Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-349-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Potential effect of wetting agents added to agricultural sprays on the stability of soil aggregates
Antonín Kintl
Agricultural Research, Ltd., Zahradní 1, 66441 Troubsko, Czech
Republic
Vítězslav Vlček
Department of Agrochemistry, Soil Science, Microbiology and Plant
Nutrition, Faculty of AgriSciences, Mendel University in Brno,
Zemědělská 1, Brno 61300, Czech Republic
Martin Brtnický
Department of Agrochemistry, Soil Science, Microbiology and Plant
Nutrition, Faculty of AgriSciences, Mendel University in Brno,
Zemědělská 1, Brno 61300, Czech Republic
Institute of Chemistry and Technology of Environmental Protection,
Brno University of Technology, Faculty of Chemistry, Purkynova 118, 62100
Brno, Czech Republic
Jan Nedělník
Agricultural Research, Ltd., Zahradní 1, 66441 Troubsko, Czech
Republic
Agricultural Research, Ltd., Zahradní 1, 66441 Troubsko, Czech
Republic
Department of Agrosystems and Bioclimatology, Faculty of AgriSciences,
Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech
Republic
Related authors
No articles found.
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, and Vojtěch Enev
SOIL, 10, 813–826, https://doi.org/10.5194/soil-10-813-2024, https://doi.org/10.5194/soil-10-813-2024, 2024
Short summary
Short summary
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and various soil properties. Nine plots across an altitudinal range from 10 to 320 m were investigated in the deglaciated region of James Ross Island (Antarctica). Our results indicate that the primary factor influencing the SOC content is likely not altitude or coarse-fraction content; rather, other hard-to-quantify factors, such as the presence of liquid water during the summer period, impact SOC content.
Cited articles
Ahmed, A. A., Thiele-Bruhn, S., Aziz, G. S., Hilal, R.F .,
Elroby, S. A., Al-Youbi, A. O., Leinweber, P., and Kühn, O.: Interaction of polar and nonpolar organic pollutants
with soil organic matter: Sorption experiments and molecular dynamics
simulation, Sci. Total Environ., 508, 276–287,
https://doi.org/10.1016/j.scitotenv.2014.11.087, 2015.
Almajmaie, A., Hardie, M., Acuna, T., and Birch, C.: Evaluation of methods
for determining soil aggregate stability, Soil Till. Res., 167, 39–45,
https://doi.org/10.1016/j.still.2016.11.003, 2017.
Angers, D. A.: Changes in Soil Aggregation and Organic Carbon under Corn and
Alfalfa, Soil Sci. Soc. Am. J., 56, 1244–1249, https://doi.org/10.2136/sssaj1992.03615995005600040039x, 1992.
Arienzo, M., Christen, E. W., Jayawardane, N. S., and Quayle, W. C.: The
relative effects of sodium and potassium on soil hydraulic conductivity and
implications for winery wastewater management, Geoderma, 173, 303–310,
https://doi.org/10.1016/j.geoderma.2011.12.012, 2012.
Baratella, V. and Trinchera, A.: Organosilicone surfactants as innovative
irrigation adjuvants: Can they improve water use efficiency and nutrient
uptake in crop production?, Agric. Water Manage., 204, 149–161,
https://doi.org/10.1016/j.agwat.2018.04.003, 2018.
Bartlová, J., Badalíková, B., Pospíšilová, L.,
Pokorný, E., and Šarapatka, B.: Water stability of soil aggregates in
diystemt systém of tillage, Soil Water Res., 3, 147–154,
https://doi.org/10.17221/132/2014-SWR, 2015.
Borrelli, P., Robinson, D. A., Fleischer, L. R., and
Lugato, E.: An assessment of the
global impact of 21st century land use change on soil erosion, Nat.
Commun., 8, 2013, https://doi.org/10.1038/s41467-017-02142-7, 2017.
Bradford, M. M.: A Rapid and Sensitive Method for the Quantitation of
Microgram Quantities of Protein Utilizing the Principle of Protein-Dye
Binding, Anal. Biochem., 72, 248–254,
https://doi.org/10.1016/0003-2697(76)90527-3, 1976.
Brant, V., Zábranský, P., Škeříková, M., Pivec, J.,
Kroulík, M., and Procházka, L.: Effect of row width on splash
erosion and throughfall in silage maize crops, Soil Water Res., 12,
39–50, https://doi.org/10.17221/121/2015-SWR, 2017.
