Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution
Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas 1, 32004 Ourense, Spain
Avelino Núñez-Delgado
Departamento de Edafoloxía e Química Agrícola, Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Lugo, Spain
Esperanza Álvarez-Rodríguez
Departamento de Edafoloxía e Química Agrícola, Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Lugo, Spain
Montserrat Díaz-Raviña
Departamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia (IIAG/CSIC), Santiago de Compostela, Spain
Manuel Arias-Estévez
Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas 1, 32004 Ourense, Spain
David Fernández-Calviño
Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas 1, 32004 Ourense, Spain
Related authors
No articles found.
Claudia Campillo-Cora, Daniel Arenas-Lago, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 9, 561–571, https://doi.org/10.5194/soil-9-561-2023, https://doi.org/10.5194/soil-9-561-2023, 2023
Short summary
Short summary
Cr pollution is a global concern. The use of methodologies specifically related to Cr toxicity is appropriate, such as the pollution-induced community tolerance (PICT) methodology. The development of PICT was determined in 10 soils after Cr addition in the laboratory. The Cr-soluble fraction and dissolved organic carbon were the main variables determining the development of PICT (R2 = 95.6 %).
Cited articles
Abdu, N., Abdullahi, A. A., and Abdulkadir, A.: Heavy metals and soil microbes,
Environ. Chem. Lett., 15, 65–84,
https://doi.org/10.1007/s10311-016-0587-x, 2017.
Ahmad, I., Hayat, S., Ahmad, A., and Inam, A.: Effect of heavy metal on survival
of certain groups of indigenous soil microbial population, J. Appl. Sci.
Environ. Mgt., 9, 115–121, 2005.
Arambašić, M. B., Bjelić, S., and Subakov, G.: Acute toxicity of
heavy metals (copper, lead, zinc), phenol and sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: Comparative
investigations and the practical applications, Water Res., 29, 497–503,
https://doi.org/10.1016/0043-1354(94)00178-A, 1995.
Bååth, E.: Effects of heavy metals in soil on microbial processes and
populations (a review), Water Air Soil Pollut., 47, 335–379, https://doi.org/10.1007/BF00279331, 1989.
Bååth, E.: Measurement of heavy metal tolerance of soil bacteria
using thymidine incorporation into bacteria extracted after
homogenization-centrifugation, Soil Boil. Biochem., 24, 1167–1172,
https://doi.org/10.1016/0038-0717(92)90067-8, 1992.
Bååth, E.: Thymidine and leucine incorporation in soil bacteria with
different cell size, Microb. Ecol., 27, 267–278, https://doi.org/10.1007/BF00182410, 1994.
Bååth, E., Petterson, M., and Söderberg, K. H.: Adaptation of a rapid
and economical microcentrifugation method to measure thymidine and leucine
incorporation by soil bacteria, Soil Biol. Biochem., 33, 1571–1574, https://doi.org/10.1016/S0038-0717(01)00073-6, 2001.
Berg, J., Thorsen, M. K., Holm, P. E., Jensen, J., Nybroe, O., and Brandt, K.
K.: Cu exposure under field conditions coselects for antibiotic resistance as
determined by a novel cultivation-independent bacterial community tolerance
assay, Environ. Sci. Technol., 44, 8724–8728, https://doi.org/10.1021/es101798r, 2010.
Blanck, H.: A critical review of procedures and approaches used for assessing
pollution-induced community tolerance (PICT) in biotic communities, Hum.
Ecol. Risk Assess., 8, 1003–1034, https://doi.org/10.1080/1080-700291905792, 2002.
Boxall, A. B., Kolpin, D. W., Halling-Sørensen, B., and Tolls, J.: Peer
reviewed: are veterinary medicines causing environmental risks?, Environ.
Sci. Technol., 37, 286A–294A, 2003.
Caban, J. R., Kuppusamy, S., Kim, J. H., Yoon, Y. E., Kim, S. Y., and Lee,
Y. B.: Green manure amendment enhances microbial activity and diversity in
antibiotic-contaminated soil, Appl. Soil Ecol., 129, 72–76, https://doi.org/10.1016/j.apsoil.2018.04.013, 2018.
