Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Amicie A. Delahaie
CORRESPONDING AUTHOR
Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL
University, IPSL, Paris, France
Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL
University, IPSL, Paris, France
François Baudin
ISTeP – UMR 7193, Sorbonne Université, Paris, France
Dominique Arrouays
INRAE, US1106, InfoSol, Orléans, France
Antonio Bispo
INRAE, US1106, InfoSol, Orléans, France
Line Boulonne
INRAE, US1106, InfoSol, Orléans, France
Claire Chenu
UMR ECOSYS, Université Paris-Saclay, INRAE, AgroParisTech,
Palaiseau, France
Claudy Jolivet
INRAE, US1106, InfoSol, Orléans, France
Manuel P. Martin
INRAE, US1106, InfoSol, Orléans, France
Céline Ratié
INRAE, US1106, InfoSol, Orléans, France
Nicolas P. A. Saby
INRAE, US1106, InfoSol, Orléans, France
Florence Savignac
ISTeP – UMR 7193, Sorbonne Université, Paris, France
Lauric Cécillon
Laboratoire de Géologie, École Normale Supérieure, CNRS, PSL
University, IPSL, Paris, France
Related authors
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Naoise Nunan, Claire Chenu, Valérie Pouteau, André Soro, Kevin Potard, Célia Regina Montes, Patricia Merdy, Adolpho José Melfi, and Yves Lucas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3356, https://doi.org/10.5194/egusphere-2025-3356, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The vulnerability to decomposition of organic C in Amazonian podzols as a result of predicted drier soil moisture regimes was tested: more than four times as much CO2 was released from soils under oxic conditions with the addition of N relative to soils under the prevailing anoxic conditions. An extrapolation of the data to the whole of the Amazonian podzols suggests that this increased C-CO2 flux to the atmosphere could be equivalent to 8 % of the current net global C flux to the atmosphere.
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, and Jacinthe Caillaud
SOIL, 11, 467–488, https://doi.org/10.5194/soil-11-467-2025, https://doi.org/10.5194/soil-11-467-2025, 2025
Short summary
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
Johanne Lebrun Thauront, Philippa Ascough, Sebastian Doetterl, Negar Haghipour, Pierre Barré, Christian Walter, and Samuel Abiven
EGUsphere, https://doi.org/10.5194/egusphere-2025-2693, https://doi.org/10.5194/egusphere-2025-2693, 2025
Short summary
Short summary
Fire-derived carbon is a form of organic carbon that has a long persistence in soils. However, its persistence at the landscape scale may be underestimated due to lateral and vertical redistribution. We measured fire-derived carbon in soils of a hilly agricultural watershed to identify the result of transport processes on the centennial time-scale. We show that the subsoil stores a large amount of fire-derived carbon and that erosion can redistribute it to localized accumulation zones.
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Songchao Chen, Qi Shuai, Dominique Arrouays, Zhongxing Chen, Lingju Dai, Yongsheng Hong, Bifeng Hu, Yuyang Huang, Wenjun Ji, Shuo Li, Zongzheng Liang, Yuxin Ma, Anne C. Richer-de-Forges, Calogero Schillaci, Yang Su, Hongfen Teng, Nan Wang, Xi Wang, Yanyu Wang, Zheng Wang, Zhige Wang, Dongyun Xu, Jie Xue, Su Ye, Xianglin Zhang, Yin Zhou, Peng Zhu, and Zhou Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-373, https://doi.org/10.5194/essd-2024-373, 2024
Manuscript not accepted for further review
Short summary
Short summary
The impact of land use and land cover change (LULCC) on soil organic carbon stock (SOCS) is uncertain due to limited global data. Despite regional efforts, a comprehensive global SOCS database has been lacking. This study introduces the Global Soil Organic Carbon Stock dataset after LULCC (GSOCS-LULCC), compiled from 639 articles covering 1,206 sites and 5,982 records across five major land uses. This open-access database enables global assessment of LULCC's effects on SOCS dynamics.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024, https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary
Short summary
A new dataset for topsoil bulk density (BD) and soil organic carbon (SOC) stock (0–20 cm) across Europe using machine learning was generated. The proposed approach performed better in BD prediction and slightly better in SOC stock prediction than earlier-published PTFs. The outcomes present a meaningful advancement in enhancing the accuracy of BD, and the resultant topsoil BD and SOC stock datasets across Europe enable more precise soil hydrological and biological modeling.
