Bot et al., 2000; Quinton
et al., 2010). Moreover, as soils become thinner (i.e. trun-
cated), the subsoil horizons and their underlying parent ma-
terial become progressively closer to the land surface. This
process might affect physical, chemical, and biological top-
soil properties (Bouchoms et al., 2019; Papiernik et al., 2009;
Vanacker et al., 2019), as well as soil water availability to
plants and ultimately crop growth (Herbrich et al., 2018; Öttl
et al., 2021; Schneider et al., 2021).

For instance, plot- and catena-based studies report that
truncated agricultural soil profiles often display increased
clay and/or sand contents in their Ap horizons (Rhoton and
Tyler, 1990), compared to the soils from non-eroding posi-
tions in the landscape. Moreover, eroded Ap horizons tend to
have higher bulk density, lower organic carbon content, and
lower water holding capacity (Olson and Nizeyimana, 1988;
Stone et al., 1985; Strauss and Klaghofer, 2001). However,
such patterns are highly variable and greatly dependent on
the properties of the underlying subsoil material being pro-
gressively tilled into the Ap horizon (Lowery et al., 1995).

Erosion-induced changes to soil depth and soil proper-
ties can therefore influence soil losses and runoff forma-
tion through a soil erosion feedback system (Morgan et al.,
1984; Vanwalleghem et al., 2017). That is, erosion-induced
changes to soil physical properties might affect soil erodi-
bility (i.e. the susceptibility of soil to erosion), which may
accelerate or slow down soil losses. Understanding how such
a system might develop over time and under assorted con-
ditions is an important step to proactively design and imple-
ment effective soil conservation strategies, as different soils
are likely to be impacted by erosion in varied ways (Hoag,
1998). However, the empirical data over decadal to centen-
nial timescales required to explore the feedbacks between
soil erosion and soil thinning are currently non-existent. It
follows that process-oriented soil erosion models are ar-
guably the only available tool to simulate how erosion pro-
cesses interact with truncation-induced changes in the soil
system.

Process-oriented models allow for a representation of mul-
tiple mechanisms that influence soil erosion, from basic pro-
cesses such as particle detachment by raindrop impact and
surface runoff, to more complex interactions between soil
properties, hydrological processes, climate, and plant cover
(see Merritt et al., 2003 for an overview). This ability to sim-
ulate the response of specific soil erosion processes to ex-
ternal stimuli makes process-oriented models useful for ex-
ploring what-if scenarios. Hence, models such as the Wa-
ter Erosion Prediction Project (WEPP; Nearing et al., 1989),

the LImburg Soil Erosion Model (LISEM; De Roo et al.,
1996), and the Morgan–Morgan–Finney model (MMF; Mor-
gan, 2001; Morgan et al., 1984; Morgan and Duzant, 2008)
have been used to explore the impacts of land use or climate
change on soil erosion (e.g. Anache et al., 2018; Eekhout et
al., 2021; Nearing et al., 2005).

To date, most soil erosion models and model users assume
that the inherent erodibility of different soil horizons down
a soil profile is constant over the period of a model simula-
tion. As upper soil horizons are removed by erosion, thereby
exposing the subsurface material, the implicit assumption
in soil erosion modelling is that this erodibility is not vari-
able, such that any changes to projected erosion rates are
solely a factor of climate, land cover, and topography (e.g.
Ciampalini et al., 2020; Eekhout et al., 2021; Panagos et al.,
2021). However, since erodibility is a reflection of soil phys-
ical, chemical, and biological properties, and given that sub-
soils typically (although not exclusively) exhibit contrasting
soil properties to those observed in upper horizons, it fol-
lows that erodibility is not necessarily a constant as a soil
profile thins. Furthermore, soil erodibility might change over
longer timescales due to the coarsening and armouring of
surface soils (Sharmeen and Willgoose, 2007; Willgoose and
Sharmeen, 2006) and the depletion of erodible material as a
result of extreme soil truncation (Anselmetti et al., 2007).

Although the soil erosion feedback system has been recog-
nised as a key challenge for modelling past and future ero-
sion rates (Vanwalleghem et al., 2017), long-term dynamics
of soil erodibility are an underexplored topic in erosion re-
search. Exceptions come from landscape evolution models
which simulate the influence of erosion and deposition on
soil development over millennia (van der Meij et al., 2020;
Sommer et al., 2008). However, in areas under severe ero-
sion rates, subsoil horizons can be exposed within a matter
of decades (Evans et al., 2020), which might trigger unex-
pected responses regarding runoff formation and soil losses.
Moreover, soil truncation can introduce substantial spatial
variability to soil properties, often not accounted for in static
soil maps used for a variety of purposes (Świtoniak et al.,
2016). Still, the lack of knowledge about the potential inter-
actions between soil erosion and soil erodibility (i.e. in which
timescale are erosion feedback mechanisms developed, how
are different soil properties and soil types affected by trun-
cation?) interpose the representation of soil truncation in the
applications of soil erosion models.

Here, we hypothesise that erosion-induced changes to soil
properties affect soil loss rates over long-term periods. To
evaluate such a hypothesis, we performed an exploration of
the soil erosion feedback system by simulating 500 years of
soil losses and surface runoff on 265 agricultural soil profiles
in the UK. This allowed us to investigate how soil erosion
rates respond to truncation-induced changes in soil properties
and unravel the processes potentially driving such responses
in different soil types in the UK. To the best of our knowl-
edge, this is the first time soil erosion models have been used
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to understand the interactions between soil erosion, soil thin-
ning, and soil erodibility, and how these interactions are es-
tablished in varying soil types. An enhanced understanding
of such a dynamic soil erosion feedback system will be cru-
cial for improving the calculation of soil lifespans, providing
future soil loss projections, and designing long-term soil con-
servation strategies.

