Articles | Volume 5, issue 2
SOIL, 5, 367–382, 2019
SOIL, 5, 367–382, 2019
Original research article
17 Dec 2019
Original research article | 17 Dec 2019

Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach

Samuel Bouchoms et al.

Related authors

Soil-vegetation-water interactions controlling solute flow and transport in volcanic ash soils of the high Andes
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci. Discuss.,,, 2022
Preprint under review for HESS
Short summary
Estimating the lateral transfer of organic carbon through the European river network using a land surface model
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144,,, 2022
Short summary
Constraining the aggradation mode of Pleistocene river deposits based on cosmogenic radionuclide depth profiles and numerical modelling
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology Discuss.,,, 2022
Preprint under review for GChron
Short summary
The effect of natural infrastructure on water erosion mitigation in the Andes
Veerle Vanacker, Armando Molina, Miluska Rosas-Barturen, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147,,, 2022
Short summary
The soil carbon erosion paradox reconciled
Kristof Van Oost and Jo Six
Biogeosciences Discuss.,,, 2022
Revised manuscript under review for BG
Short summary

Related subject area

Soils and biogeochemical cycling
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505,,, 2022
Short summary
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267,,, 2022
Short summary
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211,,, 2022
Short summary
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83,,, 2022
Short summary
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15,,, 2022
Short summary

Cited articles

Andren, O. and Katterer, T.: ICBM: The introductory carbon balance model for exploration of soil carbon balances, Ecol. Appl., 7, 1226–1236, 1997. 
Bakker, M. M., Govers, G., and Rounsevell, M. D. A.: The crop productivity–erosion relationship: an analysis based on experimental work, CATENA, 57, 55–76,, 2004. 
Bakker, M. M., Govers, G., Jones, R. A., and Rounsevell, M. D. A.: The Effect of Soil Erosion on Europe's Crop Yields, Ecosystems, 10, 1209–1219,, 2007. 
Bardgett, R. D. and van der Putten, W. H.: Belowground biodiversity and ecosystem functioning, Nature, 515, 505–511,, 2014. 
Bardgett, R. D., Mommer, L., and De Vries, F. T.: Going underground: root traits as drivers of ecosystem processes, Trends Ecol. Evol., 29, 692–699,, 2014. 
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.