Cao, J., Yang, G., Mai, Q., Zhuang, Z., and Zhuang, L.: Co-selection of
antibiotic-resistant bacteria in a paddy soil exposed to as (III)
contamination with an emphasis on potential pathogens, Sci. Total Environ.,
725, 138367, https://doi.org/10.1016/j.scitotenv.2020.138367,
2020.
Chien, C., Yumei, K. U. O., Changchieh, C. H. E. N., Chunwei, H. U. N. G.,
Chihwei, Y. E. H., and Weijen, Y. E. H.: Microbial diversity of soil bacteria in
agricultural field contaminated with heavy metals, J. Environ. Sci., 20,
359–363, https://doi.org/10.1016/S1001-0742(08)60056-X, 2008.
Conde-Cid, M., Álvarez-Esmorís, C., Paradelo-Núñez, R.,
Nóvoa-Muñoz, J. C., Arias-Estévez, M.,
Álvarez-Rodríguez, E., Fernández-Sanjurjo, M. J.,
and Núñez-Delgado, A.: Occurrence of tetracyclines and sulfonamides in
manures, agricultural soils and crops from different areas in Galicia (NW
Spain), J. Clean. Prod., 197, 491–500, https://doi.org/10.1016/j.jclepro.2018.06.217, 2018.
Cruz-Paredes, C., Wallander, H., Kjøller, R., and Rousk, J.: Using community
trait-distributions to assign microbial responses to pH changes and Cd in
forest soils treated with wood ash, Soil Biol. Biochem., 112, 153–164,
https://doi.org/10.1016/j.soilbio.2017.05.004, 2017.
Díaz-Raviña, M., Bååth, E., and Frostegård, Å.: Multiple
heavy metal tolerance of soil bacterial communities and its measurement by a
thymidine incorporation technique, Appl. Environ. Microbiol., 60, 2238–2247,
https://doi.org/10.1128/aem.60.7.2238-2247.1994, 1994.
Díaz-Raviña, M. and Bååth, E.: Development of metal tolerance
in soil bacterial communities exposed to experimentally increased metal
levels, Appl. Environ. Microbiol., 62, 2970–2977, https://doi.org/10.1128/aem.62.8.2970-2977.1996, 1996.
Díaz-Raviña, M. and Bååth, E.: Response of soil bacterial
communities pre-exposed to different metals and reinoculated in an
unpolluted soil, Soil Biol. Biochem., 33, 241–248, https://doi.org/10.1016/S0038-0717(00)00136-X, 2001.
Dickinson, A. W., Power, A., Hansen, M. G., Brandt, K. K., Piliposian, G.,
Appleby, P., O'Neill, P. A., Jones, R. T., Sierocinski, P., Koskella, B., and Vos,
M.: Heavy metal pollution and co-selection for antibiotic resistance: A
microbial palaeontology approach, Environ. Int., 132, 105117, https://doi.org/10.1016/j.envint.2019.105117, 2019.
Dirilgen, N.: Accumulation of heavy metals in freshwater organisms:
Assessment of toxic interactions, Turk. J. Chem., 25, 173–179, 2001.
European Medicines Agency: European surveillance of veterinary antimicrobial
consumption, in: Sales of Veterinary Antimicrobial Agents in 29 European
Countries in 2014, (EMA/61769/2016), https://doi.org/10.2809/676974, 2016.
Fernández-Calviño, D. and Bååth, E.: Co-selection for antibiotic
tolerance in Cu-polluted soil is detected at higher Cu-concentrations than
increased Cu-tolerance, Soil Biol. Biochem., 57, 953–956, https://doi.org/10.1016/j.soilbio.2012.08.017, 2013.
Fernández-Calviño, D. and Bååth, E.: Interaction between pH and
Cu toxicity on fungal and bacterial performance in soil, Soil Biol.
Biochem., 96, 20–29, https://doi.org/10.1016/j.soilbio.2016.01.010, 2016.
Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., and Dantas,
G.: The shared antibiotic resistome of soil bacteria and human pathogens,
Science, 337, 1107–1111, https://doi.org/10.1126/science.1220761, 2012.
