Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-517-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-517-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Solène Quéro
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Christine Hatté
Laboratoire des Sciences du Climate et de l'Environnement, UMR 8212 CEACNRSUVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
Sophie Cornu
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Adrien Duvivier
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Nithavong Cam
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Floriane Jamoteau
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
CIRAD, Internal Research Unit (UPR) Recycling and Risk, Station de La Bretagne, Réunion, France
Daniel Borschneck
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Isabelle Basile-Doelsch
CORRESPONDING AUTHOR
Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
Related authors
No articles found.
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, and Isabelle Basile-Doelsch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2933, https://doi.org/10.5194/egusphere-2024-2933, 2024
Short summary
Short summary
This study shows that cultivating natural soils disrupts crucial mineral-organic associations, leading to carbon loss and reduced soil fertility. By analyzing soil samples from a forest and crop andosols, we found that these associations exist as amorphous coprecipitates (nanoCLICs). Cultivation reduces quantities of nanoCLICs by 50 %, highlighting their vulnerability to environmental changes and the need to develop strategies to preserve them to maintain soil fertility.
Papa Mamadou Sitor Ndour, Christine Hatté, Wafa Achouak, Thierry Heulin, and Laurent Cournac
SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, https://doi.org/10.5194/soil-8-49-2022, 2022
Short summary
Short summary
Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Marwa Tifafi, Marta Camino-Serrano, Christine Hatté, Hector Morras, Lucas Moretti, Sebastián Barbaro, Sophie Cornu, and Bertrand Guenet
Geosci. Model Dev., 11, 4711–4726, https://doi.org/10.5194/gmd-11-4711-2018, https://doi.org/10.5194/gmd-11-4711-2018, 2018
Short summary
Short summary
The role of soil carbon in climate dynamics becomes one of the major uncertainties in land surface models. This work is a presentation of a new version of the land surface model called ORCHIDEE incorporating the radiocarbon (14C) used as integrator of the soil carbon dynamics. It has been possible to highlight an underestimation of the age of carbon in the soil and that model improvements should focus more on a depth-dependent parameterization mainly for the diffusion.
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395, https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary
Short summary
Soil C storage is currently discussed at a high political level. This paper discusses whether the concept of soil C saturation deficit can be appropriate to determine quantitatively the soil C storage potential and contribute to answer operational questions raised by policy makers. After a review of the literature, we conclude that for practical and conceptual reasons, the C saturation deficit is not appropriate for assessing quantitatively the soil total OC storage potential.
Alexia Paul, Christine Hatté, Lucie Pastor, Yves Thiry, Françoise Siclet, and Jérôme Balesdent
Biogeosciences, 13, 6587–6598, https://doi.org/10.5194/bg-13-6587-2016, https://doi.org/10.5194/bg-13-6587-2016, 2016
Short summary
Short summary
The terrestrial environment has been affected by tritium contamination. There is a need to assess the dynamics of organic hydrogen in soils in order to predict the fate of tritium. In the present study we traced carbon and hydrogen from plant-derived molecules and hydrogen from water in different soil types. The main findings of the work are that water is the main donor of organic hydrogen and the long-term fate of hydrogen (and tritium) will depend on the status of soil carbon dynamics.
Anne Alexandre, Jérôme Balesdent, Patrick Cazevieille, Claire Chevassus-Rosset, Patrick Signoret, Jean-Charles Mazur, Araks Harutyunyan, Emmanuel Doelsch, Isabelle Basile-Doelsch, Hélène Miche, and Guaciara M. Santos
Biogeosciences, 13, 1693–1703, https://doi.org/10.5194/bg-13-1693-2016, https://doi.org/10.5194/bg-13-1693-2016, 2016
Short summary
Short summary
This 13C labeling experiment demonstrates that carbon can be absorbed by the roots, translocated in the plant, and ultimately fixed in organic compounds subject to occlusion in silica particles that form inside plant cells (phytoliths). Plausible forms of carbon absorbed, translocated, and fixed in phytoliths are assessed. Implications for our understanding of the C cycle at the plant-soil-atmosphere interface are discussed.