Bronick, C. J. and Lal, R.: Soil structure and management: a review,
Geoderma, 124, 3–22,
https://doi.org/10.1016/j.geoderma.2004.03.005, 2005.
Brtnický, M., Elbl J., Dvořáčková, H., Kynický, J.,
and Hladký, J.: Changes in soil aggregate stability induced by mineral
nitrogen fertilizer application, Acta Univ. Agric. Silvic. Mendelianae
Brun., 65, 1477–1482, https://doi.org/10.11118/actaun201765051477, 2017.
Burauel, P. and Bassman F.: Soils as filter and buffer for
pesticides – experimental concepts to understand soil functions, Environ.
Pollut., 133, 11–16,
https://doi.org/10.1016/j.envpol.2004.04.011, 2005.
Canoira, L., Galeán, J. G., Alcántara, R., Lapuerta, M., and
Contreras, R. G.: Fatty acid methyl esters (FAMEs) from castor oil:
Production process assessment and synergistic effects in its properties,
Renew. Energy, 35, 208–217,
https://doi.org/10.1016/j.renene.2009.05.006, 2010.
Castro, E. B., Carbonari, C. A., Velini, E. D., Gomes, G. L. G. C., and
Belapart, D.: Influence of Adjuvants on the Surface Tension, Deposition and
Effectiveness of Herbicides on Fleabane Plants, Planta Daninha, 36, e018166251,
https://doi.org/10.1590/S0100-83582018360100067, 2018.
Dornbush, M. E. and von Haden, A. C.: Chapter 8 – Intensified Agroecosystems
and Their Effects on Soil Biodiversity and Soil Functions, Soil Health
Intensif. Agroecosyt., 173–193,
https://doi.org/10.1016/B978-0-12-805317-1.00008-7, 2017.
Emerson, W. W. and Smith, B. H.: Magnesium, Organic Matter and Soil
Structure, Nature, 228, 453–454,
https://doi.org/10.1038/228453b0, 1970.
Emerson, W. W. and Greenland, D. J.: Soil Aggregates – Formation and
Stability, in: Soil Colloids and Their Associations in Aggregates, edited by: De Boodt, M. F., Hayes, M. H. B., Herbillon, A., De Strooper, E. B. A., and Tuck, J. J.,
NATO ASI Series (Series B: Physics), Springer, Boston, MA, 214,
https://doi.org/10.1007/978-1-4899-2611-1_18,
1990.
Emran, M., Gispert, M., and Pardini, G.: Patterns of soil organic carbon,
glomalin and structural stability in abandoned Mediterranean terraced lands,
Eur. J. Soil Sci., 63, 637–649,
https://doi.org/10.1111/j.1365-2389.2012.01493.x, 2012.
Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., and Criquet, S.:
Indicators of pesticide contamination: Soil enzyme compared to functional
diversity of bacterial communities via Biolog® Ecoplates, Eur.
J. Soil Biol., 47, 256–263,
https://doi.org/10.1016/j.ejsobi.2011.05.007, 2011.
Gebeltova, Z., Malec, K., Maitah, M., Smutka, L., Appiah-Kubi, S. N. K.,
Maitah, K., and Sahatqija, J.: The Impact of crop mix on decreasing soil
price and soil degradation: a case study of selected regions in Czechia
(2002–2019), Sustainability, 12, 444,
https://doi.org/10.3390/su12020444, 2020.
Gerke, H. H. and Köhne, J. M.: Estimating Hydraulic Properties of Soil
Aggregate Skins from Sorptivity and Water Retention, Soil Sci. Soc. Am. J.,
66, 26–36, https://doi.org/10.2136/sssaj2002.2600, 2002.
Handlirova, M., Lukas, V., and Smutny, V.: Yield and soil coverage of catch
crops and their impact on the yield of spring barely, Plant Soil Environ.,
63, 195–200, https://doi.org/10.17221/801/2016-PSE, 2017.
Hao, Y., Zhang, N., Xu, W., Gao, J., Zhang, Y., and Tao, L.: A natural
adjuvant shows the ability to improve the effectiveness of glyphosate
application, J. Pestic. Sci., 44, 106–111,
https://doi.org/10.1584/jpestics.D18-066, 2019.
Hazen, J. L.: Adjuvants – Terrminology, Classification, and Chemistry, Weed
Technol., 14, 773–784,
https://doi.org/10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2, 2000.
Hlisnikovský, L., Menšík, L., Křížová, K., and
Kunzová, E.: The effect of farmyard manure and mineral fertilizers on
sugar beet beetroot and top yield and soil chemical parameters, Agronomy,
11, 133, https://doi.org/10.3390/agronomy11010133, 2021.
