Articles | Volume 3, issue 1
SOIL, 3, 1–16, 2017
https://doi.org/10.5194/soil-3-1-2017
SOIL, 3, 1–16, 2017
https://doi.org/10.5194/soil-3-1-2017

Original research article 04 Jan 2017

Original research article | 04 Jan 2017

Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

Jonathan Sanderman et al.

Related authors

Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020,https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020,https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary

Related subject area

Soils and biogeochemical cycling
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021,https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Soil organic carbon mobility in equatorial podzols: soil column experiments
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021,https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021,https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021,https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021,https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary

Cited articles

Albrecht, W. A.: Loss of soil organic matter and its restoration, in: United States Department of Agriculture, Soils and Men: Yearbook of Agriculture 1938, US Government Printing Office, 347–360, 1938.
Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy in microbial communities, P. Natl. Acad. Sci. USA, 105, 11512–11519, 2008.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, 2010.
Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.: Evaluating 50 years of time-series soil radiocarbon data: toward routine calculation of robust C residence times, Biogeochemistry, 112, 129–137, 2013.
Baldock, J. A.: Improving the productivity and sustainability of crop rotations through nitrogen management, Grains Research and Development Corporation Final Report UA247, 33 pp., 1998.
Download
Short summary
Knowledge of how soil carbon stocks and flows change in response to agronomic management decisions is a critical step in devising management strategies that best promote food security while mitigating greenhouse gas emissions. Here, we present 40 years of data demonstrating that increasing productivity both leads to greater carbon stocks and accelerates the decomposition of soil organic matter, thus providing more nutrients back to the crop.