Articles | Volume 2, issue 4
https://doi.org/10.5194/soil-2-499-2016
https://doi.org/10.5194/soil-2-499-2016
Original research article
 | 
04 Oct 2016
Original research article |  | 04 Oct 2016

Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication

Frederick Büks and Martin Kaupenjohann

Related authors

Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023,https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments
Frederick Büks and Martin Kaupenjohann
SOIL, 8, 373–380, https://doi.org/10.5194/soil-8-373-2022,https://doi.org/10.5194/soil-8-373-2022, 2022
Short summary
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021,https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Global concentrations of microplastics in soils – a review
Frederick Büks and Martin Kaupenjohann
SOIL, 6, 649–662, https://doi.org/10.5194/soil-6-649-2020,https://doi.org/10.5194/soil-6-649-2020, 2020
Short summary
What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?
Frederick Büks, Nicolette Loes van Schaik, and Martin Kaupenjohann
SOIL, 6, 245–267, https://doi.org/10.5194/soil-6-245-2020,https://doi.org/10.5194/soil-6-245-2020, 2020
Short summary

Related subject area

Soil degradation
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023,https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Validating plutonium-239+240 as a novel soil redistribution tracer – a comparison to measured sediment yield
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023,https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023,https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023,https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL, 8, 517–539, https://doi.org/10.5194/soil-8-517-2022,https://doi.org/10.5194/soil-8-517-2022, 2022
Short summary

Cited articles

Abröll, C., Kurth, T., Langer, T., Munk, K. and Nethe-Jaenchen, R.: Biochemie-Zellbiologie, Georg Thieme Verlag, 2008.
Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J., and Neumann, A.: Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol., 46, 90–97, 1983.
Acosta-Martinez, V. and Tabatabai, M.: Enzyme activities in a limed agricultural soil, Biol. Fert. Soils, 31, 85–91, 2000.
Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P., and Pietramellara, G.: Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA, Soil Biol. Biochem., 36, 859–868, 2004.
Alaoui, A., Lipiec, J., and Gerke, H.: A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective, Soil Till. Res., 115–116, 1–15, 2011.
Download
Short summary
Soil aggregate stability and POM occlusion are integral markers for soil quality. Besides physico-chemical interactions, biofilms are considered to aggregate primary particles, but experimental proof is still missing. In our experiment, soil aggregate samples were treated with biofilm degrading enzymes and showed a reduced POM occlusion and an increased bacteria DNA release compared with untreated samples. Thus, biofilms are assumed to be an important factor of POM occlusion in soil aggregates.