Christophe Djemiel, Samuel Dequiedt, Walid Horrigue, Arthur Bailly, Mélanie Lelièvre, Julie Tripied, Charles Guilland, Solène Perrin, Gwendoline Comment, Nicolas P. A. Saby, Claudy Jolivet, Antonio Bispo, Line Boulonne, Antoine Pierart, Patrick Wincker, Corinne Cruaud, Pierre-Alain Maron, Sébastien Terrat, and Lionel Ranjard
SOIL, 10, 251–273, https://doi.org/10.5194/soil-10-251-2024, https://doi.org/10.5194/soil-10-251-2024, 2024
Short summary
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023, https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
Short summary
We introduce Shapley values for machine learning model interpretation and reveal the local and global controlling factors of soil organic carbon (SOC) stocks. The method enables spatial analysis of the important variables. Vegetation and topography determine much of the SOC stock variation in mainland France. We conclude that SOC stock variation is complex and should be interpreted at multiple levels.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Cited articles
Amundson, R.: The carbon budget in soils, Annu. Rev. Earth Pl. Sc., 29,
535–562, https://doi.org/10.1146/annurev.earth.29.1.535, 2001.
Baldock, J. A. and Skjemstad, J. O.: Role of soil matrix and minerals in
protecting natural organic materials against biological attack, Org.
Geochem., 31, 697–710, https://doi.org/10.1016/S0146-6380(00)00049-8, 2000.
Balesdent, J. and Guillet, B.: Les datations par le 14C des matières
organiques des sols, Contribution à l'étude de l'humification et du
renouvellement des substances humiques, Science du Sol, 20, 93–112, 1982.
Balesdent, J., Mariotti, A., and Boisgontier, D.: Effect of tillage on soil
organic carbon mineralization estimated from 13C abundance in maize fields,
J. Soil Sci., 41, 587–596, https://doi.org/10.1111/j.1365-2389.1990.tb00228.x, 1990.
Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F.,
Christensen, B. T., Eglin, T., Fernandez, J.-M., Houot, S., Kätterer,
T., Le Guillou, C., Macdonald, A., van Oort, F., and Chenu, C.: The
energetic and chemical signatures of persistent soil organic matter,
Biogeochemistry, 130, 1–12, https://doi.org/10.1007/s10533-016-0246-0, 2016.
Baudin, F., Disnar, J.-R., Aboussou, A., and Savignac, F.: Guidelines for
Rock-Eval analysis of recent marine sediments, Org. Geochem., 86, 71–80,
https://doi.org/10.1016/j.orggeochem.2015.06.009, 2015.
Behar, F., Beaumont, V., and De Barros Penteado, H. L.: Rock-Eval 6
Technology: Performances and Developments, Oil Gas Sci. Technol., 56,
111–134, https://doi.org/10.2516/ogst:2001013, 2001.
Bispo, A., Andersen, L., Angers, D. A., Bernoux, M., Brossard, M.,
Cécillon, L., Comans, R. N. J., Harmsen, J., Jonassen, K., Lamé, F.,
Lhuillery, C., Maly, S., Martin, E., Mcelnea, A. E., Sakai, H., Watabe, Y.,
and Eglin, T. K.: Accounting for carbon stocks in soils and measuring GHGs
emission fluxes from soils: do we have the necessary standards?, Front.
Environ. Sci., 5, 41, https://doi.org/10.3389/fenvs.2017.00041,
2017.
Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R.,
Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A. F.,
Savignac, F., Soucémarianadin, L., and Barré, P.: A model based on
RockEval thermal analysis to quantify the size of the centennially
persistent organic carbon pool in temperate soils, Biogeosciences, 15,
2835–2849, https://doi.org/10.5194/bg-15-2835-2018, 2018.
Cécillon, L., Baudin, F., Chenu, C., Christensen, B. T., Franko, U.,
Houot, S., Kanari, E., Kätterer, T., Merbach, I., van Oort, F., Poeplau,
C., Quezada, J.-C., Savignac, F., Soucémarianadin, L. N., and Barré,
P.: Partitioning soil organic carbon into its centennially stable and active
fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU), Geosci. Model Dev., 14,
3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, 2021.
Chassé, M., Lutfalla, S., Cécillon, L., Baudin, F., Abiven, S.,
Chenu, C., and Barré, P.: Long-term bare-fallow soil fractions reveal
thermo-chemical properties controlling soil organic carbon dynamics,
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021,
2021.
Chen, S., Arrouays, D., Angers, D. A., Chenu, C., Barré, P., Martin, M.
