Articles | Volume 7, issue 1
SOIL, 7, 193–215, 2021
https://doi.org/10.5194/soil-7-193-2021
SOIL, 7, 193–215, 2021
https://doi.org/10.5194/soil-7-193-2021

Original research article 14 Jun 2021

Original research article | 14 Jun 2021

Quantifying soil carbon in temperate peatlands using a mid-IR soil spectral library

Anatol Helfenstein et al.

Related authors

Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary

Related subject area

Soil and methods
Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021,https://doi.org/10.5194/soil-7-377-2021, 2021
Short summary
Improved calibration of the Green–Ampt infiltration module in the EROSION-2D/3D model using a rainfall-runoff experiment database
Hana Beitlerová, Jonas Lenz, Jan Devátý, Martin Mistr, Jiří Kapička, Arno Buchholz, Ilona Gerndtová, and Anne Routschek
SOIL, 7, 241–253, https://doi.org/10.5194/soil-7-241-2021,https://doi.org/10.5194/soil-7-241-2021, 2021
Short summary
Are researchers following best storage practices for measuring soil biochemical properties?
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021,https://doi.org/10.5194/soil-7-95-2021, 2021
Quantifying and correcting for pre-assay CO2 loss in short-term carbon mineralization assays
Matthew A. Belanger, Carmella Vizza, G. Philip Robertson, and Sarah S. Roley
SOIL, 7, 47–52, https://doi.org/10.5194/soil-7-47-2021,https://doi.org/10.5194/soil-7-47-2021, 2021
Short summary

Cited articles

Araújo, S. R., Wetterlind, J., Demattê, J. A. M., and Stenberg, B.: Improving the Prediction Performance of a Large Tropical Vis-NIR Spectroscopic Soil Library from Brazil by Clustering into Smaller Subsets or Use of Data Mining Calibration Techniques, Eur. J. Soil Sci., 65, 718–729, https://doi.org/10.1111/ejss.12165, 2014. a
Bader, C., Müller, M., Szidat, S., Schulin, R., and Leifeld, J.: Response of Peat Decomposition to Corn Straw Addition in Managed Organic Soils, Geoderma, 309, 75–83, https://doi.org/10.1016/j.geoderma.2017.09.001, 2018. a
Baumann, P.: Simplerspec, GitHub, available at: https://github.com/philipp-baumann/simplerspec (last access: 12 November 2020), 2020. a
Baumann, P., Helfenstein, A., Gubler, A., Keller, A., Meuli, R. G., Wächter, D., Lee, J., Viscarra Rossel, R., and Six, J.: Developing the Swiss soil spectral library for local estimation and monitoring, SOIL Discuss. [preprint], https://doi.org/10.5194/soil-2020-105, in review, 2021. a, b, c, d, e, f, g, h, i, j
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M., and McBratney, A.: Critical Review of Chemometric Indicators Commonly Used for Assessing the Quality of the Prediction of Soil Attributes by NIR Spectroscopy, TrAC Trends Anal. Chem., 29, 1073–1081, https://doi.org/10.1016/j.trac.2010.05.006, 2010. a
Download
Short summary
In this study, we show that a soil spectral library (SSL) can be used to predict soil carbon at new and very different locations. The importance of this finding is that it requires less time-consuming lab work than calibrating a new model for every local application, while still remaining similar to or more accurate than local models. Furthermore, we show that this method even works for predicting (drained) peat soils, using a SSL with mostly mineral soils containing much less soil carbon.