2 Materials and methods

2.1 Concept

Our modelling concept is essentially a numerical thought ex-
periment, in which land cover, agricultural management, cli-
mate, and topography parameters are held within a constant
range, so that any changes in simulated soil losses and sur-
face runoff over a period of 500 years are solely a result of
changes in soil properties due to erosion processes (Fig. 1).
To perform this experiment, we parameterised a soil erosion
model using measured data from 265 agricultural soil pro-
files spread across the UK (Fig. 2). The abstract spatial scale
of the simulations can be perceived as a pedon located on a
conventionally tilled hillslope with winter cereals. For sim-
plicity, we assume this spatial unit does not receive runoff
and sediment input from upslope. As the original topsoil
of each profile/pedon is successively removed by erosion,
our model gradually mixes the subsurface horizons into a
0.2 m plough layer (i.e. the average tillage depth in the UK,
Townsend et al., 2016), continuously updating soil proper-
ties through mass-balance models and pedotransfer functions
(PTFs, Fig. 1).

In order to implement our modelling concept, we adapted
the Modified Morgan–Morgan–Finney (MMMF) model
(Morgan and Duzant, 2008). The model was chosen due to
its ability to simulate multiple erosion subprocesses, which
is desirable for understanding the specific mechanisms re-
sponsible for developing erosion feedback systems. That is,
MMMF represents particle size selectivity during erosion,
transport, and deposition, incorporates the effects of stone
cover on soil detachability, and simulates particle detach-
ment by both raindrop impact and surface runoff. In addi-
tion, the MMMF model has a parsimonious parameter set,
which facilitates model application using national soil survey
datasets. Moreover, MMMF and its derivatives have provided
acceptable predictions of annual soil losses for different soils,
land covers, and testing sites in the UK (Morgan and Duzant,
2008; Peñuela et al., 2018; Smith et al., 2018). In the fol-
lowing section we provide a brief description of the basic
MMMF equations (Sect. 2.2). We subsequently characterise
the soil profile database used for the modelling (Sect. 2.3)
and describe the model implementation, including the mix-
ing of surface and subsurface horizons (Sect. 2.4).

2.2 MMMF operating equations

The MMMF is a process-oriented conceptual model running
on an annual time step, in which soil erosion processes are
separated into a water phase and a sediment phase (Morgan
et al., 1984; Morgan and Duzant, 2008). In the water phase,
effective annual rainfall (PEF; mm) is calculated considering
the effect of interception by the vegetation cover:

PEF = P · (1−PI), (1)

where P is the mean annual rainfall (mm) and PI is the
average rainfall interception (proportion 0–1) afforded by
the vegetation cover. For annual crops, PI and all other land
cover parameters are taken as an approximate average over
the growing season.

Annual leaf drainage (LD; mm) and direct throughfall
(DT; mm) are separated as a function of the average canopy
cover of the vegetation (CC; proportion 0–1):

LD= PEF ·CC, (2)
DT= PEF−LD. (3)

The kinetic energy of direct throughfall KEDT is cal-
culated with the typical value of erosive rainfall intensity
for a given location (I ; mm h−1) and the amount of an-
nual direct throughfall, whereas the kinetic energy of leaf
drainage KELD is a function of the average plant height for
the growing season (PH; m) and the amount of the annual leaf
drainage. Total kinetic energy of the effective annual rainfall
(KE; J m−2) is then calculated as the sum of the throughfall
and leaf drainage components:

KEDT = DT · (8.95+ 8.44 · log10I ), (4)
if PH < 0.15;KELD = 0, (5)

if PH≥ 0.15;KELD = LD · (15.8 ·PH0.5
− 5.87), (6)

KE= KEDT+KELD. (7)

Of note is that in the original MMMF publication (Mor-
gan and Duzant, 2008), as well as in the revised Morgan–
Morgan–Finney paper (Morgan, 2001), Eq. (6) does not in-
clude the LD parameter. However, this would lead to the
KELD being expressed in J mm−1 m−2 instead of J m−2.
Hence, we highlight that a correct application of Eq. (6) must
include leaf drainage depth (see Brandt, 1990; Morgan et al.,
1998; Peñuela et al., 2018).

Saturation-excess overland flow typically occurs in cli-
mates with low intensity precipitation and without a pro-
nounced seasonal rainfall regime (Morgan and Duzant,
2008), specifically in areas with shallow soils and imperme-
able bedrocks (Beven, 2012). In the MMMF model, genera-
tion of saturation-excess runoff is assumed to occur when the
mean daily rainfall exceeds the mean daily storage capacity
of the soil (SC; mm):

SC= 1000 ·MS ·BD ·HD ·
(

ETa

ETp

)0.5

, (8)
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Figure 1. Modelling concept: selective soil erosion processes alter topsoil properties, which are then mixed with the underlying substrata as
the soil profile thins. Updated soil properties for the plough layer are used as model inputs for the following time step.

where MS is soil moisture at field capacity (% w w−1), BD
is bulk density (Mg m−3), HD is effective hydrological depth
(m) (i.e. the land-cover-dependent soil depth in which stor-
age capacity controls the generation of runoff), and ETa /ETp
is the ratio of actual to potential evapotranspiration. These
parameters represent an approximate average for the crop-
ping season.