P., Saby, N. P. A., and Walter, C.: National estimation of soil organic
carbon storage potential for arable soils: A data-driven approach coupled
with carbon-landscape zones, Sci. Total Environ., 666, 355–367,
https://doi.org/10.1016/j.scitotenv.2019.02.249, 2019.
Chenu, C., Rumpel, C., and Lehmann, J.: Methods for Studying Soil Organic
Matter: Nature, Dynamics, Spatial Accessibility, and Interactions with
Minerals, in: Soil Microbiology, Ecology and Biochemistry,
Academic Press, Elsevier, 383–419,
https://doi.org/10.1016/B978-0-12-415955-6.00013-X, 2015.
Cleveland, C. C. and Liptzin, D.: C:N:P stoichiometry in soil: is there a
“Redfield ratio” for the microbial biomass?, Biogeochemistry, 85,
235–252, https://doi-org.insu.bib.cnrs.fr/10.1007/s10533-007-9132-0, 2007.
Clivot, H., Mouny, J. C., Duparque, A., Dinh, J. L., Denoroy, P., Houot, S.,
Vertès, F., Trochard, R., Bouthier, A., Sagot, S., and Mary, B.:
Modeling soil organic carbon evolution in long-term arable experiments with
AMG model, Environ. Modell. Softw., 118, 99–113,
https://doi.org/10.1016/j.envsoft.2019.04.004, 2019.
Clivot, H., Misslin, R., Constantin, J., Tribouillois, H., Levavasseur, F.,
Houot, S., Villerd, J., and Therond, O.: AqYield-NC model documentation:
Extension of the AqYield soil-crop model for simulating microbial processes
involved in soil nitrogen and carbon fluxes in the MAELIA platform, HAL,
https://doi.org/10.15454/P0D3I5, 2021.
Collins, H. P., Bundy, L. G., Dick, W. A., Huggins, D. R., Smucker, A. J.
M., and Paul E. A.: Soil carbon pools and fluxes in long-term Corn Belt
agroecosystems, Soil Biol. Biochem., 32, 157–168,
https://doi.org/10.1016/S0038-0717(99)00136-4, 2000.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil
carbon storage informed by particulate and mineral-associated organic
matter, Nat. Geosci., 12, 989–994,
https://doi.org/10.1038/s41561-019-0484-6, 2019.
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L.,
Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde,
M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., and
Basile-Doelsch I.: Increasing soil carbon storage: mechanisms, effects of
agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14,
https://doi-org.insu.bib.cnrs.fr/10.1007/s13593-017-0421-2, 2017.
Disnar, J.-R., Guillet, B., Keravis, D., Di-Giovanni, C., and Sebag, D.:
Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and
limitations, Org. Geochem., 34, 327–343,
https://doi.org/10.1016/S0146-6380(02)00239-5, 2003.
Eglin, T., Ciais, P., Piao, S. L., Barré, P., Bellassen, V., Cadule, P.,
Chenu, C., Gasser, T., Koven, C., Reichstein, M., and Smith, P.: Historical
and future perspectives of global soil carbon response to climate and
land-use changes, Tellus B, 62, 700–718,
https://doi.org/10.1111/j.1600-0889.2010.00499.x, 2010.
Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P.,
Paulet, J., and Boutefeu, A.: Méthode rapide de caractérisation des
roches mères, de leur potentiel pétrolier et de leur degré
d'évolution, Oil Gas Sci. Technol., 32, 23–42,
https://doi.org/10.2516/ogst:1977002, 1977.
Fox, J. and Weisberg, S.: Package “car”, An {R} Companion to Applied Regression, Third Edition, Thousand
Oaks CA, https://socialsciences.mcmaster.ca/jfox/Books/Companion/, last access: 19 June 2019.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H., and
Yanni, S. F.: Evaluating biodegradability of soil organic matter by its
thermal stability and chemical composition, Soil Biol. Biochem., 91,
182–191, https://doi.org/10.1016/j.soilbio.2015.08.032, 2015.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a
meta-analysis, Glob. Change Biol., 8, 345–360,
https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Jolivet, C., Boulonne, L., and Ratié, C.: Manuel du Réseau de
Mesures de la Qualité des Sols, édition 2006, Unité InfoSol,
INRA Orléans, France, 190 pp., ISBN: 2-73-80-1235-3, 2006.
Jolivet, C. C.: Le Réseau de Mesures de la Qualité des Sols (RMQS),
Visite du Ministère de l'Agriculture, de l'Alimentation, de la
Pêche, de la Ruralité et de l'Aménagement du Territoire,
Orléans, France, https://hal.inrae.fr/hal-02803226 S (last access: 5 June 2022), 2011.