Giller, K. E., Witter, E., and McGrath, S. P.: Heavy metals and soil microbes,
Soil Biol. Biochem., 41, 2031–2037, https://doi.org/10.1016/j.soilbio.2009.04.026, 2009.
Hamscher, G., Sczesny, S., Höper, H., and Nau, H.: Determination of
persistent tetracycline residues in soil fertilized with liquid manure by
high-performance liquid chromatography with electrospray ionization tandem
mass spectrometry, Anal. Chem., 74, 1509–1518, https://doi.org/10.1021/ac015588m, 2002.
Hattori, H.: Influence of heavy metals on soil microbial activities, Soil
Sci. Plant Nutr., 38, 93–100, https://doi.org/10.1080/00380768.1992.10416956, 1992.
Hölzel, C. S., Müller, C., Harms, K. S., Mikolajewski, S.,
Schäfer, S., Schwaiger, K., and Bauer, J.: Heavy metals in liquid pig
manure in light of bacterial antimicrobial resistance, Environ. Res., 113,
21–27, https://doi.org/10.1016/j.envres.2012.01.002, 2012.
Hsieh, C. Y., Tsai, M. H., Ryan, D. K., and Pancorbo, O. C.: Toxicity of the 13
priority pollutant metals to Vibrio fisheri in the Microtox®
chronic toxicity test, Sci. Total Environ., 320, 37–50, https://doi.org/10.1016/S0048-9697(03)00451-0, 2004.
Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., Chen
B., and Zhang, X. Y.: Survey of heavy metal pollution and assessment of
agricultural soil in Yangzhong district, Jiangsu Province, China,
Chemosphere, 67, 2148–2155, https://doi.org/10.1016/j.chemosphere.2006.12.043, 2007.
Huynh, H. and Bulich, A.: Measuring chronic toxicity using luminescent bacteria
(No. CONF-9410273-), Society of Environmental Toxicology and Chemistry,
Pensacola, FL (United States), 1994.
Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., and Wu, M.: Antibiotic
resistance gene abundances associated with antibiotics and heavy metals in
animal manures and agricultural soils adjacent to feedlots in Shanghai,
China, J. Hazard. Mater., 235, 178–185, https://doi.org/10.1016/j.jhazmat.2012.07.040, 2012.
Kabata-Pendias, A.: Trace elements in soils and plants, CRC press,
https://doi.org/10.1201/9781420039900, 2000.
Komárek, M., Čadková, E., Chrastný, V., Bordas, F.,
and Bollinger, J. C.: Contamination of vineyard soils with fungicides: a review
of environmental and toxicological aspects, Environ. Int., 36, 138–151,
https://doi.org/10.1016/j.envint.2009.10.005, 2010.
Kornegay, E. T., Hedges, J. D., Martens, D. C., and Kramer, C. Y.: Effect on soil
and plant mineral levels following application of manures of different
copper contents, Plant Soil., 45, 151–162, https://doi.org/10.1007/BF00011137, 1976.
Lakanen, E. and Erviö, R: A comparison of eight extractants
for the determination of plant available micronutrients in soils, Acta
Agric. Fenn., 123, 223–232, 1971.
Li, J., Yu, H., and Luan, Y.: Meta-analysis of the copper, zinc, and cadmium
absorption capacities of aquatic plants in heavy metal-polluted water, Int.
J. Environ. Res. Public Health., 12, 14958–14973, https://doi.org/10.3390/ijerph121214959, 2015.
Liu, W. R., Zeng, D., She, L., Su, W. X., He, D. C., Wu, G. Y., Ma, X. R.,
Jiang, S., Jiang C.H., and Ying, G. G.: Comparisons of pollution
characteristics, emission situations, and mass loads for heavy metals in the
manures of different livestock and poultry in China, Sci. Total
Environ., 734, 139023, https://doi.org/10.1016/j.scitotenv.2020.139023, 2020.
Macías, F. and Calvo, R.: Niveles genéricos de referencia de metales
pesados y otroselementos traza en suelos de Galicia (Reference values for
heavy metals and other traceelements in soils in Galicia), in:
Consellería de Medio Ambiente e Desenvolvemento Sostible, Xunta de
Galicia, Santiago de Compostela, p. 229, ISBN 978-84-453-4664-8, 2008.
