Articles | Volume 2, issue 3
https://doi.org/10.5194/soil-2-351-2016
https://doi.org/10.5194/soil-2-351-2016
Original research article
 | 
22 Jul 2016
Original research article |  | 22 Jul 2016

Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe

Related authors

Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022,https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021,https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017,https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary

Related subject area

Soils and biogeochemical cycling
Comprehensive increase in CO2 release by drying–rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
SOIL, 11, 35–49, https://doi.org/10.5194/soil-11-35-2025,https://doi.org/10.5194/soil-11-35-2025, 2025
Short summary
Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025,https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025,https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Ruizhe Wang and Xia Hu
SOIL, 10, 859–871, https://doi.org/10.5194/soil-10-859-2024,https://doi.org/10.5194/soil-10-859-2024, 2024
Short summary
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, and Vojtěch Enev
SOIL, 10, 813–826, https://doi.org/10.5194/soil-10-813-2024,https://doi.org/10.5194/soil-10-813-2024, 2024
Short summary

Cited articles

Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A.: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire, Plant Soil, 362, 335–344, https://doi.org/10.1007/s11104-012-1408-z, 2013.
Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zomoza, R., Matalx-Beneyto, J., and Garcia-Orenes, F.: Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils, Catena, 74, 219–226, https://doi.org/10.1016/j.catena.2007.12.008, 2008.
Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows, PloS One, 9, e106058, https://doi.org/10.1371/journal.pone.0106058, 2014.
Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils, Soil Biol. Biochem., 81, 28–37, https://doi.org/10.1016/j.soilbio.2014.10.029, 2015.
Badía, D. and Martí, C.: Effect of simulated fire on organic matter and selected microbiological properties of two contrasting soils, Arid Land Res. Manage., 17, 55–69, https://doi.org/10.1080/15324980301594, 2003a.
Download
Short summary
Using laboratory heating, we studied effects of fire intensity on important topsoil characteristics. This study identifies critical temperature thresholds for significant physical and chemical changes in soils that developed under different climate regimes. Findings from this study will contribute towards estimating the amount and rate of change in essential soil properties that can be expected from topsoil exposure to different intensity fires under anticipated climate change scenarios.