Kanari, E., Cécillon, L., Baudin, F., Clivot, H., Ferchaud, F., Houot,
S., Levavasseur, F., Mary, B., Soucémarianadin, L. N., Chenu, C., and
Barré P.: A robust initialization method for accurate soil organic
carbon simulations, Biogeosciences, 19, 375–387,
https://doi.org/10.5194/bg-19-375-2022, 2022.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready
Plots, R package version 0.4.0, https://CRAN.R-project.org/package=ggpubr (last access: 5 June 2022), 2020.
Kassambara, A.: rstatix: Pipe-Friendly Framework for Basic
Statistical Tests, R package version 0.7.0, https://CRAN.R-project.org/package=rstatix (last access: 5 June 2022), 2021.
Kassambara, A. and Mundt, F.: factoextra: Extract and
Visualize the Results of Multivariate Data Analyses, R package version
1.0.7, https://CRAN.R-project.org/package=factoextra (last access: 5 June 2022), 2020.
Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F.,
Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunie, S., Anthelme, F.,
Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S.,
Compostella, C., Clague, J., Tielidze, L., Messager, E., Choler, P., and
Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around
the world, Glob. Change Biol., 27, 1662–1677,
https://doi.org/10.1111/gcb.15496, 2021.
Lê, S., Josse, J., and Husson, F.: FactoMineR: A Package for Multivariate
Analysis, J. Stat. Softw., 25, 1–18, 2008.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.:
Different climate sensitivity of particulate and mineral-associated soil
organic matter, Nat. Geosci., 14, 295–300,
https://doi.org/10.1038/s41561-021-00744-x, 2021.
Martin, M. P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C.,
Boulonne, L., and Arrouays, D.: Spatial distribution of soil organic carbon
stocks in France, Biogeosciences, 8, 1053–1065,
https://doi.org/10.5194/bg-8-1053-2011, 2011.
Matteodo, M., Grand, S., Sebag, D., Rowley, M. C., Vittoz, P., and
Verrecchia, E. P.: Decoupling of topsoil and subsoil controls on organic
matter dynamics in the Swiss Alps, Geoderma, 330, 41–51,
https://doi.org/10.1016/j.geoderma.2018.05.011, 2018.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic
respiration to moisture availability: An exploration of processes and
models, Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Murty, D., Kirschbaum, M. U., Mcmurtrie, R. E., and Mcgilvray, H.: Does
conversion of forest to agricultural land change soil carbon and nitrogen? A
review of the literature, Glob. Change Biol., 8, 105–123,
https://doi.org/10.1046/j.1354-1013.2001.00459.x, 2002.
Pebesma, E.: sf: Simple Features for R: Standardized Support for
Spatial Vector Data, R Journal, 10, 439–446, https://doi.org/10.32614/RJ-2018-009, 2018.
Plante, A. F., Fernández, J. M., and Leifeld, J.: Application of thermal
analysis techniques in soil science, Geoderma, 153, 1–10,
https://doi.org/10.1016/j.geoderma.2009.08.016, 2009.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon
after land-use change in the temperate zone–carbon response functions as a
model approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and
fractions to different land-use changes across Europe, Geoderma, 192,
189–201, https://doi.org/10.1016/j.geoderma.2012.08.003, 2013.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kuhnel, A., Macdonald, L. M., Soong,
J., Trigalet, S., Vermeire, M.,L., Rovira, P., Van Wesemael, B., Wiesmeier,
M., Yeasmin, S., Yevdokimov, I., and Nieder R.: Isolating organic carbon
fractions with varying turnover rates in temperate agricultural soils – A
comprehensive method comparison, Soil Biol. Biochem., 125, 10–26,
https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Poeplau, C., Barré, P., Cécillon, L., Baudin, F., and Sigurdsson, B.
D.: Changes in the Rock-Eval signature of soil organic carbon upon extreme
soil warming and chemical oxidation – A comparison, Geoderma, 337,
181–190, https://doi.org/10.1016/j.geoderma.2018.09.025, 2019.
R Core Team: R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 19 June 2022), 2021.
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., and
Bloodworth, H.: Effect of soil organic carbon on soil water retention,
Geoderma, 116, 61–76, https://doi.org/10.1016/S0016-7061(03)00094-6, 2003.
Rey, A. N. A. and Jarvis, P.: Modelling the effect of temperature on carbon
mineralization rates across a network of European forest sites (FORCAST),
Glob. Change Biol., 12, 1894–1908,
https://doi.org/10.1111/j.1365-2486.2006.01230.x, 2006.