A. Alexandre, I. Basile-Doelsch, T. Delhaye, D. Borshneck, J. C. Mazur, P. Reyerson, and G. M. Santos
Biogeosciences, 12, 863–873, https://doi.org/10.5194/bg-12-863-2015, https://doi.org/10.5194/bg-12-863-2015, 2015
Short summary
Short summary
Phytoliths contain occluded organic compounds called phytC. The nature and location of phytC in biogenic silica structures is poorly understood. Here, we reconstructed the 3-D structure of phytoliths using 3-D Xray microscopy. We further evidenced a pool of phytC, continuously distributed in the silica structure, using nanoscale secondary ion mass spectrometry (NanoSIMS). Our findings allowed the re-evaluation of previous suggestions regarding phytC quantification and environmental meaning.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
C. Hatté, C. Gauthier, D.-D. Rousseau, P. Antoine, M. Fuchs, F. Lagroix, S. B. Marković, O. Moine, and A. Sima
Clim. Past, 9, 1001–1014, https://doi.org/10.5194/cp-9-1001-2013, https://doi.org/10.5194/cp-9-1001-2013, 2013
Related subject area
Soil degradation
Gully rehabilitation in southern Ethiopia – value and impacts for farmers
Status and influential factors of soil nutrients and acidification in Chinese tea plantations
A millennium of arable land use – the long-term impact of tillage and water erosion on landscape-scale carbon dynamics
Sensitivity of source sediment fingerprinting to tracer selection methods
Response of soil nutrients and erodibility to slope aspect in the northern agro-pastoral ecotone, China
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Validating plutonium-239+240 as a novel soil redistribution tracer – a comparison to measured sediment yield
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems
Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution
The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (Triticum aestivum L.)
Potential effect of wetting agents added to agricultural sprays on the stability of soil aggregates
Environmental behaviors of (E) pyriminobac-methyl in agricultural soils
The effect of natural infrastructure on water erosion mitigation in the Andes
Spatial distribution of argan tree influence on soil properties in southern Morocco
Assessing soil redistribution of forest and cropland sites in wet tropical Africa using 239+240Pu fallout radionuclides
Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China
Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils
Complex soil food web enhances the association between N mineralization and soybean yield – a model study from long-term application of a conservation tillage system in a black soil of Northeast China
Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling
Variation of soil organic carbon, stable isotopes, and soil quality indicators across an erosion–deposition catena in a historical Spanish olive orchard
Impacts of land use and topography on soil organic carbon in a Mediterranean landscape (north-western Tunisia)
Spatial assessments of soil organic carbon for stakeholder decision-making – a case study from Kenya
How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling
Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication
Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions
Determination of hydrological roughness by means of close range remote sensing
Can we manipulate root system architecture to control soil erosion?
SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network
Gully geometry: what are we measuring?
Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming
Ecological soil quality affected by land use and management on semi-arid Crete
Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health
Wolde Mekuria, Euan Phimister, Getahun Yakob, Desalegn Tegegne, Awdenegest Moges, Yitna Tesfaye, Dagmawi Melaku, Charlene Gerber, Paul D. Hallett, and Jo U. Smith
SOIL, 10, 637–654, https://doi.org/10.5194/soil-10-637-2024, https://doi.org/10.5194/soil-10-637-2024, 2024
Short summary
Short summary
In Ethiopia, we studied (a) the effectiveness of low-cost gully rehabilitation measures in reducing soil loss and upward expansion of gully heads and (b) how farmers and communities view gully interventions. The tested low-cost gully rehabilitation measures were effective in mitigating the upward expansion of gully heads and in reducing soil loss. Farmers also perceive success, but scaling-out can be constrained by diverse challenges.
Dan Wang, Fei Li, Benjuan Liu, Zhihui Wang, Jianfeng Hou, Rui Cao, Yuqian Zheng, and Wanqin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2498, https://doi.org/10.5194/egusphere-2024-2498, 2024
Short summary
Short summary
Tea plantations in China were facing soil acidification, nutrient deficiencies and imbalance. Less than 45 % of tea plantations can classified as high-quality tea plantations. Soil nutrients and pH were closely related to geological and climatic factors and varied among soil types. The status of soil nutrients and pH can be modified by managerial practices such as cultivation period and fertilization strategy. Recommendations were made to tackle soil problems.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Yuxin Wu, Guodong Jia, Xinxiao Yu, Honghong Rao, Xiuwen Peng, Yusong Wang, Yushi Wang, and Xu Wang
SOIL, 10, 61–75, https://doi.org/10.5194/soil-10-61-2024, https://doi.org/10.5194/soil-10-61-2024, 2024
Short summary
Short summary
Vegetation restoration is an important method of ecological restoration that aims to control soil erosion and prevent soil degradation. Our study suggests that combinations of species such as C. korshinskii and L. bicolor are optimal for improving the soil nutrients and soil erodibility for any slope aspect. This study provides insight into the rational planning of vegetation restoration measures for slopes with various aspects in semi-arid areas of the northern agro-pastoral ecotone.