Holátko J., Brtnicky, M., Kucerik, J., Kotianova, M.
Elbl, J., Kintl, A., Kynicky, J., Benada, O., Datta, R. and Jansa, J.: Glomalin – Truths, myths, and the future of this
elusive soil glycoprotein, Soil Biol. Biochem., 153, 108116,
https://doi.org/10.1016/j.soilbio.2020.108116, 2021.
Jacobsen, C. S. and Hjelmsø, M. H.: Agricultural soils, pesticides and
microbial diversity, Curr. Opin. Biotechnol, 27, 15–20,
https://doi.org/10.1016/j.copbio.2013.09.003, 2014.
Joshi, H., Shourie, A., and Singh, A.: Chapter 25 – Cyanobacteria as a source
of biofertilizers for sustainable agriculture, Methods in Soil Biology, ISBN
978-3-642-60966-4, edition no. 1, 2020.
Kaczorek, E., Sałek, K., Guzik, U., and Dudzińska-Bajorek, B.: Cell
surface properties and fatty acids composition of Stenotrophomonas
maltophilia under the influence of hydrophobic compounds and surfactants,
New Biotechnol., 30, 173–182,
https://doi.org/10.1016/j.nbt.2012.09.003, 2013.
Kandeler, E.: Aggregate stability, in: Methods in Soil
Biology, edited by: Schinner, F., Öhlinger, R., Kandeler, E., and
Margesin, R., Berlin, Springer-Verlag, 390–395, 1996.
Kandeler, E. and Murer, E.: Aggregate stability and soilprocesses in a soil
with different cultivation, Geoderma, 56, 503–513,
https://doi.org/10.1016/0016-7061(93)90130-D, 1993.
Leighton-Boyce, G., Doerr, S. H., Shakesby, R. A., and Walsh, R. P. D.:
Quantifying the impact of soil water repellency on overland flow generation
and erosion: a new approach using rainfall simulation and wetting agent on
in situ soil, Hydrol. Process., 21, 2337–2345,
https://doi.org/10.1002/hyp.6744, 2007.
Lehrsch, G. A.: Surfactant effects on the water-stable aggregation of
wettable soils from the continental USA, Hydrol. Process, 27, 1739–1750,
https://doi.org/10.1002/hyp.9320, 2012.
Lehrsch, G. A., Sojka, R. E., and Koehn, A. C.: Surfactant effects on soil
aggregate tensile strength. Geoderma, 189, 199–206,
https://doi.org/10.1016/j.geoderma.2012.06.015, 2012.
Lošák, T., Vollman J., Hlušek J., Peterka, J., Filipcik R., and
Praskova, L.: Influence of combined nitrogen and sulphur
fertilization on false flax (Camelina sativa [L.] Crtz.) yield and quality,
Acta Alimentaria, 39, 431–444,
https://doi.org/10.1556/aalim.39.2010.4.5, 2010.
Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W., and Chen, B.:
Understanding the mechanisms of soil water repellency from nanoscale to
ecosystem scale: a review, J. Soils Sediments, 19, 171–185,
https://doi.org/10.1007/s11368-018-2195-9, 2019.
McMullan, P. M.: Utility adjuvants, Weed Technol., 14, 792–797,
https://www.jstor.org/stable/3988670 (last access: 25 January 2022), 2000.
Martínez, G., Sánchez, N., Encinar, J. M., and González, J. F.:
Fuel properties of biodiesel from vegetable oils and oil mixtures, Influence
of methyl esters distribution, Biomass Bioenerg., 63, 22–32,
https://doi.org/10.1016/j.biombioe.2014.01.034, 2014.
Martin, J. P., Martin, W. P., Page, J. B., Raney, W. A., and de Ment, J. D.:
Soil Aggregation, Adv. Agron., 7, 1–37,
https://doi.org/10.1016/S0065-2113(08)60333-8, 1955.
Mataix-Solera, J. and Doerr, S. H.: Hydrophobicity and aggregate stability
in calcareous topsoils from fire-affected pine forests in southeastern
Spain, Geoderma, 118, 77–88,
https://doi.org/10.1016/S0016-7061(03)00185-X, 2004.
Menšík, L., Kincl, D., Nerušil, P., Srbek, J.,
Hlisnikovský, L., and Smutný, V.: Water erosion reduction using
different soil tillage approaches for Maize (Zea mays L.) in the Czech Republic,
Land, 9, 358, https://doi.org/10.3390/land9100358, 2020.
