Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-517-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-517-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Solène Quéro
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Christine Hatté
Laboratoire des Sciences du Climate et de l'Environnement, UMR 8212 CEACNRSUVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
Sophie Cornu
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Adrien Duvivier
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Nithavong Cam
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Floriane Jamoteau
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
CIRAD, Internal Research Unit (UPR) Recycling and Risk, Station de La Bretagne, Réunion, France
Daniel Borschneck
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Isabelle Basile-Doelsch
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Related authors
No articles found.
Eric Pohl, Christophe Grenier, Antoine Séjourné, Frédéric Bouchard, Emmanuel Léger, Albane Saintenoy, Pavel Konstantinov, Amélie Cuynet, Catherine Ottlé, Christine Hatté, Aurélie Noret, Kensheri Danilov, Kirill Bazhin, Ivan Khristoforov, Daniel Fortier, Alexander Fedorov, and Emmanuel Mouche
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-134, https://doi.org/10.5194/essd-2025-134, 2025
Preprint under review for ESSD
Short summary
Short summary
Permafrost is widespread in the Northern Hemisphere and is thawing due to climate warming, impacting energy and mass transfers. Small streams emerge alongside lakes when ice in the ground melts away, potentially accelerating thawing and biogeochemical activity in a positive feedback cycle. This study provides a comprehensive dataset on these little-studied streams, including thermally and hydrologically important variables essential for improving numerical models.
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, Francois Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, and Isabelle Basile-Doelsch
SOIL, 11, 535–552, https://doi.org/10.5194/soil-11-535-2025, https://doi.org/10.5194/soil-11-535-2025, 2025
Short summary
Short summary
This study explores the impact of converting forests to agricultural land on soil C stabilization. By analyzing soil samples from a forest and crop Andosols, we found that C-stabilizing mineral–organic associations were in the form of amorphous coprecipitates in both soils. However, their quantity was significantly lower in the crop topsoil, suggesting their vulnerability to agricultural conversion. This highlights the need to develop strategies to preserve these associations in crop soils.
Papa Mamadou Sitor Ndour, Christine Hatté, Wafa Achouak, Thierry Heulin, and Laurent Cournac
SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, https://doi.org/10.5194/soil-8-49-2022, 2022
Short summary
Short summary
Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Cited articles
Andreetta, A., Dignac, M.-F., and Carnicelli, S.:
Biological and physico-chemical processes influence cutin and suberin biomarker distribution in two Mediterranean forest soil profiles, Biogeochemistry, 112, 41–58, https://doi.org/10.1007/s10533-011-9693-9, 2013.
Anon:
ISRaD: International Soil Radiocarbon Database, https://soilradiocarbon.org/ (last access: 17 May 2021), 2020.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., and Hatté, C.:
Atmosphere–soil carbon transfer as a function of soil depth, Nature, 559, 599–602, https://doi.org/10.1038/s41586-018-0328-3, 2018.
Barré, P., Cécillon, L., Chenu, C., Martin, M., and Vidal-Beaudet, L., and Eglin, T.:
La séquestration de carbone dans les sols agricoles, forestiers et urbains : état des lieux des méthodes d’évaluation et de quantification, Etude et Gestion des Sols, 27, 305–320, 2020.
Batjes, N. H.:
Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 65, 10–21, https://doi.org/10.1111/ejss.12114_2, 2014.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.:
Present and future Köppen–Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bogunovic, I., Pereira, P., Kisic, I., Birkás, M., and Rodrigo-Comino, J.:
Spatiotemporal Variation of Soil Compaction by Tractor Traffic Passes in a Croatian Vineyard, J. Agr. Sci. Tech., 21, 1921–1932, 2019.
Bordoni, M., Vercesi, A., Maerker, M., Ganimede, C., Reguzzi, M. C., Capelli, E., Wei, X., Mazzoni, E., Simoni, S., Gagnarli, E., and Meisina, C.:
Effects of vineyard soil management on the characteristics of soils and roots in the lower Oltrepò Apennines (Lombardy, Italy), Sci. Total Environ., 693, 133390, https://doi.org/10.1016/j.scitotenv.2019.07.196, 2019.
Caravaca, F., Masciandaro, G., and Ceccanti, B.:
Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment, Soil Till. Res., 68, 23–30, https://doi.org/10.1016/S0167-1987(02)00080-6, 2002.