Mazhar, S. H., Li, X., Rashid, A., Su, J., Xu, J., Brejnrod, A. D., Sue
J.-Q., Wu Y., Zhu Y.-G., Zhou S. G., and Rensing, C.: Co-selection of antibiotic
resistance genes, and mobile genetic elements in the presence of heavy
metals in poultry farm environments, Sci. Total Environ., 755, 142702,
https://doi.org/10.1016/j.scitotenv.2020.142702, 2021.
Meisner, A., Bååth, E., and Rousk, J.: Microbial growth responses upon
rewetting soil dried for four days or one year, Soil Biol. Biochem., 66,
188–192, https://doi.org/10.1016/j.soilbio.2013.07.014, 2013.
Mirlean, N., Roisenberg, A., and Chies, J. O.: Metal contamination of vineyard soils in wet subtropics (southern Brazil), Environ. Pollut., 149, 10–17, https://doi.org/10.1016/j.envpol.2006.12.024, 2007.
Nannipieri, P., Badalucco, L., Landi, L., and Pietramellara, G.: Measurement in
assessing the risk of chemicals to the soil ecosystem, in: Ecotoxicology:
Responses, Biomarkers and Risk Assessment, edited by: Zelikoff, J. T., Fair Haven, NJ, SOS Publications, 507–534, 1997.
Neuhauser, E. F., Loehr, R. C., Milligan, D. L., and Malecki, M. R.: Toxicity of
metals to the earthworm Eisenia fetida, Biol. Fertil. Soils., 1, 149–152, https://doi.org/10.1007/BF00301782, 1985.
Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., and Chambers,
B. J.: An inventory of heavy metals inputs to agricultural soils in England
and Wales, Sci. Total Environ., 311, 205–219, https://doi.org/10.1016/S0048-9697(03)00139-6, 2003.
Novozamsky, I., Lexmond, T. H. M., and Houba, V. J. G.: A single extraction
procedure of soil for evaluation of uptake of some heavy metals by plants,
Int. J. Environ. Anal. Chem., 51, 47–58, https://doi.org/10.1080/03067319308027610, 1993.
Pan, X., Qiang, Z., Ben, W., and Chen, M.: Residual veterinary antibiotics in
swine manure from concentrated animal feeding operations in Shandong
Province, China, Chemosphere, 84, 695–700,
https://doi.org/10.1016/j.chemosphere.2011.03.022, 2011.
Sager, M.: Trace and nutrient elements in manure, dung and compost samples in
Austria, Soil Biol. Biochem., 39, 1383–1390, https://doi.org/10.1016/j.soilbio.2006.12.015, 2007.
Santás-Miguel, V., Arias-Estévez, M., Díaz-Raviña, M.,
Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E.,
Núñez-Delgado, A., and Fernández-Calviño, D.: Bacterial Community
Tolerance to Tetracycline Antibiotics in Cu Polluted Soils, Agronomy, 10,
1220, https://doi.org/10.3390/agronomy10091220, 2020a.
Santás-Miguel, V., Arias-Estévez, M., Díaz-Raviña, M.,
Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E.,
Núñez-Delgado, A., and Fernández-Calviño, D.: Interactions
between soil properties and tetracycline toxicity affecting to bacterial
community growth in agricultural soil, Appl. Soil Ecol., 147, 103437,
https://doi.org/10.1016/j.apsoil.2019.103437, 2020b.
Santás-Miguel, V., Arias-Estévez, M., Díaz-Raviña, M.,
Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E.,
Núñez-Delgado, A., and Fernández-Calviño, D.: Effect of
oxytetracycline and chlortetracycline on bacterial community growth in
agricultural soils, Agronomy, 10, 1011, https://doi.org/10.3390/agronomy10071011, 2020c.
Sarma, B., Acharya, C., and Joshi, S. R.: Pseudomonads: a versatile bacterial
group exhibiting dual resistance to metals and antibiotics, Afr. J.
Microbiol. Res., 4, 2828–2835, 2010.