Mesnage, R. and Antoniou, M. N.: Ignoring Adjuvant Toxicity Falsifies the
Safety Profile of Commercial Pesticides, Front. Public Health, 5, 361,
https://doi.org/10.3389/fpubh.2017.00361, 2018.
Mesnage, R., Bernay, B., and Séralini, G.-E.: Ethoxylated Adjuvants of
Glyphosate-Based Herbicides Are Active Principles of Human Cell Toxicity,
Toxicology, 313, 122–128,
https://doi.org/10.1016/j.tox.2012.09.006, 2013.
Mirgorodskaya, A. B., Kushnazarova, R. A., Lukashenko, S. S., Nikitin, E. N., Sinyashin, O., Nesterova, L. M., and Zakharova, L. Y.: Carbamate-bearing surfactants as effective
adjuvants promoted the penetration of the herbicide into the plant, Colloids
Surf. A Physicochem. Eng. Asp., 586, 124252,
https://doi.org/10.1016/j.colsurfa.2019.124252, 2020.
Miyake, M. and Yamashita, Y.: Molecular Structure and Phase Behavior of
Surfactants, in: Cosmetic Science and Technology, edited by: Sakamoto, K., Lochhead, R. Y., Maibach, H. I., and
Yamashita, Y., Cosmetic Science and Technology, ISBN 9780128020050, edition no. 1, 2017.
Nelson, D. W. and Sommers, L. E.: Total carbon, organic carbon and organic
matter, in: Soil Science Society of America, Book Series 5.
Methods of Soil Analysis Part 3, edited by: Sparks, D. L., Chemical Methods, Madison, Wisconsin: Soil
Science Society of America, Inc.,
https://doi.org/10.2136/sssabookser5.3.c34, 1996.
Pacanoski, Z.: Herbicides and adjuvants, in: Physiology of action and safater, edited by: Price, A., Kelton, J., and Sarunaite, L., IntechOpen,
https://www.intechopen.com/chapters/48607 (last access: 15 November 2021), 2015.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger,
K., Montanarella, L., and Alewell, C.: The new assessment of soil loss by
water erosion in Europe, Environ. Sci. Policy, 54, 438–447,
https://doi.org/10.1016/j.envsci.2015.08.012, 2015.
Papadopoulos, A.: Soil Aggregates, Structure, and Stability, in: Encyclopedia of Agrophysics, edited by: Gliński,
J., Horabik, J., and Lipiec, J., Encyclopedia of
Earth Sciences Series, Springer, Dordrecht,
https://doi.org/10.1007/978-90-481-3585-1_142, 2011.
Räsch, A., Hunsche, M., Mail, M., Burkhardt, J., Noga, G., and Pariyar, S.: Agricultural adjuvants may impair leaf transpiration
and photosynthetic activity, Plant Physiol. Biochem., 132, 229–237,
https://doi.org/10.1016/j.plaphy.2018.08.042, 2018.
Rengasamy, P. and Marchuk, A.: Cation ratio of soil structural stability
(CROSS), Soil Res., 49, 280–285, 2011.
Rengasamy, P., Tavakkoli, E., and McDonald, G. K.: Exchangeable cations and
clay dispersion: net dispersive charge, a new concept for dispersive soil,
Soil Sci., 67, 659–665, https://doi.org/10.1111/ejss.12369,
2016.
Rillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., and Torn, M.
S.: Large contribution of arbuscular mycorrhizal fungi to soil carbon pools
in tropical forest soils, Plant Soil, 233, 167–177,
https://doi.org/10.1023/A:1010364221169, 2001.
Rillig, M. C., Aguliar-Trigueros, C. A., Bergmann, J., Verbruggen, E., and
Veresoglou, S. D.: Plant root and mycorrhizal fungal traits for
understanding soil aggregation, New Phytol., 205, 1385–1388,
https://doi.org/10.1111/nph.13045, 2014.
Schroder, J. L., Zhang, H., and Richards, J. R.: Interlaboratory Validation
of the Mehlich 3 Method as a Universal Extractant for Plant Nutrients, J.
AOAC Int., 92, 995–1008,
https://doi.org/10.1093/jaoac/92.4.995, 2009.
Simsek, S., Ovando-Martinez, M., Marefati, A., and Rayner, M.: Chemical
composition, digestibility and emulsification properties of octenyl succinic
esters of various starches, Food Res. Int., 75, 41–49,
https://doi.org/10.1016/j.foodres.2015.05.034, 2015.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on
the link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Tillage Res, 79, 7–31,
https://doi.org/10.1016/j.still.2004.03.008, 2004.