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023, https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Short summary
The present study used several different datasets, conducted a field survey, and paired the data with three different machine learning algorithms to construct spatial maps for areas at risk of land degradation for the Lut watershed in Iran. According to the land degradation map, almost the entire study region is at risk. A large fraction of 43 % of the area is prone to both high wind-driven and water-driven soil erosion.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023, https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Short summary
The response rate of soil organic matter (SOM) to the amount of straw return was inversely proportional to the initial SOM and the sand contents. From paddy to dryland, the SOM loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg-1 when the straw return amount reached 60–100%. The study revealed that straw return is beneficial to carbon sink in farmland and is a way to prevent a C source caused by the change of paddy field to upland.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Vanesa Santás-Miguel, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Montserrat Díaz-Raviña, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 8, 437–449, https://doi.org/10.5194/soil-8-437-2022, https://doi.org/10.5194/soil-8-437-2022, 2022
Short summary
Short summary
A laboratory experiment was carried out for 42 d to study co-selection for tolerance of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr, and Pb). At high metal concentrations, the bacterial communities show tolerance to the metal itself, occurring for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals also showed long-term co-tolerance to TC, OTC, and CTC.
David Hobson, Mary Harty, Saoirse R. Tracy, and Kevin McDonnell
SOIL, 8, 391–408, https://doi.org/10.5194/soil-8-391-2022, https://doi.org/10.5194/soil-8-391-2022, 2022
Short summary
Short summary
Tillage practices and traffic management have significant implications for root architecture, plant growth, and, ultimately, crop yield. Soil cores were extracted from a long-term tillage trial to measure the relationship between soil physical properties and root growth. We found that no-traffic and low-tyre-pressure methods significantly increased rooting properties and crop yield under zero-tillage conditions compared to conventionally managed deep-tillage treatments with high tyre pressures.
Antonín Kintl, Vítězslav Vlček, Martin Brtnický, Jan Nedělník, and Jakub Elbl
SOIL, 8, 349–372, https://doi.org/10.5194/soil-8-349-2022, https://doi.org/10.5194/soil-8-349-2022, 2022
Short summary
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
Wenwen Zhou, Haoran Jia, Lang Liu, Baotong Li, Yuqi Li, and Meizhu Gao
SOIL, 8, 237–252, https://doi.org/10.5194/soil-8-237-2022, https://doi.org/10.5194/soil-8-237-2022, 2022
Short summary
Short summary
Our study focuses on (E) pyriminobac-methyl (EPM), a weedicide commonly applied to agricultural soils in China, which can potentially pose serious risks to groundwater quality once it percolates through the soil. We tested the adsorption–desorption, degradation, and leaching of this compound in five agricultural soils sampled from different provinces in China.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Mario Kirchhoff, Tobias Romes, Irene Marzolff, Manuel Seeger, Ali Aït Hssaine, and Johannes B. Ries
SOIL, 7, 511–524, https://doi.org/10.5194/soil-7-511-2021, https://doi.org/10.5194/soil-7-511-2021, 2021
Short summary
Short summary
This study found that the influence of argan trees on soil properties in southern Morocco is mostly limited to the area covered by the tree crown. However, the tree influences the bare soil outside the crown positively in specific directions because wind and water can move litter and soil particles from under the tree to the areas between the trees. These findings, based on soil samples around argan trees, could help structure reforestation measures.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Ming Lu, David S. Powlson, Yi Liang, Dave R. Chadwick, Shengbi Long, Dunyi Liu, and Xinping Chen
SOIL, 7, 333–346, https://doi.org/10.5194/soil-7-333-2021, https://doi.org/10.5194/soil-7-333-2021, 2021
Short summary
Short summary
Land use changes are an important anthropogenic perturbation that can cause soil degradation, but the impacts of land conversion from growing cereals to vegetables have received little attention. Using a combination of soil analyses from paired sites and data from farmer surveys, we found significant soil degradation in intensive vegetable cropping under paddy rice–oilseed rape rotation in southwestern China. This study may alert others to the potential land degradation in the subtropics.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Shixiu Zhang, Liang Chang, Neil B. McLaughlin, Shuyan Cui, Haitao Wu, Donghui Wu, Wenju Liang, and Aizhen Liang
SOIL, 7, 71–82, https://doi.org/10.5194/soil-7-71-2021, https://doi.org/10.5194/soil-7-71-2021, 2021
Short summary
Short summary
Long-term conservation tillage results in more complex and heterogeneous activities of soil organisms relative to conventional tillage. This study used an energetic food web modelling approach to calculate the mineralized N delivered by the whole soil community assemblages and highlighted the essential role of soil food web complexity in coupling N mineralization and soybean yield after a 14-year application of conservation tillage in a black soil of Northeast China.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
José A. Gómez, Gema Guzmán, Arsenio Toloza, Christian Resch, Roberto García-Ruíz, and Lionel Mabit
SOIL, 6, 179–194, https://doi.org/10.5194/soil-6-179-2020, https://doi.org/10.5194/soil-6-179-2020, 2020
Short summary
Short summary
The long-term evolution of soil organic carbon in an olive orchard (planted in 1856) was evaluated and compared to an adjacent undisturbed natural area. Total soil organic carbon in the top 40 cm of the soil in the orchard was reduced to 25 % of that in the undisturbed area. The deposition downslope in the orchard of sediment coming from the eroded upslope area did not increase the accumulation of organic carbon in soil, but it quadrupled available phosphorus and improved overall soil quality.
