Articles | Volume 2, issue 3
https://doi.org/10.5194/soil-2-351-2016
https://doi.org/10.5194/soil-2-351-2016
Original research article
 | 
22 Jul 2016
Original research article |  | 22 Jul 2016

Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe

Related authors

Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022,https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021,https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017,https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary

Related subject area

Soils and biogeochemical cycling
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024,https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
The six rights of how and when to test for soil C saturation
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024,https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024,https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, and Thomas W. Boutton
SOIL, 10, 93–108, https://doi.org/10.5194/soil-10-93-2024,https://doi.org/10.5194/soil-10-93-2024, 2024
Short summary
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024,https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary

Cited articles

Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A.: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire, Plant Soil, 362, 335–344, https://doi.org/10.1007/s11104-012-1408-z, 2013.
Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zomoza, R., Matalx-Beneyto, J., and Garcia-Orenes, F.: Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils, Catena, 74, 219–226, https://doi.org/10.1016/j.catena.2007.12.008, 2008.
Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows, PloS One, 9, e106058, https://doi.org/10.1371/journal.pone.0106058, 2014.
Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils, Soil Biol. Biochem., 81, 28–37, https://doi.org/10.1016/j.soilbio.2014.10.029, 2015.
Badía, D. and Martí, C.: Effect of simulated fire on organic matter and selected microbiological properties of two contrasting soils, Arid Land Res. Manage., 17, 55–69, https://doi.org/10.1080/15324980301594, 2003a.
Download
Short summary
Using laboratory heating, we studied effects of fire intensity on important topsoil characteristics. This study identifies critical temperature thresholds for significant physical and chemical changes in soils that developed under different climate regimes. Findings from this study will contribute towards estimating the amount and rate of change in essential soil properties that can be expected from topsoil exposure to different intensity fires under anticipated climate change scenarios.