Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-237-2022
https://doi.org/10.5194/soil-8-237-2022
Original research article
 | 
31 Mar 2022
Original research article |  | 31 Mar 2022

Environmental behaviors of (E) pyriminobac-methyl in agricultural soils

Wenwen Zhou, Haoran Jia, Lang Liu, Baotong Li, Yuqi Li, and Meizhu Gao

Related authors

Migration behavior of benzobicyclon hydrolysate and associated influencing factors in different agricultural soils
Lang Liu, Lei Rao, Wenwen Zhou, Limei Tang, and Baotong Li
SOIL Discuss., https://doi.org/10.5194/soil-2021-125,https://doi.org/10.5194/soil-2021-125, 2021
Publication in SOIL not foreseen
Short summary

Related subject area

Soil degradation
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023,https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Validating plutonium-239+240 as a novel soil redistribution tracer – a comparison to measured sediment yield
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023,https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023,https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023,https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL, 8, 517–539, https://doi.org/10.5194/soil-8-517-2022,https://doi.org/10.5194/soil-8-517-2022, 2022
Short summary

Cited articles

Acharya, S. P., Johnson, J., and Weidhaas, J.: Adsorption kinetics of the herbicide safeners, benoxacor and furilazole, to activated carbon and agricultural soils, J. Environ. Sci., 89, 23–34, https://doi.org/10.1016/j.jes.2019.09.022, 2020. 
Ahmad, R., Kookana, R. S., Alston, A. M., and Skjemstad, J. O.: The Nature of Soil Organic Matter Affects Sorption of Pesticides. 1. Relationships with Carbon Chemistry as Determined by 13C CPMAS NMR Spectroscopy, Environ. Sci. Technol., 35, 878–884, https://doi.org/10.1021/es001446i, 2001. 
Alonso, D. G., Koskinen, W. C., Oliveira, R. S., Constantin, J., and Mislankar, S.: Sorption–Desorption of Indaziflam in Selected Agricultural Soils, J. Agr. Food Chem., 59, 13096–13101, https://doi.org/10.1021/jf203014g, 2011. 
Azizian, S., Haerifar, M., and Basiri-Parsa, J.: Extended geometric method: A simple approach to derive adsorption rate constants of Langmuir–Freundlich kinetics, Chemosphere, 68, 2040–2046, https://doi.org/10.1016/j.chemosphere.2007.02.042, 2007. 
Bailey, G. W., White, J. L., and Rothberg, T.: Adsorption of Organic Herbicides by Montmorillonite: Role of pH and Chemical Character of Adsorbate, 32, 222–234, Soil Sci. Soc. Am. J., https://doi.org/10.2136/sssaj1968.03615995003200020021x, 1968. 
Download
Short summary
Our study focuses on (E) pyriminobac-methyl (EPM), a weedicide commonly applied to agricultural soils in China, which can potentially pose serious risks to groundwater quality once it percolates through the soil. We tested the adsorption–desorption, degradation, and leaching of this compound in five agricultural soils sampled from different provinces in China.