Donia Jendoubi, Hanspeter Liniger, and Chinwe Ifejika Speranza
SOIL, 5, 239–251, https://doi.org/10.5194/soil-5-239-2019, https://doi.org/10.5194/soil-5-239-2019, 2019
Short summary
Short summary
This paper is original research done in north-western Tunisia; it presents the impacts of the topography (slope and aspect) and the land use systems in the SOC storage in a Mediterranean area. It provides a soil spectral library, describes the variation of SOC under different conditions, and highlights the positive impact of agroforestry as good management in improving the SOC. Therefore this finding is very important to support decision making and inform sustainable land management in Tunisia.
Tor-Gunnar Vågen, Leigh Ann Winowiecki, Constance Neely, Sabrina Chesterman, and Mieke Bourne
SOIL, 4, 259–266, https://doi.org/10.5194/soil-4-259-2018, https://doi.org/10.5194/soil-4-259-2018, 2018
Short summary
Short summary
Land degradation impacts the health and livelihoods of about 1.5 billion people worldwide. The state of the environment and food security are strongly interlinked in tropical landscapes. This paper demonstrates the integration of soil organic carbon (SOC) and land health maps with socioeconomic datasets into an online, open-access platform called the Resilience Diagnostic and Decision Support Tool for Turkana County in Kenya.
Dick J. Brus and Jan J. H. van den Akker
SOIL, 4, 37–45, https://doi.org/10.5194/soil-4-37-2018, https://doi.org/10.5194/soil-4-37-2018, 2018
Short summary
Short summary
Subsoil compaction is an important soil threat. It is caused by heavy machines used in agriculture. The aim of this study was to estimate how large the area with overcompacted subsoils is in the Netherlands. This was done by selecting locations randomly and determining the porosity and bulk density of the soil at these locations. It appeared that 43 % of the soils in the Netherlands is overcompacted, and so we conclude that subsoil compaction is indeed a serious problem in the Netherlands.
Frederick Büks and Martin Kaupenjohann
SOIL, 2, 499–509, https://doi.org/10.5194/soil-2-499-2016, https://doi.org/10.5194/soil-2-499-2016, 2016
Short summary
Short summary
Soil aggregate stability and POM occlusion are integral markers for soil quality. Besides physico-chemical interactions, biofilms are considered to aggregate primary particles, but experimental proof is still missing. In our experiment, soil aggregate samples were treated with biofilm degrading enzymes and showed a reduced POM occlusion and an increased bacteria DNA release compared with untreated samples. Thus, biofilms are assumed to be an important factor of POM occlusion in soil aggregates.
E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden, and J. A. Gómez
SOIL, 1, 651–664, https://doi.org/10.5194/soil-1-651-2015, https://doi.org/10.5194/soil-1-651-2015, 2015
Short summary
Short summary
Biodiversity indices for spontaneous grass cover were measured in two olive orchards in southern Spain with contrasting site conditions and management to evaluate their potential for biodiversity metrics of soil degradation. Biodiversity indices were relatively high for agricultural areas. No correlation between the biodiversity indicators and soil quality features were observed. The mere use of vegetation presence as a proxy might mask relative intense soil degradation processes.