Carlisle, E. A., Steenwerth, K. L., and Smart, D. R.:
Effects of Land Use on Soil Respiration: Conversion of Oak Woodlands to Vineyards, J. Environ. Qual., 35, 1396–1404, https://doi.org/10.2134/jeq2005.0155, 2006.
Chiti, T., Certini, G., Forte, C., Papale, D., and Valentini, R.:
Radiocarbon-Based Assessment of Heterotrophic Soil Respiration in Two Mediterranean Forests, Ecosystems, 19, 62–72, https://doi.org/10.1007/s10021-015-9915-4, 2016.
Conradie, W. J.:
Timing of Nitrogen Fertilisation and the Effect of Poultry Manure on the Performance of Grapevines on Sandy Soil. I. Soil Analysis, Grape Yield and Vegetative Growth, S. Afr. J. Enol.Vitic., 22, 53–59, https://doi.org/10.21548/22-2-2192, 2001.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.:
The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.:
Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Eldon, J. and Gershenson, A.:
Effects of Cultivation and Alternative Vineyard Management Practices on Soil Carbon Storage in Diverse Mediterranean Landscapes: A Review of the Literature, Agroecol. Sustain. Food Syst., 39, 516–550, https://doi.org/10.1080/21683565.2015.1007407, 2015.
Ellert, B. H. and Bettany, J. R.:
Calculation of organic matter and nutrients stored in soils under contrasting management regimes, Can. J. Soil. Sci., 75, 529–538, https://doi.org/10.4141/cjss95-075, 1995.
FAO:
World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps, FAO, Rome, 2014.
FAO: The future of food and agriculture – Alternative pathways to 2050, Rome, 224 pp., Licence: CC BY-NC-SA 3.0 IGO, 2018.
Ferreira, C. S. S., Keizer, J. J., Santos, L. M. B., Serpa, D., Silva, V., Cerqueira, M., Ferreira, A. J. D., and Abrantes, N.:
Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale, Agr. Ecosyst. Environ., 256, 184–193, https://doi.org/10.1016/j.agee.2018.01.015, 2018.
Ferreira, C. S., Veiga, A., Caetano, A., Gonzalez-Pelayo, O., Karine-Boulet, A., Abrantes, N., Keizer, J., and Ferreira, A. J.:
Assessment of the Impact of Distinct Vineyard Management Practices on Soil Physico-Chemical Properties, Air Soil Water Res., 13, 1–13, https://doi.org/10.1177/1178622120944847, 2020.
Fierro, A., Rutigliano, F. A., Marco, A. D., Castaldi, S., and Santo, A. V. D.:
Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland, Int. J. Wildland Fire, 16, 573, https://doi.org/10.1071/WF06114, 2007.
Fourie, J. C., Louw, P. J. E., Agenbag, G. A., and Infruitec-Nietvoorbij, A.:
Cover crop management in a Sauvignon blanc/Ramsey vineyard in the semi-arid Olifants River Valley, South Africa. 1. Effect of management practices on selected grass and broadleaf species, S. Afr. J. Enol. Vitic., 26, 131–139, https://doi.org/10.21548/26-2-2129, 2005.
Giagnoni, L., Maienza, A., Baronti, S., Vaccari, F. P., Genesio, L., Taiti, C., Martellini, T., Scodellini, R., Cincinelli, A., Costa, C., Mancuso, S., and Renella, G.:
Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment, Geoderma, 344, 127–136, https://doi.org/10.1016/j.geoderma.2019.03.011, 2019.
Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., and Sinaj, S.:
Long-term soil organic carbon dynamics in temperate cropland-grassland systems, Agr. Ecosyst. Environ., 305, 107184, https://doi.org/10.1016/j.agee.2020.107184, 2021.
Humbel, F. X.:
STRUCTURAL ANALYSIS OF SOIL MANTLES AND ORIENTATED DESIGNS OF AGRONOMIC EXPERIMENTS, IBSRAM, ISBN 974-87467-5-5, 153–162, 1987.
Jiang, Y., Luo, C., Zhang, D., Ostle, N. J., Cheng, Z., Ding, P., Shen, C., and Zhang, G.:
Radiocarbon evidence of the impact of forest-to-plantation conversion on soil organic carbon dynamics on a tropical island, Geoderma, 375, 114484, https://doi.org/10.1016/j.geoderma.2020.114484, 2020.