The annual runoff generation (Q; mm) is then estimated
as a function of annual effective rainfall, the ratio between
storage capacity and mean daily rainfall (PM, mm), and the
slope length of the spatial modelling element (L; m):

Q= PEF · e

(
−

SC
PM

)
·

(
L

10

)0.1

. (9)

In the sediment phase, the annual detachment of soil parti-
cles by raindrop impact (ER; kg m−2) and by surface runoff
(EQ; kg m−2) are calculated separately for the clay, silt, and
sand texture classes, which are subsequently summed as fol-
lows:

ER =

i∑
n=1

[
KRi
·

Ti

100
· (1−ST) ·KE · 10−3

]
, (10)

EQ =
i∑

n=1

{
KQi ·

Ti

100
· Q1.5

· [1− (GC+ST)] · sin0.3
· S · 10−3

}
, (11)

where KR is the detachability of the soil by raindrop im-
pact (J m−2), T is the percentage of texture class i, ST is
stone cover (proportion 0–1), KQ is the detachability of the
soil by runoff (J m−2), GC is the average proportion of the
soil covered by vegetation during the growing season (0–
1), and S is slope angle (degrees). Soil detachability values
for each texture class i (clay, silt, and sand) are taken from
Quansah (1982).

The immediate deposition of detached sediments (D; %)
(i.e. the percentage of sediments not delivered to the runoff
for transport) is estimated as a function of the average an-
nual flow velocity, in our case for vegetated conditions (vv;
m s−1), and the particle fall number (FN):

vv =

(
2 · g

ø · NV

)0.5

· S0.5, (12)

FNi =
L · vsi
vv · d

, (13)

Di = 44.1 · (FNi)0.29, (14)

where g is the gravitational acceleration (9.81 m s−2), ø is
the diameter of plant stems (m), NV is the number of stems
per unit area (number m−2), vs is the fall velocity for tex-
ture class i (0.00002, 0.002 and 0.02 m s−1 for clay, silt, and
sand, respectively), and d is the hydraulic radius of the flow
(0.005 m for unchannelled flow, 0.01 m for shallow rills, and
0.25 m for deeper rills). Again, in this case, land cover pa-
rameter values describe an average over the cropping season.

The total detached material delivered annually to transport
(G; kg m−2) is modelled separately for each soil texture class
i:

G=

i∑
n=1

[(
ERi
+EQi

)
·

(
1−

Di

100

)]
. (15)

The annual transport capacity of the surface runoff (TC;
kg m−2) is calculated as a function of annual runoff volume
(Q; mm), slope, and the effect of plant cover/tillage on flow
velocities, for each particle size class i:

TC=
i∑

n=1

[(
va · vv · vt

vb

)
·

(
Ti

100

)
·Q2
· sinS · 10−3

]
. (16)
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Figure 2. Location of the 265 soil profiles used in this study. Data
source: Land Information System (LandIS) (LandIS, 2022).

The average flow velocities for the actual soil conditions
(va; m s−1), for the effect of tillage (vt; m s−1), and for the
standard bare soil condition (vb; m s−1) are calculated using
the Manning equation:

va =
1
n
· d0.67

· S0.5
· e−0.018ST, (17)

vb;vt =
1
n
· d0.67

· S0.5, (18)

where n is Manning’s roughness coefficient. For the tilled
conditions, Manning’s n is estimated as a function of an
implement-dependent surface roughness parameter (RFR)
taken from Morgan (2005):

n= e(−2.11+0.03 RFR). (19)

The annual soil loss (SL; kg m−2) is calculated by com-
paring the annual transport capacity (TC; kg m−2) and the
annual sediment delivered to the runoff (G; kg m−2) for each
texture class i:

If TCi ≥Gi;SL=Gi . (20)

If the amount of sediment delivered to the runoff is greater
than the transport capacity, the excess sediment will be de-
posited until G= TC. Such deposition is modelled using the
settling velocities and fall numbers described in Eq. (14). The

sediment balance becomes

If TCi < Gi calculate G1i =Gi

[
1−

(
Di

100

)]
,

If TCi ≥ G1i; SLi = TCi; if TCi < G1i; SLi = G1i . (21)

Finally, the soil losses for the clay, silt, and sand texture
classes are summed to produce total estimates of annual soil
losses (SL; kg m−2):

SL=
i∑

n=1
SLi . (22)

2.3 Soil database

The soil profile data used in the model were retrieved from
the UK SOILPITS dataset, which is one of many datasets
held within the Land Information System (LandIS) operated
by the Soil and Agrifood Institute at Cranfield University,
UK (LandIS, 2022). The UK SOILPITS dataset represents
a compilation of a series of soil profile surveys conducted
across the UK since 1984. We only selected the profiles un-
der agricultural land cover and those that had complete infor-
mation on the key soil properties used for modelling.

Table 1 presents a descriptive summary of the data repre-
senting each whole soil profile; that is, data for each hori-
zon from each profile has been bulked together. The pro-
files range in thickness from 0.22 to 1.96 m (median depth
is 0.60 m) and are typically composed by four characteristic
horizons: an A, E, B, and C horizon. More information about
how each horizon was surveyed and differentiated in the field
can be found in Hodgson (1997).

Figure 3 demonstrates the variability of key soil properties
within the four characteristic soil horizons, compiling all soil
profiles used in the dataset (by “key”, we mean those proper-
ties which are employed directly or indirectly as input vari-
ables in our model). There is considerable overlap between
each horizon, largely due to the heterogeneity of soil types
represented in the dataset. However, some distinctive patterns
can be discerned. For example, between the A and B horizon,
bulk density tends to increase, while organic carbon tends to
decrease. Some 79 profiles were also observed to have an E
horizon directly below the A horizon. This was distinguished
by the presence of a mineral layer with less organic carbon
and clay content than the underlying B horizon, indicating
downward and/or lateral translocation into the subsoil. An-
other notable boundary lies between the B and C horizon,
where the median soil moisture at field capacity reduces by
more than 2.5 times. This may be reflective of some distinc-
tive textural changes between these two horizons: the median
sand content increases 3 times, while both clay and silt de-
crease by more than 5 times.
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Table 1. Descriptive statistics of the soil properties from the 265 agricultural soil profiles (depths between 0.22 and 1.96 m) from the LandIS
database used in the simulations.