A. Kaiser, F. Neugirg, F. Haas, J. Schmidt, M. Becht, and M. Schindewolf
SOIL, 1, 613–620, https://doi.org/10.5194/soil-1-613-2015, https://doi.org/10.5194/soil-1-613-2015, 2015
A. Ola, I. C. Dodd, and J. N. Quinton
SOIL, 1, 603–612, https://doi.org/10.5194/soil-1-603-2015, https://doi.org/10.5194/soil-1-603-2015, 2015
Short summary
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
C. Castillo, M. R. James, M. D. Redel-Macías, R. Pérez, and J. A. Gómez
SOIL, 1, 583–594, https://doi.org/10.5194/soil-1-583-2015, https://doi.org/10.5194/soil-1-583-2015, 2015
Short summary
Short summary
- We present SF3M, a new graphical user interface for implementing a complete 3-D photo-reconstruction workflow based on freely available software, in combination with a low-cost survey design for the reconstruction of a several-hundred-metres-long gully network.
- This methodology implied using inexpensive means, little manpower, in a short time span, being a promising tool for gully erosion evaluation in scenarios with demanding budget and time constraints and reduced operator expertise.
J. Casalí, R. Giménez, and M. A. Campo-Bescós
SOIL, 1, 509–513, https://doi.org/10.5194/soil-1-509-2015, https://doi.org/10.5194/soil-1-509-2015, 2015
Short summary
Short summary
Despite gullies having been intensively studied in the past decades, there is no general consensus on such basic aspects as the correct determination of the geometry (width and depth) of these erosion features. Therefore, a measurement protocol is proposed to characterize the geometry of a gully by its effective width and effective depth, which, together with its length, would permit the definition of the equivalent prismatic gully (EPG); this would facilitate the comparison between gullies.
E. A. C. Costantini, A. E. Agnelli, A. Fabiani, E. Gagnarli, S. Mocali, S. Priori, S. Simoni, and G. Valboa
SOIL, 1, 443–457, https://doi.org/10.5194/soil-1-443-2015, https://doi.org/10.5194/soil-1-443-2015, 2015
Short summary
Short summary
Earthworks carried out before planting a new vineyard caused, in the surface soil layer, an increase in lime and a decline in soil OC and N contents, along with a reduction in the abundance and diversity of microbial and mesofauna communities. Five years after the new vineyard establishment, soil was still far from its original quality and this limited vine development. The reduced OM input resulting from the management and the poor residue biomass was a major factor in delaying soil resilience.
J. P. van Leeuwen, D. Moraetis, G. J. Lair, J. Bloem, N. P. Nikolaidis, L. Hemerik, and P. C. de Ruiter
SOIL Discuss., https://doi.org/10.5194/soild-2-187-2015, https://doi.org/10.5194/soild-2-187-2015, 2015
Manuscript not accepted for further review
R. Zornoza, J. A. Acosta, F. Bastida, S. G. Domínguez, D. M. Toledo, and A. Faz
SOIL, 1, 173–185, https://doi.org/10.5194/soil-1-173-2015, https://doi.org/10.5194/soil-1-173-2015, 2015
Cited articles
Andreetta, A., Dignac, M.-F., and Carnicelli, S.:
Biological and physico-chemical processes influence cutin and suberin biomarker distribution in two Mediterranean forest soil profiles, Biogeochemistry, 112, 41–58, https://doi.org/10.1007/s10533-011-9693-9, 2013.
Anon:
ISRaD: International Soil Radiocarbon Database, https://soilradiocarbon.org/ (last access: 17 May 2021), 2020.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., and Hatté, C.:
Atmosphere–soil carbon transfer as a function of soil depth, Nature, 559, 599–602, https://doi.org/10.1038/s41586-018-0328-3, 2018.
Barré, P., Cécillon, L., Chenu, C., Martin, M., and Vidal-Beaudet, L., and Eglin, T.:
La séquestration de carbone dans les sols agricoles, forestiers et urbains : état des lieux des méthodes d’évaluation et de quantification, Etude et Gestion des Sols, 27, 305–320, 2020.
Batjes, N. H.:
Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 65, 10–21, https://doi.org/10.1111/ejss.12114_2, 2014.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.:
Present and future Köppen–Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bogunovic, I., Pereira, P., Kisic, I., Birkás, M., and Rodrigo-Comino, J.:
Spatiotemporal Variation of Soil Compaction by Tractor Traffic Passes in a Croatian Vineyard, J. Agr. Sci. Tech., 21, 1921–1932, 2019.
Bordoni, M., Vercesi, A., Maerker, M., Ganimede, C., Reguzzi, M. C., Capelli, E., Wei, X., Mazzoni, E., Simoni, S., Gagnarli, E., and Meisina, C.:
Effects of vineyard soil management on the characteristics of soils and roots in the lower Oltrepò Apennines (Lombardy, Italy), Sci. Total Environ., 693, 133390, https://doi.org/10.1016/j.scitotenv.2019.07.196, 2019.