Jreich, R.:
Vertical dynamics of soil carbon – Combined use of isotopic tracers and statistical meta-analysis, Paris Saclay, Paris, 2018.
Kazlauskaite-Jadzevice, A., Tripolskaja, L., Volungevicius, J., and Baksiene, E.:
Impact of land use change on organic carbon sequestration in Arenosol, Agr. Food Sci., 28, 9–17, https://doi.org/10.23986/afsci.69641, 2019.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P.:
Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments, Adv. Agron., 30, 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Kögel-Knabner, I. and Amelung, W.:
Soil organic matter in major pedogenic soil groups, Geoderma, 384, https://doi.org/10.1016/j.geoderma.2020.114785, 2021.
Kratschmer, S., Pachinger, B., Schwantzer, M., Paredes, D., Guernion, M., Burel, F., Nicolai, A., Strauss, P., Bauer, T., Kriechbaum, M., Zaller, J. G., and Winter, S.:
Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?, Agr. Ecosyst. Environ., 266, 142–152, https://doi.org/10.1016/j.agee.2018.07.018, 2018.
Lal, R.:
Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.:
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Libby, W. F., Anderson, E. C., and Arnold, J. R.:
Age Determination by Radiocarbon Content: World-Wide Assay of Natural Radiocarbon, Science, 109, 227–228, https://doi.org/10.1126/science.109.2827.227, 1949.
López-Piñeiro, A.:
Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions, Soil Till. Res., 126, 119–126, https://doi.org/10.1016/j.still.2012.09.007, 2013.
Manly, B. F. J.:
Randomization, Bootstrap and Monte Carlo Methods in Biology, third edn., Chapman and Hall/CRC, New York, 488 pp., https://doi.org/10.1201/9781315273075, 2006.
Marschner, B. and Waldemar Wilczynski, A.:
The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany, Plant Soil, 137, 229–236, https://doi.org/10.1007/BF00011201, 1991.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.:
Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles, Glob. Change Biol., 21, 4278–4292, https://doi.org/10.1111/gcb.13012, 2015.
Mousset, J.: ADEME: Carbone des sols: enjeu pour le climat et l’agronomie, ADEME, 28 pp., 2014.
Muñoz-Rojas, M., Jordán, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod, S. K., and Anaya-Romero, M.:
Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain), Solid Earth, 3, 375–386, https://doi.org/10.5194/se-3-375-2012, 2012.
Nogales, A., Santos, E. S., Abreu, M. M., Arán, D., Victorino, G., Pereira, H. S., Lopes, C. M., and Viegas, W.:
Mycorrhizal Inoculation Differentially Affects Grapevine's Performance in Copper Contaminated and Non-contaminated Soils, Front. Plant Sci., 9, 1906, https://doi.org/10.3389/fpls.2018.01906, 2019.
Okur, N., Altindişli, A., Çengel, M., Göçmez, S., and Kayikçioğlu, H. H.:
Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems, Turk. J. Agric. For., 33, 413–423, https://doi.org/10.3906/tar-0806-23, 2009.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., and Alewell, C.:
The new assessment of soil loss by water erosion in Europe, Environ. Sci. Policy, 54, 438–447, https://doi.org/10.1016/j.envsci.2015.08.012, 2015.
Payen, F. T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., and MacLeod, M.:
Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis, J. Clean., 13, https://doi.org/10.1016/j.jclepro.2020.125736, 2021.
Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, I., Bellassen, V., Cardinael, R., Cécillon, L., Ceschia, E., Chenu, C., Constantin, J., Daroussin, J., Delacote, P., Delame, N., Gastal, F., Gilbert, D., Graux, A.-I., Guenet, B., Houot, S., Klumpp, K., Letort, E., Litrico, I., Martin, M., Menasseri-Aubry, S., Meziere, D., Morvan, T., Mosnier, C., Roger-Estrade, J., Saint-André, L., Sierra, J., Therond, O., Viaud, V., Grateau, R., Perchec, S.L., Savini, I., and Rechauchère, O.: Stocker du carbone dans les sols français : quel potentiel au regard de l’objectif de 4 pour 1000 et à quel coût?, Rapport scientifique de l’étude, Étude réalisée pour l’ADEME et le ministère de l’Agriculture et de l’Alimentation, [Autre] INRA (France), 114 pp., 2019.