Variable Unit Mean Median Quantiles

5th 25th 75th 95th

Soil moisture at field capacity % w w−1 0.3 0.3 0.2 0.3 0.4 0.5
Bulk density Mg m−3 1.4 1.4 1.0 1.3 1.5 1.6
Rock fragments % 2.5 1.0 0.0 0.0 3.5 9.0
Clay % 24.5 20.0 4.3 12.7 33.0 57.7
Silt % 36.1 35.0 6.0 22.0 49.0 71.0
Sand % 39.4 35.0 4.0 15.1 60.4 87.0
Organic carbon % 4.6 4.7 3.2 4.1 5.3 6.1

Figure 3. Boxplots of the key soil properties for each horizon of the soil profiles used in this study. Horizons which were not classified, or
which occurred less than 5 times in the dataset are not shown in the figure. Organic carbon and rock fragment values underwent a square root
transformation to improve the visualisation of the data.

2.4 Model implementation

Our modelling framework consists of an application of the
MMMF model for each of the 265 soil profiles over a pe-
riod of 500 years (Fig. 4). Whilst the variability of the soil
properties across profiles and horizons was incorporated into

the model, all modelling units were parameterised the same
for their climatic, land cover, and topographic variables. This
was performed to test the sensitivity of modelled soil losses
to erosion-induced changes to soil properties in different soil
types.
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Figure 4. Flowchart of the modelling framework.

We selected rainfall-associated parameter values based on
UK average climatic variables for the 1991–2020 period
(Kendon et al., 2021). For the land cover parameters, which
represent an approximate average over the crop growing sea-
son, we took the guide values recommended by Morgan and
Duzant (2008) for conventionally tilled winter cereals, except
for plant height (PH) and ground cover (GC). This is because
we found that the suggested value of 1.5 m was excessive for
winter cereals, especially considering that PH in Eq. (6) does
not represent the height of the top of the canopy, but rather
the height of the fall of drops from the plant, which depends
on the thickness of the canopy (Brandt, 1990). Assuming an
average absolute height of 0.61 m for wheat varieties in the
UK (Berry et al., 2015), we adopted a baseline PH value of
0.4 m. This was also performed to constrain disproportionate
estimates of leaf drainage kinetic energy, as trial model runs
indicated a high sensitivity of the model outputs to param-
eter PH. Moreover, GC was calculated using the number of
plants per unit area (NV) and the average diameter of plant
elements at ground surface (ø; m), in order to avoid inconsis-
tencies between sampled GC values and the remaining plant
parameters.

In addition, we assumed a 10 m slope length and 6◦ slope
gradient for the spatial element of the simulation unit. For
the soil parameters, we used the measured properties from
the soil profile database (Table 1). Texture-dependent param-
eter values were taken from the model guide, considering the
soils’ particle size distribution. A Monte Carlo simulation
with 100 iterations per year was included to provide a for-
ward error assessment of the model outputs (Beven, 2009).
Model parameters were sampled from a normal distribution
with a 10 % standard deviation to partially account for mea-
surement errors and the uncertainty in parameter estimation.
The constant parameter distributions used in all simulations
are displayed in Table 2.

In order to simulate soil thinning, the soil losses (SL;
kg m2 yr−1) estimated with the MMMF model were con-
verted into SLm (m yr−1) using soil bulk density (BD;
Mg m−3):

SLm =
SL
BD
· 10−3. (23)

Next, the model reduced the depth of the upmost soil hori-
zon based on the amount of eroded soil in the previous time
step.

The soil texture of the 0.2 m plough layer was updated af-
ter each time step k using a mass-balance model consider-
ing the amount of fresh subsoil being incorporated into the
plough layer and the selective removal of different particle-
size fractions. This requires estimating the mass of the origi-
nal plough layer p in time step k (Mp; kg m−2) and the mass
of the subsoil layer that will be incorporated by tillage in time
step k+ 1 (Ms; kg m−2):

Mp = 0.2 ·BDp · 103, (24)

Ms = SLm ·BDs · 103, (25)

where BDp is the bulk density (Mg m−3) of the original
plough layer in time step k and BDs is the bulk density
(Mg m−3) of the subsoil layer s being incorporated by tillage
in time step k+ 1. Please note that the estimation of BD for
each time step is described in detail below.

The masses of each particle size fraction i in the plough
layer for time step k, after selective removal (Mpi

; kg m−2),
and in the subsoil layer being incorporated (Msi ; kg m−2) are
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Table 2. Parameter values which were applied to all soil profiles and sampled in the Monte Carlo simulation.

Parameter Unit Symbol Mean SD

Annual rainfall mm P 1200 120
Number of rainy days per year – – 160 16
Average intensity of erosive rainfall mm h−1 I 10 1
Effective hydrological depth m HD 0.12 0.012
Permanent interception – PI 0.4 0.04
Ratio of actual to potential evapotranspiration – ETa /ETp 0.6 0.06
Canopy cover – CC 0.8 0.08
Plant height m PH 0.4 0.04
Number of plants per unit area number m−2 NV 250 25
Average diameter of plant elements at ground surface m ø 0.05 0.005
Roughness of the soil surface cm m−1 RFR 10 1
Slope∗ degrees S 6 –
Slope length∗ m L 10 –
Clay detachability by raindrop impact J m−2 KRclay 0.1 0.01
Silt detachability by raindrop impact J m−2 KRsilt 0.5 0.05
Sand detachability by raindrop impact J m−2 KRsand 0.3 0.03
Clay detachability by runoff g mm−1 KQclay 0.1 0.01
Silt detachability by runoff g mm−1 KQsilt 0.16 0.016
Sand detachability by runoff g mm−1 KQsand 0.15 0.015

∗ The parameter value was held constant during the Monte Carlo simulation.

then calculated as

Mpi
=

(
Mp ·

Tip

100

)
− SLik , (26)

Msi =

(
Ms ·

Tis

100

)
, (27)

where Tip is the percentage of each particle size fraction
i in the original plough layer for time step k, Tis is the per-
centage of each particle size fraction i in the subsoil layer
being incorporated by tillage for time step k+ 1, and SLik

(kg m−2 yr−1) is the soil loss for particle size fraction i in
time step k.