Smiles, D. E.: Sodium and potassium in soils of the Murray–Darling Basin: a
note, Aust. J. Soil Res., 44, 727–730,
https://doi.org/10.1071/SR06057, 2006.
Song, E., Pan, X., Kremer, R. J., Goyne, K. W., Anderson, S. H., and Xiong, X.:
Influence of repeated application of wetting agents on soil water repellency
and microbial community, Sustainability, 11, 4505,
https://doi.org/10.3390/su11164505, 2019.
Sun, Z., Qin, W., Wang, X., Zhang, Y., Li, G, and Wang, Z.: Effects of manure on topsoil and subsoil organic carbon
depend on irrigation regimes in a 9-year wheat-maize rotation, Soil Till.
Res., 205, 104790, https://doi.org/10.1016/j.still.2020.104790, 2021.
Šimanský, V., Balashov, E., and Horák, J.: Water stability of
soil aggregates and their ability to sequester carbon in soils of vineyards
in Slovakia, Arch. Acker Pflanzenbau Bodenkd., 62, 177–197,
https://doi.org/10.1080/03650340.2015.1048683, 2015.
Rodriguez-Moreno, F., Lukas, V., Neudert, L., and Dryšlová, T.:
Spatial interpretation of plant parameters in winter wheat, Precis. Agric.,
15, 447–465, https://doi.org/10.1007/s11119-013-9340-7, 2014.
Slezak, M.: Mathematical Models For Calculating The Value Of Dynamic
Viscosity Of A Liquid, Arch. Metall. Mat., 60, 581–589,
https://doi.org/10.1515/amm-2015-0177, 2015.
Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvåg, A. O., Eitzinger, B., Seguin, B., Peltonen-Sainio, P., Rötter, R. Iglesias, A., Orlandini, S., Dubrovský, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A., Vučetić, V., Nejedlik, P., Kumar, S., Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semerádová, D. and Žalud, Z.: Agroclimatic conditions in Europe under climate change,
Glob. Change Biol. Bioenergy, 17, 2298–2318,
https://doi.org/10.1111/j.1365-2486.2011.02396.x, 2011.
Tominack, R. L. and Tominack, R.: Herbicide formulations, J. Toxicol. Clin.
Toxicol., 38, 129–135, https://doi.org/10.1081/CLT-100100927,
2000.
Vadas, P. and Sims, J. T.:
Soil Fertility: Phosphorus in Soils, Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489, https://doi.org/10.1016/B978-0-12-409548-9.09116-8, 2014.
Volikov, A. B., Kholodov, V. A., Kulikova, N. A., Philippova, O. I., Ponomarenko, S. A., Lasereva, E. V., Parfyonova, A. M., Hatfield, K., and Perminova, I. V.: Silanized humic substances act as hydrophobic
modifiers of soil separates inducing formation of water-stable aggregates in
soils, Catena, 137, 229–236,
https://doi.org/10.1016/j.catena.2015.09.022, 2016.
Wright, S. F. and Upadhyaya, A.: Extraction of an Abundant and Unusual
Protein from Soil and Comparison with Hyphal Protein of Arbuscular
Mycorrhizal Fungi, Soil Sci., 161, 575–586, 1996.
Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P.: Soil erosion, conservation,
and eco-environment changes in the loess plateau of China, Land. Degrad.
Dev., 24, 499–510, https://doi.org/10.1002/ldr.2246, 2013.
Zhao, J., Chen, S., Hu, R., and Li, Y.: Aggregate stability and size
distribution of red soils under different land uses integrally regulated by
soil organic matter, and iron and aluminum oxides, Soil Till. Res., 167,
73–79, https://doi.org/10.1016/j.still.2016.11.007, 2017.
Zheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., and Qi, H.: Effect
of long-term tillage on soil aggregates and aggregate-associated carbon in
black soil of Northeast China, Plos One, 13, e0199523,
https://doi.org/10.1371/journal.pone.0199523, 2018.
Zheng, W., Morris, E. K., Lehmann, A., and Rillig, M. C.: Interplay of soil
water repellency, soil aggregation and organic carbon, A meta-analysis,
Geoderma, 283, 39–47,
https://doi.org/10.1016/j.geoderma.2016.07.025, 2016.
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
We have started to address this issue because the application of wetting agents is very...