Rumpel, C., Amiraslani, F., Koutika, L.-S., Smith, P., Whitehead, D., and
Wollenberg, E.: Put more carbon in soils to meet Paris climate pledges,
Nature, 564, 32–34, https://doi.org/10.1038/d41586-018-07587-4, 2018.
Saby, N., Bertouy, B., Boulonne, L., Bispo, A., Ratié, C., and Jolivet, C.: Statistiques sommaires issues du RMQS sur les données agronomiques et en éléments traces des sols français de 0 à 50 cm, Recherche Data Gouv [data set], V5, https://doi.org/10.15454/BNCXYB, 2019.
Saenger, A., Cécillon, L., Sebag, D., and Brun, J.-J.: Soil organic
carbon quantity, chemistry and thermal stability in a mountainous landscape:
A Rock–Eval pyrolysis survey, Org. Geochem., 54, 101–114,
https://doi.org/10.1016/j.orggeochem.2012.10.008, 2013.
Saenger, A., Cécillon, L., Poulenard, J., Bureau, F., De Daniéli,
S., Gonzalez, J., and Brun, J.: Surveying the carbon pools of mountain
soils: a comparison of physical fractionation and Rock-Eval pyrolysis,
Geoderma, 241/242, 279–288,
https://doi.org/10.1016/j.geoderma.2014.12.001, 2015.
Sanderman, J. and Grandy, A. S.: Ramped thermal analysis for isolating
biologically meaningful soil organic matter fractions with distinct
residence times, SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020,
2020.
Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S.,
Rivard, C., and Savage, K.: Soil organic carbon fractions in the Great
Plains of the United States: an application of mid-infrared spectroscopy,
Biogeochemistry, 156, 97–114,
https://doi-org.insu.bib.cnrs.fr/10.1007/s10533-021-00755-1, 2021.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49–56, https://doi.org/10.1038/nature10386, 2011.
Sebag, D., Verrecchia, E. P., Cécillon, L., Adatte, T., Albrecht, R.,
Aubert, M., Bureau, F., Cailleau, G., Copard, Y., Decaens, T., Disnar,
J.-R., Hetényi, M., Nyilas, T., and Trombino, L.: Dynamics of soil
organic matter based on new Rock-Eval indices, Geoderma, 284, 185–203,
https://doi.org/10.1016/j.geoderma.2016.08.025, 2016.
Soetaert, K.: plot3D: Plotting Multi-Dimensional Data, R package
version 1.4, https://CRAN.R-project.org/package=plot3D (last access: 19 June 2022), 2021.
Soucémarianadin, L. N., Cécillon, L., Guenet, B., Chenu, C., Baudin,
F., Nicolas, M., Girardin, C., and Barré, P.: Environmental factors
controlling soil organic carbon stability in French forest soils, Plant
Soil, 426, 267–286,
https://doi-org.insu.bib.cnrs.fr/10.1007/s11104-018-3613-x, 2018.
Tennekes, M.: tmap: Thematic Maps in R, J.f Stat.
Softw., 84, 1–39, https://doi.org/10.18637/jss.v084.i06, 2018.
Vinci Technologies (Nanterre, France): Geoworks V1.6R2, https://www.vinci-technologies.com/rocks-and-fluids/geology/organic-geochemistry/geoworks-geochemical-software/113335/ (last access: 3 August 2022),
2021.
Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., and
Richards, A.: Continental-scale soil carbon composition and vulnerability
modulated by regional environmental controls, Nat. Geosci., 12, 547–552,
https://doi.org/10.1038/s41561-019-0373-z, 2019.
Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., and Flessa H.: Stabilization of soil
organic matter in temperate soils: mechanisms and their relevance under
different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445,
https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H.,
Guggenberger, G., Matzner, E., and Marschner B.: SOM fractionation methods:
relevance to functional pools and to stabilization mechanisms, Soil Biol.
Biochem., 39, 2183–2207, https://doi.org/10.1016/j.soilbio.2007.03.007,
2007.
Vos, C., Jaconi, A., Jacobs, A., and Don, A.: Hot regions of labile and
stable soil organic carbon in Germany – Spatial variability and driving
factors, SOIL, 4, 153–167, https://doi.org/10.5194/soil-4-153-2018, 2018.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a
Correlation Matrix (Version 0.92), https://github.com/taiyun/corrplot (last access: 19 June 2022), 2021.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New
York, https://doi.org/10.1007/978-0-387-98141-3, 2016.
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
We characterized organic matter in French soils by analysing samples from the French RMQS...