The percentage of each textural class Ti in the new plough
layer for time step k+ 1 is calculated as

Tik+1 =

[ (
Mpi
+ Msi

)(
Mp−SLk

)
+Ms

]
· 100. (28)

Rock fragments were assumed not to be removed from the
soil matrix; therefore, the stone cover (if present) (ST; %)
undergoes a residual increment. As such, we used the volu-
metric percentage of rock fragments as a proxy for the stone
cover model parameter:

STk+1 =

(
STp · 200

)
+

[
STs ·

(
Ms
BDs

)]
(Mp−SLk)

BDp
+

(
Ms
BDs

) , (29)

where 200 is the volume (L) of the 0.2 m plough layer in
1 m2 of soil.

If the upmost horizon depth was greater than the 0.2 m
plough depth, we mixed the eroded plough layer with fresh
material from this same upmost soil horizon using the mass-
balance model described above (Eqs. 24–29) to recalculate
soil texture and the percentage of rock fragments. Accord-
ingly, soil organic carbon was assumed to remain stable as
the selective removal associated with finer soil fractions was
not simulated. However, if the upper horizon was thinner
than 0.2 m for any given time step, the mass-balance model
(Eqs. 24–29) mixed the material in the plough layer with the
underlying soil horizon. In this case, soil organic carbon (OC;
%) values were also updated with a mass-balance model:

OCk+1 =

[
OCp ·

(
Mp−SLk

)(
Mp−SLk

)
+Ms

]

+

[
OCs ·

(Ms)(
Mp−SLk

)
+Ms

]
(30)

For every time step, soil bulk density and soil moisture
at field capacity were estimated using pedotransfer functions
(PTFs). We established the PTFs by fitting a linear regres-
sion of bulk density and soil moisture at field capacity as
a function of sand (%) and organic carbon content (%) for
the A horizons in our soil profile dataset (Figs. A1, A2 in
the Appendix). This was performed because (i) we assumed
that bulk density and soil moisture at field capacity would be
affected by the changes in soil texture due to selective par-
ticle size removal; and (ii) we presupposed that, as the sub-
soil horizons get incorporated into the plough layer and be-
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Figure 5. Soil erosion trends over 500 years of model simulations
for the profiles from the UK SOILPITS dataset. The dark solid line
represents the median of all profiles and simulations, whereas the
dark- and light-grey shaded areas are 50 % and 95 % prediction in-
tervals, respectively.

come closer to the surface, their bulk density and soil mois-
ture at field capacity would become more characteristic of
an A horizon due to tillage and organic matter input from
plant biomass. Similarly, we established a pragmatic lower
limit for soil organic carbon content for different soil texture
classes, based on the lowest values observed in the A hori-
zons from our dataset. That is, we assumed the organic car-
bon would not decrease indefinitely with soil truncation due
to the continuous input from plant material and potentially
other farming practices. This assumption is based on obser-
vations that even heavily eroded arable soils typically contain
some type of Ap horizon (Świtoniak, 2014). The successive
soil thinning and mixing processes continued for 500 years
or until the plough layer reached the end of the lowermost
soil horizon (i.e. 0.2 m above the bedrock). We assumed that
soil losses would outpace soil formation within the simulated
system (see Evans et al., 2019), and since we did not focus
on calculating soil lifespans, it was not necessary to integrate
soil formation rates into the model calculations.

The sensitivity of the simulated erosion rates to soil thin-
ning was assessed with the correlation (Pearson’s r) between
soil truncation (i.e. the cumulative annual reduction in soil
depth) and annual soil losses (here taken as the median of the
Monte Carlo simulations per year). Soil profiles exhibiting
a positive correlation (r > 0, p < 0.00001) were assumed to
display an accelerating erosion feedback trend for the sim-
ulation period, whereas the ones with a negative correlation
(r < 0, p < 0.00001) were assumed to display a decelerating
feedback trend. The remaining profiles were not considered
sensitive to truncation and were assumed to present a stable
erosion progression. It is of note that we imposed a more re-
strictive significance level to screen out the profiles with very
slight responses to soil truncation, considering this is a fully
controlled modelling experiment.

In order to understand the processes driving the soil ero-
sion feedback system, we used a random forest analysis to

Figure 6. Soil erosion trends over 500 years of model simula-
tions for two representative profiles from the UK SOILPITS dataset.
Coloured symbols are the median of the simulations per year, and
the solid lines are local regression functions adjusted from the data.

rank the importance of model parameters for predicting the
changes in soil erosion rates between the first and final time
steps of the simulations. In this case, the differences between
soil parameter values for the initial and final time steps were
used as explanatory variables. All model simulations and sta-
tistical analyses were performed in R (R Core Team, 2022),
and the model code is available as supplementary material
(Batista et al., 2022).

Importantly, we did not consider all potential changes to
the modelled systems. That is, we did not consider any feed-
backs between soil thinning and crop development, nor the
effects of climate change on rainfall, temperature, and farm-
ing practices. Although we are aware that such factors would
likely have an impact on the model simulations, our aim here
is to analyse the sensitivity of modelled soil losses to erosion-
induced changes to soil properties. This involves making
fixed assumptions about other system components. In addi-
tion, we would like to highlight that our model simulations
should not be mistaken as projections of future erosion rates
in Britain due to all the above-mentioned reasons.