Pinzari, F., Trinchera, A., Benedetti, A., and Sequi, P.:
Use of biochemical indices in the mediterranean environment: comparison among soils under different forest vegetation, J. Microbiol. Meth., 36, 21–28, https://doi.org/10.1016/S0167-7012(99)00007-X, 1999.
Poeplau, C. and Don, A.:
Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe, Geoderma, 192, 189–201, 2013.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content, SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, 2017.
Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Srinivasa Rao, C., Sandeep, S., Rinklebe, J., Ok, Y. S., Choudhury, B. U., Wang, H., Tang, C., Wang, X., Song, Z., and Freeman II, O. W.:
Soil organic carbon dynamics: Impact of land use changes and management practices: A review, in: Advances in Agronomy, vol. 156, edited by: Sparks, D. L., Elsevier, 1–107, https://doi.org/10.1016/bs.agron.2019.02.001, 2019.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and Calibration of Post-Bomb 14C Data, Radiocarbon, 46, 1299–1304, 2004.
Ruff, M., Szidat, S., Gäggeler, H. W., Suter, M., Synal, H.-A., and Wacker, L.: Gaseous radiocarbon measurements of small samples, Nucl. Instrum. Methods Phys. Res. B, 268, 790–794, https://doi.org/10.1016/j.nimb.2009.10.032, 2010.
Rumpel, C. and Kögel-Knabner, I.:
Deep soil organic matter—a key but poorly understood component of terrestrial C cycle, Plant Soil, 338, 143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon AMS system, Nucl. Instrum. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Tisnérat-Laborde, N., Thil, F., Synal, H.-A., Cersoy, S., Hatté, C., Gauthier, C., Massault, M., Michelot, J.-L., Noret, A., Siani, G., Tombret, O., Vigne, J.-D., and Zazzo, A.: ECHoMICADAS: A new compact AMS system to measuring 14C for Environment, Climate and Human Sciences, Dakar, Senegal, 16–20 pp., 2015.
Trumbore, S.:
Radiocarbon and Soil Carbon Dynamics, Annu. Rev. Earth Planet. Sc., 37, 47–66, https://doi.org/10.1146/annurev.earth.36.031207.124300, 2009.
Tsozué, D., Nafissa, B., Basga, S. D., and Balna, J.:
Soil change in Arenosols under long term cultivation in the sudano-sahelian zone of Cameroon, Geoderma Regional, 23, e00338, https://doi.org/10.1016/j.geodrs.2020.e00338, 2020.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.:
Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
Vittori Antisari, L., Laudicina, V. A., Falsone, G., Carbone, S., Badalucco, L., and Vianello, G.:
Native and planted forest species determine different carbon and nitrogen pools in Arenosol developed on Holocene deposits from a costal Mediterranean area (Tuscany, Italy), Environ. Earth Sci., 75, 776, https://doi.org/10.1007/s12665-016-5581-x, 2016.
Wacker, L., Němec, M., and Bourquin, J.:
A revolutionary graphitisation system: Fully automated, compact and simple, Nucl. Instrum. Meth. B, 268, 931–934, https://doi.org/10.1016/j.nimb.2009.10.067, 2010.
Wang, Y., Amundson, R., and Trumbore, S.:
The impact of land use change on C turnover in soils, Global Biogeochem. Cy., 13, 47–57, https://doi.org/10.1029/1998GB900005, 1999.
Zomer, R. J., Bossio, D. A., Sommer, R., and Verchot, L. V.:
Global Sequestration Potential of Increased Organic Carbon in Cropland Soils, Sci. Rep., 7, 15554, https://doi.org/10.1038/s41598-017-15794-8, 2017.
Short summary
Although present in food security key areas, Arenosols carbon stocks are barely studied. A 150-year-old land use change in a Mediterranean Arenosol showed a loss from 50 Gt C ha-1 to 3 Gt C ha-1 after grape cultivation. 14C showed that deep ploughing in a vineyard plot redistributed the remaining microbial carbon both vertically and horizontally. Despite the drastic degradation of the organic matter pool, Arenosols would have a high carbon storage potential, targeting the 4 per 1000 initiative.
Although present in food security key areas, Arenosols carbon stocks are barely studied. A...