Caravaca, F., Masciandaro, G., and Ceccanti, B.:
Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment, Soil Till. Res., 68, 23–30, https://doi.org/10.1016/S0167-1987(02)00080-6, 2002.
Carlisle, E. A., Steenwerth, K. L., and Smart, D. R.:
Effects of Land Use on Soil Respiration: Conversion of Oak Woodlands to Vineyards, J. Environ. Qual., 35, 1396–1404, https://doi.org/10.2134/jeq2005.0155, 2006.
Chiti, T., Certini, G., Forte, C., Papale, D., and Valentini, R.:
Radiocarbon-Based Assessment of Heterotrophic Soil Respiration in Two Mediterranean Forests, Ecosystems, 19, 62–72, https://doi.org/10.1007/s10021-015-9915-4, 2016.
Conradie, W. J.:
Timing of Nitrogen Fertilisation and the Effect of Poultry Manure on the Performance of Grapevines on Sandy Soil. I. Soil Analysis, Grape Yield and Vegetative Growth, S. Afr. J. Enol.Vitic., 22, 53–59, https://doi.org/10.21548/22-2-2192, 2001.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.:
The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.:
Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Eldon, J. and Gershenson, A.:
Effects of Cultivation and Alternative Vineyard Management Practices on Soil Carbon Storage in Diverse Mediterranean Landscapes: A Review of the Literature, Agroecol. Sustain. Food Syst., 39, 516–550, https://doi.org/10.1080/21683565.2015.1007407, 2015.
Ellert, B. H. and Bettany, J. R.:
Calculation of organic matter and nutrients stored in soils under contrasting management regimes, Can. J. Soil. Sci., 75, 529–538, https://doi.org/10.4141/cjss95-075, 1995.
FAO:
World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps, FAO, Rome, 2014.
FAO: The future of food and agriculture – Alternative pathways to 2050, Rome, 224 pp., Licence: CC BY-NC-SA 3.0 IGO, 2018.
Ferreira, C. S. S., Keizer, J. J., Santos, L. M. B., Serpa, D., Silva, V., Cerqueira, M., Ferreira, A. J. D., and Abrantes, N.:
Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale, Agr. Ecosyst. Environ., 256, 184–193, https://doi.org/10.1016/j.agee.2018.01.015, 2018.
Ferreira, C. S., Veiga, A., Caetano, A., Gonzalez-Pelayo, O., Karine-Boulet, A., Abrantes, N., Keizer, J., and Ferreira, A. J.:
Assessment of the Impact of Distinct Vineyard Management Practices on Soil Physico-Chemical Properties, Air Soil Water Res., 13, 1–13, https://doi.org/10.1177/1178622120944847, 2020.
Fierro, A., Rutigliano, F. A., Marco, A. D., Castaldi, S., and Santo, A. V. D.:
Post-fire stimulation of soil biogenic emission of CO2 in a sandy soil of a Mediterranean shrubland, Int. J. Wildland Fire, 16, 573, https://doi.org/10.1071/WF06114, 2007.
Fourie, J. C., Louw, P. J. E., Agenbag, G. A., and Infruitec-Nietvoorbij, A.:
Cover crop management in a Sauvignon blanc/Ramsey vineyard in the semi-arid Olifants River Valley, South Africa. 1. Effect of management practices on selected grass and broadleaf species, S. Afr. J. Enol. Vitic., 26, 131–139, https://doi.org/10.21548/26-2-2129, 2005.
Giagnoni, L., Maienza, A., Baronti, S., Vaccari, F. P., Genesio, L., Taiti, C., Martellini, T., Scodellini, R., Cincinelli, A., Costa, C., Mancuso, S., and Renella, G.:
Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment, Geoderma, 344, 127–136, https://doi.org/10.1016/j.geoderma.2019.03.011, 2019.
Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., and Sinaj, S.:
Long-term soil organic carbon dynamics in temperate cropland-grassland systems, Agr. Ecosyst. Environ., 305, 107184, https://doi.org/10.1016/j.agee.2020.107184, 2021.
Humbel, F. X.:
STRUCTURAL ANALYSIS OF SOIL MANTLES AND ORIENTATED DESIGNS OF AGRONOMIC EXPERIMENTS, IBSRAM, ISBN 974-87467-5-5, 153–162, 1987.