3 Results

From the 265 soil profiles in the UK SOILPITS database, 262
(99 %) displayed a significant correlation (p < 0.00001) be-
tween soil truncation and annual soil losses, of which 261
presented a decelerating feedback trend (Pearson’s r < 0).
Considering the median of the simulations from all soil pro-
files, the temporal evolution of erosion rates was charac-
terised by an exponential decay function (Fig. 5), which
meant erosion rates initially decelerated at a higher pace until
reaching a horizontal asymptote at approximately 250 years
into the model runs. Based on the adjusted decay function,
the initial soil loss rates (intercept= 0.81 kg m−2 yr−1) de-
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Figure 7. Random forest importance ranking for predicting the dif-
ferences in erosion rates between the initial and final time steps of
the simulations, for each soil profile. Feature importance is repre-
sented by the relative increase of the mean squared error (MSE) of
the random forest (i.e. how much removing the feature increased
the prediction error).

crease in 6 % and 10 % over the first 50 and 100 years of the
simulations, respectively; but there is only a decrease of 3 %
in the last 100 years.

The changes in simulated soil losses between the initial
and final model time steps per profile followed a normal dis-
tribution, which signified an average 20± 8 % decrease in
erosion rates. The steepest declines in soil losses (maximum
46 %) typically occurred in soil profiles with a negative gra-
dient in silt contents in their subsoil horizons. Contrarily, the
soil profiles with a stable erosion progression or with a gen-
tler decay steepness were associated with the presence of
silty substrata. Figure 6 illustrates the typical behaviour of
these trends using data from two representative soil profiles
with similar topsoil but with different subsoil properties at
the beginning of the simulations.

It follows that simulated changes in erosion rates were
largely explained by alterations in soil texture. This is
demonstrated in Fig. 7, which displays a random forest im-
portance ranking for predicting the differences in erosion
rates between the initial and final time steps of the simula-
tions, for each soil profile. The random forest analysis de-
scribed how soil erosion responses were highly influenced
by variations in silt content and stone cover. Changes in soil
moisture at field capacity and bulk density had a lower im-
pact on the modelled soil losses (Fig. 7).

The sensitivity of the simulated changes in soil erosion
rates to the erosion-induced changes to soil properties can
be further visualised by comparing the difference in model
parameter values with the variation in soil losses over 10-
year rolling means (Fig. 8). Positive and negative changes in
single parameter values did not yield consistent responses re-
garding the simulated soil losses (e.g. a 1 % decrease in sand
content can lead to both accelerating and decelerating ero-
sion rates over the rolling means). However, the direction of

the changes in model parameters explains the general decel-
erating trend for the profiles (Fig. 8). For instance, the pro-
file trajectories were characterised almost exclusively by de-
creasing contents of silt and increasing stone cover within the
rolling means which led to net decreases in soil losses over
the whole simulation period. Clay and sand contents mostly
increased within the 10-year rolling means, although such a
pattern was less pronounced compared to the silt and stone
cover progressions. Less important parameters, such as bulk
density and soil moisture at field capacity, displayed a more
centred pattern along the y axis (Fig. 8).

The main processes driving the soil erosion feedback sys-
tems were particle detachment by raindrop impact and silt
sediment supply (R2

= 0.85 and 0.66, respectively; Fig. 9),
while changes in runoff amounts, detachment by runoff, and
runoff transport capacity had a narrow effect on the simulated
soil losses (Fig. 9). That is, only acute changes in discharge
seem to have produced a sufficient response in detachment by
runoff and in transport capacity to influence the net erosion
rates (Fig. 9).

Annual runoff depths and soil losses were correlated in
187 (71 %) of the 265 soil profiles (p < 0.00001); however,
these correlations did not amount to causation. The positive
correlations (44 profiles; 17 %) occurred for instance when
the uprise of clayey subsurface horizons led to a reduction
in both runoff amounts (due to an increase in soil moisture
storage capacity) and soil detachment. The negative corre-
lations (143 profiles; 54 %) occurred due to selective ero-
sion processes, soil organic carbon depletion, and the pres-
ence of sandy soil substrata. That is, as the silty material
was removed, enriching the topsoil with sand and carbon-
depleted subsoil, particle detachment by raindrop impact de-
clined, whereas runoff amounts increased due to a reduction
in soil moisture at field capacity. However, this increase in
runoff was not sufficient to accelerate soil losses (Fig. 10).

4 Discussion

Our model simulations underline the strong interaction be-
tween current soil erosion dynamics and the erosion history
of soil profiles. In particular, the simulations demonstrate
how different soils are likely to have contrasting responses
to soil thinning, depending on the properties of the surface
material, as well as those of the underlying soil horizons. In
our database, most of the soil profiles presented a deceler-
ating feedback trend, which reflects both the characteristics
of these soils and, importantly, our basic modelling assump-
tions.

For instance, as silt detachability in the MMMF model is
assumed to be much higher than for other particle size frac-
tions, silt was preferentially removed from the soil matrix.
In addition, as silt contents typically remain stable or de-
crease in the subsurface horizons of the soil profiles in our
database (Fig. 2), silt was often not replenished by the under-
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Figure 8. Hexagonal heatmaps relating the changes in model parameters to soil loss responses over 10-year rolling means for the soil profiles.
Colours represent the number (n) of cases in each hexagon.

lying substrata being mixed into the plough layer. Such be-
haviour is overall consistent with empirical observations of
selective particle size removal by interrill erosion processes
(Koiter et al., 2017) and the progressive depletion of read-
ily erodible material from eroding surface soils (Parsons et
al., 1991). However, it is worth highlighting that the soil de-
tachability values used in MMMF have a limited empirical
basis (Quansah, 1982), and the erodibility of the clay parti-
cles might be poorly described due to the neglection of other
variables, such as aggregate stability (Morgan and Duzant,
2008).