Sarmah, A. K., Meyer, M. T., and Boxall, A. B.: A global perspective on the use,
sales, exposure pathways, occurrence, fate and effects of veterinary
antibiotics (VAs) in the environment, Chemosphere, 65, 725–759, 2006.
Smolders, E., Buekers, J., Oliver, I., and McLaughlin, M. J.: Soil properties
affecting toxicity of zinc to soil microbial properties in laboratory-spiked
and field-contaminated soils, Environ. Toxicol. Chem., 23, 2633–2640,
https://doi.org/10.1897/04-27, 2004.
Song, J., Rensing, C., Holm, P. E., Virta, M., and Brandt, K. K.: Comparison of
metals and tetracycline as selective agents for development of tetracycline
resistant bacterial communities in agricultural soil, Environ. Sci.
Technol., 51, 3040–3047, https://doi.org/10.1021/acs.est.6b05342, 2017.
Spiteri, C., Kalinski, V., Rösler, W., Hoffmann, V., and Appel, E.: Magnetic
screening of a pollution hotspot in the Lausitz area, Eastern Germany:
correlation analysis between magnetic proxies and heavy metal contamination
in soils, Environ. Geol., 49, 1–9, https://doi.org/10.1007/s00254-005-1271-9, 2005.
Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., and Nemet,
I.: Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to
metals, Cent. Eur. J. Biol., 4, 482–492, https://doi.org/10.2478/s11535-009-0048-7, 2009.
Thiele-Bruhn, S. and Beck, I. C.: Effects of sulfonamide and tetracycline
antibiotics on soil microbial activity and microbial biomass, Chemosphere,
59, 457–465, https://doi.org/10.1016/j.chemosphere.2005.01.023, 2005.
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A.,
Robinson, T. P., Teillant, A., and Laxminarayan, R.: Global trends in
antimicrobial use in food animals, P. Natl. Acad. Sci. USA, 112,
5649–5654, https://doi.org/10.1073/pnas.1503141112, 2015.
Wang, H., Dong, Y., Yang, Y., Toor, G. S., and Zhang, X.: Changes in heavy
metal contents in animal feeds and manures in an intensive animal production
region of China, J. Environ. Sci., 25, 2435–2442, https://doi.org/10.1016/S1001-0742(13)60473-8, 2013.
Widyasari-Mehta, A., Hartung, S., and Kreuzig, R.: From the application of
antibiotics to antibiotic residues in liquid manures and digestates: A
screening study in one European center of conventional pig husbandry, J.
Environ. Manag., 177, 129–137, https://doi.org/10.1016/j.jenvman.2016.04.012, 2016.
Wu, L., Pan, X., Chen, L., Huang, Y., Teng, Y., Luo, Y., and Christie,
P.: Occurrence and distribution of heavy metals and tetracyclines in
agricultural soils after typical land use change in east China, Environ.
Sci. Pollut. Res., 20, 8342–8354, https://doi.org/10.1007/s11356-013-1532-1, 2013.
Zhang, F., Li, Y., Yang, M., and Li, W.: Content of heavy metals in animal
feeds and manures from farms of different scales in northeast China, Int. J.
Environ. Res. Public Health, 9, 2658–2668, https://doi.org/10.3390/ijerph9082658, 2012.
Zhong, Q., Cruz-Paredes, C., Zhang, S., and Rousk, J.: Can heavy metal pollution
induce bacterial resistance to heavy metals and antibiotics in soils from an
ancient land-mine?, J. Hazard. Mater., 411, 124962, https://doi.org/10.1016/j.jhazmat.2020.124962, 2021.
Zhuang, P., McBride, M. B., Xia, H., Li, N., and Li, Z.: Health risk from heavy
metals via consumption of food crops in the vicinity of Dabaoshan mine,
South China, Sci. Total Environ., 407, 1551–1561, https://doi.org/10.1016/j.scitotenv.2008.10.061, 2009.
Short summary
A laboratory experiment was carried out for 42 d to study co-selection for tolerance of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr, and Pb). At high metal concentrations, the bacterial communities show tolerance to the metal itself, occurring for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals also showed long-term co-tolerance to TC, OTC, and CTC.
A laboratory experiment was carried out for 42 d to study co-selection for tolerance of...