Jiang, Y., Luo, C., Zhang, D., Ostle, N. J., Cheng, Z., Ding, P., Shen, C., and Zhang, G.:
Radiocarbon evidence of the impact of forest-to-plantation conversion on soil organic carbon dynamics on a tropical island, Geoderma, 375, 114484, https://doi.org/10.1016/j.geoderma.2020.114484, 2020.
Jreich, R.:
Vertical dynamics of soil carbon – Combined use of isotopic tracers and statistical meta-analysis, Paris Saclay, Paris, 2018.
Kazlauskaite-Jadzevice, A., Tripolskaja, L., Volungevicius, J., and Baksiene, E.:
Impact of land use change on organic carbon sequestration in Arenosol, Agr. Food Sci., 28, 9–17, https://doi.org/10.23986/afsci.69641, 2019.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P.:
Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments, Adv. Agron., 30, 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Kögel-Knabner, I. and Amelung, W.:
Soil organic matter in major pedogenic soil groups, Geoderma, 384, https://doi.org/10.1016/j.geoderma.2020.114785, 2021.
Kratschmer, S., Pachinger, B., Schwantzer, M., Paredes, D., Guernion, M., Burel, F., Nicolai, A., Strauss, P., Bauer, T., Kriechbaum, M., Zaller, J. G., and Winter, S.:
Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?, Agr. Ecosyst. Environ., 266, 142–152, https://doi.org/10.1016/j.agee.2018.07.018, 2018.
Lal, R.:
Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.:
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Libby, W. F., Anderson, E. C., and Arnold, J. R.:
Age Determination by Radiocarbon Content: World-Wide Assay of Natural Radiocarbon, Science, 109, 227–228, https://doi.org/10.1126/science.109.2827.227, 1949.
López-Piñeiro, A.:
Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions, Soil Till. Res., 126, 119–126, https://doi.org/10.1016/j.still.2012.09.007, 2013.
Manly, B. F. J.:
Randomization, Bootstrap and Monte Carlo Methods in Biology, third edn., Chapman and Hall/CRC, New York, 488 pp., https://doi.org/10.1201/9781315273075, 2006.
Marschner, B. and Waldemar Wilczynski, A.:
The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany, Plant Soil, 137, 229–236, https://doi.org/10.1007/BF00011201, 1991.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.:
Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles, Glob. Change Biol., 21, 4278–4292, https://doi.org/10.1111/gcb.13012, 2015.
Mousset, J.: ADEME: Carbone des sols: enjeu pour le climat et l’agronomie, ADEME, 28 pp., 2014.
Muñoz-Rojas, M., Jordán, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod, S. K., and Anaya-Romero, M.:
Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain), Solid Earth, 3, 375–386, https://doi.org/10.5194/se-3-375-2012, 2012.
Nogales, A., Santos, E. S., Abreu, M. M., Arán, D., Victorino, G., Pereira, H. S., Lopes, C. M., and Viegas, W.:
Mycorrhizal Inoculation Differentially Affects Grapevine's Performance in Copper Contaminated and Non-contaminated Soils, Front. Plant Sci., 9, 1906, https://doi.org/10.3389/fpls.2018.01906, 2019.
Okur, N., Altindişli, A., Çengel, M., Göçmez, S., and Kayikçioğlu, H. H.:
Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems, Turk. J. Agric. For., 33, 413–423, https://doi.org/10.3906/tar-0806-23, 2009.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., and Alewell, C.:
The new assessment of soil loss by water erosion in Europe, Environ. Sci. Policy, 54, 438–447, https://doi.org/10.1016/j.envsci.2015.08.012, 2015.
Payen, F. T., Sykes, A., Aitkenhead, M., Alexander, P., Moran, D., and MacLeod, M.:
Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis, J. Clean., 13, https://doi.org/10.1016/j.jclepro.2020.125736, 2021.
Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, I., Bellassen, V., Cardinael, R., Cécillon, L., Ceschia, E., Chenu, C., Constantin, J., Daroussin, J., Delacote, P., Delame, N., Gastal, F., Gilbert, D., Graux, A.-I., Guenet, B., Houot, S., Klumpp, K., Letort, E., Litrico, I., Martin, M., Menasseri-Aubry, S., Meziere, D., Morvan, T., Mosnier, C., Roger-Estrade, J., Saint-André, L., Sierra, J., Therond, O., Viaud, V., Grateau, R., Perchec, S.L., Savini, I., and Rechauchère, O.: Stocker du carbone dans les sols français : quel potentiel au regard de l’objectif de 4 pour 1000 et à quel coût?, Rapport scientifique de l’étude, Étude réalisée pour l’ADEME et le ministère de l’Agriculture et de l’Alimentation, [Autre] INRA (France), 114 pp., 2019.