The residual accumulation of rock fragments further con-
tributed to the reduction in erosion rates in the model sim-
ulations, as stone cover is assumed to armour the land sur-
face and to reduce soil detachment. Specifically, even a small
number of rock fragments in the soil matrix can disperse
the overland flow and dissipate its energy, reducing rill in-
cision and soil losses (Rieke-Zapp et al., 2007). Moreover,
decreases in water erosion rates due to a residual increment
of stone cover have previously been simulated by Govers et
al. (2006), who warned, however, that the accumulation of
rock fragments in arable soils depends on tillage practices.
Notwithstanding, increases in rock fragment contents might
also affect soil hydraulic conductivity and water holding ca-
pacity (Cousin et al., 2003), and therefore influence runoff
formation. None of these potential interactions were repre-

sented in our model simulations, and might therefore warrant
further scrutiny.

The few soil profiles displaying a stable or slightly accel-
erating erosion trend were characterised by the presence of
sandy or loamy surface horizons over a siltier substratum,
which successively supplied the plough layer with readily
erodible material as the original topsoil was removed by ero-
sion. Moreover, these profiles were defined by the absence of
a surface stone cover and by subsoil horizons with very lim-
ited amounts of rock fragments. Although accelerating ero-
sion trends were only simulated for one profile in our mod-
elling experiment, such behaviour might be expected in soils
with highly incrementing silt contents in their C horizons,
which are common, for instance, where loess is the parent
material (Finke, 2012; Świtoniak et al., 2016).

Moreover, potential accelerating erosion trends might have
been under-detected by the model simulations, as we did
not consider how truncation can decrease the soil moisture
storage capacity due to a reduction in soil depth and how
this might affect runoff generation (Dunne and Black, 1970;
Morgan et al., 1984). That is, as soils become shallower,
saturation-excess overland flow might increase, depending
on the permeability of the bedrock or the presence of an im-
peding horizon (Beven, 2012; Moraes et al., 2010). We did
not consider these processes in our simulation due to the ab-
sence of an explicit soil thickness parameter in the MMMF
equations and the lack of data regarding the permeability of
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Figure 9. Hexagonal heatmaps and linear regression lines (p < 0.00001) of the changes in soil loss over 10-year rolling means for the soil
profiles. Colours represent the number (n) of cases in each hexagon.

the soil profiles’ parent materials. Although simulated in-
creases in runoff formation were generally not sufficient to
increase particle detachment by overland flow and soil losses
in the model outputs (Figs. 9 and 10), different results would
be conceivable at a landscape scale. For instance, if upslope
run-on is considered, increases in overland flow due to soil
truncation might lead to rill initiation in flow accumulation
zones, which would largely increase the simulated erosion
rates.

Furthermore, very different runoff responses to soil trun-
cation can be expected in areas where infiltration excess is
the dominant overland flow mechanism. While saturation
excess is common under British edaphoclimatic conditions,
most subhumid and semiarid zones are prone to the forma-
tion of infiltration-excess runoff, which is a process primar-
ily controlled at the soil surface (Smith and Goodrich, 2005).
Under such circumstances, erosion-induced changes to top-
soil properties might have an even greater interaction with

runoff generation. In particular, soil crusting slows down in-
filtrability and rapidly increases the overland flow, leading to
greater soil losses (Le Bissonnais, 2016; Fiener et al., 2008;
Veihe et al., 2001). As the development of soil crusts is in-
fluenced by soil texture and organic carbon content (Fiener
et al., 2011), the truncation-induced changes we have simu-
lated would likely alter the susceptibility of surface soils to
crusting and, consequently, to the formation of infiltration-
excess runoff. Another caveat in the model structure worth
highlighting is that, different to model outputs, an uprise of
subsurface clayey material might in fact increase infiltration-
excess overland flow, due to the lower infiltrability and satu-
rated hydraulic conductivity of heavy-textured soils (Hao et
al., 2020), which are also more susceptible to compaction,
depending on their mineralogy (Bonetti et al., 2017; Hamza
and Anderson, 2005).

In addition, accelerating erosion responses to soil trunca-
tion might have been more frequent if we assumed an in-
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Figure 10. Annual changes in model parameter values and simulated runoff depths and soil losses over 500 years for the soil profiles from
the UK SOILPITS database. The solid dark line represents the median of all profiles and simulations, whereas the shaded dark- and light-grey
areas are 50 % and 95 % prediction intervals, respectively.

crease in topsoil erodibility due to the lower aggregate sta-
bility and looser structure of the carbon-depleted subsurface
material being incorporated into the plough layer (Le Bis-
sonnais, 2016; Doetterl et al., 2016; Tanner et al., 2018).
That is, as the soil detachability coefficients from MMMF do
not take soil organic carbon into account, the sensitivity of
topsoil erodibility to soil truncation was likely downplayed.
For instance, Radziuk and Switoniak (2021) used an equa-
tion from the Erosion Productivity Impact Calculator (EPIC)
model to estimate the erodibility of Luvisols at different trun-
cation stages in Poland. They found that more truncated soils
had higher erodibility, due to decreases in soil organic carbon
and sand content in the eroded Ap horizons.

Our model simulations may have particularly underes-
timated erosion responses to soil thinning for the profiles
which displayed an accumulation of sand and a depletion
in clay and silt contents. This progressive coarsening should
lead to lower soil water availability, and therefore, lower soil
cover, lower crop biomass production, and less organic car-
bon input from plants. As sandier soils already have less
carbon stabilisation mechanisms (Doetterl et al., 2016), this
would lead to even greater truncation-induced depletions
in soil organic carbon and therefore increases in erodibil-
ity (Auerswald et al., 2014; Fernández and Vega, 2018). In
general, as organic carbon was only an indirect model input
via the PTFs for estimating bulk density and soil moisture

at field capacity, the interplays between soil thinning, soil
organic matter, and soil erodibility were likely underrepre-
sented here.