Pinzari, F., Trinchera, A., Benedetti, A., and Sequi, P.:
Use of biochemical indices in the mediterranean environment: comparison among soils under different forest vegetation, J. Microbiol. Meth., 36, 21–28, https://doi.org/10.1016/S0167-7012(99)00007-X, 1999.
Poeplau, C. and Don, A.:
Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe, Geoderma, 192, 189–201, 2013.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content, SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, 2017.
Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Srinivasa Rao, C., Sandeep, S., Rinklebe, J., Ok, Y. S., Choudhury, B. U., Wang, H., Tang, C., Wang, X., Song, Z., and Freeman II, O. W.:
Soil organic carbon dynamics: Impact of land use changes and management practices: A review, in: Advances in Agronomy, vol. 156, edited by: Sparks, D. L., Elsevier, 1–107, https://doi.org/10.1016/bs.agron.2019.02.001, 2019.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and Calibration of Post-Bomb 14C Data, Radiocarbon, 46, 1299–1304, 2004.
Ruff, M., Szidat, S., Gäggeler, H. W., Suter, M., Synal, H.-A., and Wacker, L.: Gaseous radiocarbon measurements of small samples, Nucl. Instrum. Methods Phys. Res. B, 268, 790–794, https://doi.org/10.1016/j.nimb.2009.10.032, 2010.
Rumpel, C. and Kögel-Knabner, I.:
Deep soil organic matter—a key but poorly understood component of terrestrial C cycle, Plant Soil, 338, 143–158, https://doi.org/10.1007/s11104-010-0391-5, 2011.
Synal, H. A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon AMS system, Nucl. Instrum. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Tisnérat-Laborde, N., Thil, F., Synal, H.-A., Cersoy, S., Hatté, C., Gauthier, C., Massault, M., Michelot, J.-L., Noret, A., Siani, G., Tombret, O., Vigne, J.-D., and Zazzo, A.: ECHoMICADAS: A new compact AMS system to measuring 14C for Environment, Climate and Human Sciences, Dakar, Senegal, 16–20 pp., 2015.
Trumbore, S.:
Radiocarbon and Soil Carbon Dynamics, Annu. Rev. Earth Planet. Sc., 37, 47–66, https://doi.org/10.1146/annurev.earth.36.031207.124300, 2009.
Tsozué, D., Nafissa, B., Basga, S. D., and Balna, J.:
Soil change in Arenosols under long term cultivation in the sudano-sahelian zone of Cameroon, Geoderma Regional, 23, e00338, https://doi.org/10.1016/j.geodrs.2020.e00338, 2020.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.:
Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
Vittori Antisari, L., Laudicina, V. A., Falsone, G., Carbone, S., Badalucco, L., and Vianello, G.:
Native and planted forest species determine different carbon and nitrogen pools in Arenosol developed on Holocene deposits from a costal Mediterranean area (Tuscany, Italy), Environ. Earth Sci., 75, 776, https://doi.org/10.1007/s12665-016-5581-x, 2016.
Wacker, L., Němec, M., and Bourquin, J.:
A revolutionary graphitisation system: Fully automated, compact and simple, Nucl. Instrum. Meth. B, 268, 931–934, https://doi.org/10.1016/j.nimb.2009.10.067, 2010.
Wang, Y., Amundson, R., and Trumbore, S.:
The impact of land use change on C turnover in soils, Global Biogeochem. Cy., 13, 47–57, https://doi.org/10.1029/1998GB900005, 1999.
Zomer, R. J., Bossio, D. A., Sommer, R., and Verchot, L. V.:
Global Sequestration Potential of Increased Organic Carbon in Cropland Soils, Sci. Rep., 7, 15554, https://doi.org/10.1038/s41598-017-15794-8, 2017.
Short summary
Although present in food security key areas, Arenosols carbon stocks are barely studied. A 150-year-old land use change in a Mediterranean Arenosol showed a loss from 50 Gt C ha-1 to 3 Gt C ha-1 after grape cultivation. 14C showed that deep ploughing in a vineyard plot redistributed the remaining microbial carbon both vertically and horizontally. Despite the drastic degradation of the organic matter pool, Arenosols would have a high carbon storage potential, targeting the 4 per 1000 initiative.
Although present in food security key areas, Arenosols carbon stocks are barely studied. A...