Although not all the complex interactions between soil
erosion and soil thinning could be described in our model,
the simulated trajectories of erosion-induced changes to soil
properties (Fig. 10) are consistent with field-observations.
That is, measured data from eroded Ap horizons typically
indicate (i) incrementing clay, sand, and rock fragment con-
tents, (ii) increasing soil bulk density, (iii) depleting soil or-
ganic carbon contents, and (iv) decreasing soil water hold-
ing capacity with increasing erosion severity (Lowery et al.,
1995; Rhoton and Tyler, 1990; Stone et al., 1985; Strauss and
Klaghofer, 2001). Moreover, the decelerating erosion trend
in our model outputs corroborate the results from Govers et
al. (2006), who simulated an exponential decay in sediment
production from arable hillslopes over a period of 50 years
following land use intensification due to a rapid emergence of
a soil with high stone cover. Importantly, the soil losses esti-
mated from our model outputs (median= 0.67 kg m−2 yr−1;
interquartile range= 0.58− 0.80 kg m−2 yr−1) are encom-
passed by the median and the upper quartile of measured
erosion rates from arable land at plot scale in the UK (∼ 0.1–
1 kg m−2 yr−1) (see Benaud et al., 2020). We compare model
outputs to plot-scale measurements due to their similarity
with our modelling spatial unit (i.e. 10 m eroding hillslope
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segment with 6◦ or 10.5 % slope gradient). It is worth high-
lighting that (i) the plot data described in Benaud et al. (2020)
are mostly derived from slopes below 10 % and (ii) measured
erosion rates at field or catchment scale in Britain are much
lower than our model simulations.

Moreover, our model outputs further help to identify
where more empirical evidence would help constraining
modelling assumptions and improve process representation.
For instance, investigating how truncation affects the aggre-
gate stability of surface soils (due to changes in soil texture,
mineralogy, and organic carbon dynamics) might be an im-
portant step in order to further understand the feedbacks be-
tween erosion and soil thinning. Interactions between soil
truncation, water availability to plants, and crop growth – and
how these could in turn reduce soil cover and organic carbon
input – might also warrant further investigations. Similarly,
exploring the responses of different runoff generation mech-
anisms to soil thinning and erosion-induced changes to soil
properties should be beneficial to increase our understanding
of the erosion feedback system. Modelling-wise, an impor-
tant next step would be to adapt the framework described
here into spatially distributed soil erosion models, in order to
evaluate the effects of soil erosion feedback systems at land-
scape or watershed scale. This would allow for an unravel-
ling of different feedback processes at different positions in
the landscape, which might be affected by erosion-induced
changes to soil properties in different ways.

Finally, although our model simulations indicate that soil
thinning has a decelerating effect on soil loss rates for erod-
ing hillslope segments in the UK, the results also demonstrate
that some of these soils’ physical properties might become
restrictive for agriculture before the profiles are completely
truncated. That is, some simulated erosion progressions cre-
ate dense Ap horizons (max. bulk density of 1.78 M m−3)
with excessive rock fragment contents (max. 36 %), very
high clay (max. 89 %) or sand contents (max. 99 %), and low
water holding capacity (min. soil moisture at field capacity of
0.14 % w w−1). For such scenarios, rehabilitation techniques
based on topsoil replacement might be necessary to sustain
crop production (Schneider et al., 2021). These significant
changes in soil properties, simulated in relatively short time
periods (Fig. 10), further indicate how accelerated erosion in
agricultural landscapes can potentially affect soil classifica-
tion (Lewis and Witte, 1980; Olson and Nizeyimana, 1988;
Świtoniak et al., 2016), which is important to consider when
interpreting decades-old soil maps. Since soil erosion rates
in Britain are much lower compared to other regions of the
world (Benaud et al., 2020), our model simulations represent
a somewhat conservative scenario of erosion feedback sys-
tems. Erosion-induced changes to soil properties, and their
implications for modelling, should be particularly relevant in
areas under severe erosion rates.

5 Conclusions

Here, we explored the soil erosion feedback system in 265
agricultural soil profiles in the UK. In particular, we simu-
lated how selective erosion processes and the incorporation
of different subsoil horizons into the plough layer affected
the erodibility of surface soils. We further analysed how these
processes could change erosion rates during a period of 500
years. We found that (i) soil erosion rates in 99 % of the soil
profiles were sensitive to soil truncation, (ii) the truncation-
sensitive profiles essentially displayed a decelerating trend,
and (iii) changes in soil texture and stone cover were the main
drivers of the modelled soil erosion feedbacks loops. Impor-
tantly, we found that different soils had different simulated
responses to soil truncation, depending on the properties of
the surface material as well as those of the underlying soil
horizons.

Ultimately, our findings highlight the dynamic nature of
the soil as a three-dimensional body. That is, even the so-
called intrinsic properties of surface soils might change in a
matter of decades in areas under accelerated erosion rates.
Moreover, erosion-induced changes to soil properties can
have a significant impact on the rates with which soils are
eroded, which in turn affects the calculation of soil lifespans
and model-based erosion projections. Therefore, understand-
ing how erosion-induced changes to soil properties reverber-
ate with erosion itself will be crucial for improving long-term
model predictions, investigating the resilience of different
soils to erosion disturbances, and for developing appropriate
soil conservation strategies for a changing world.

Appendix A

Figure A1. Pedotransfer function for estimating bulk density (BD)
as a function of sand and organic carbon (OC) content. The regres-
sion was fit using only the data for the A horizons in the 265 agri-
cultural soil profiles from the UK SOILPITS dataset used in this
study
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Figure A2. Pedotransfer function for estimating soil moisture at
field capacity (MS) as a function of sand and organic carbon (OC)
content. The regression was fit using only the data for the A hori-
zons in the 265 agricultural soil profiles from the UK SOILPITS
dataset used in this study.
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