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Abstract. Devising agricultural management schemes that enhance food security and soil carbon levels is a
high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and
organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation
trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition
by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays,
and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil.
After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha−1 and were
linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated
increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling
scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing
productivity – twice the rate of decline predicted from simple steady-state models or static three-pool decay
rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to
21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is
a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization
with important implications for how SOM dynamics are represented in models.

1 Introduction

Sequestration of carbon as soil organic matter (SOM)
through shifts in land use and improvements in land man-
agement is seen as having the potential to offset a significant
fraction of current greenhouse gas (GHG) emissions (Smith
et al., 2008; Paustian et al., 2016) and be part of the nec-
essary negative emission technologies that are increasingly
believed to be needed to avoid dangerous levels of climate
change (Smith, 2016) and also as an important stop-gap mea-
sure as nations transition to a low carbon economy (Read,
2008). A major reason for the prominent position soil car-
bon sequestration has in national GHG reduction agendas is

because of the purported “win-win” situation of mitigating
GHG while improving food security through improved soil
health and cropland fertility (Tiessen et al., 1994; Oldfield et
al., 2015).

What has been mostly lost in the debate is the concept that
part of the biological utility of SOM in agriculture comes
not from its accumulation but rather from its decay and sub-
sequent release of nutrients and energy (Albrecht, 1938).
Janzen (2006) eloquently argued that there may be a trade-
off between hoarding and using soil organic carbon (SOC),
what he termed “the soil carbon dilemma”. The argument
goes that, while sequestering carbon as SOM, there are nu-
trients and energy that must remain non-available to plants
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and microorganisms in association with this new C because
of stoichiometric constraints (Manzoni et al., 2010). These
nutrients are only then released upon decomposition of the
SOM. Some researchers (e.g., Lam et al., 2013; Kirkby et al.,
2014) have gone as far as putting a monetary nutrient cost on
SOC sequestration. This apparent trade-off is admittedly a
bit simplistic because there are other longer-term benefits for
hoarding SOC, including improved soil structure, increased
water-holding capacity and greater potential to buffer against
pH changes (Blanco-Canqui et al., 2013).

At the heart of this argument is the fundamental question
of how carbon flow in soils is conceptualized and whether or
not microbial physiology needs to be explicitly represented
to accurately model SOC dynamics (Allison and Martiny,
2008; Lawrence et al., 2009). Microbes and the exoenzymes
that they produce are the primary agents of decomposition. It
would be logical to think that the activity and abundance of
microbes and exoenzymes would be critical components of
a SOC model, yet many SOC models can successfully sim-
ulate C dynamics at coarse scales by only implicitly repre-
senting microbial activity as static decay constants (Schimel,
2001). While these linear models generally work well, their
predictive capacities may be limited (Sanderman et al., 2014)
as evidenced by the large range of SOC responses (−70 to
+86 Pg C change over the past century) reported for different
terrestrial biosphere models by Tian et al. (2015). Microbe
and enzyme-based SOC models produce greatly diverging
predictions in response to major perturbations as compared to
traditional linear models assuming implicit microbial physi-
ology (Allison et al., 2010; Weider et al., 2013; Lange et al.,
2015).

In addition to the elevated importance of soil microbes
in SOC turnover models, there is mounting evidence from
biochemical studies that the byproducts of microbial activ-
ity (i.e., microbial necromass) are dominant components of
the stable SOM pool (Liang and Balser, 2008; Miltner et al.,
2012; Cotrufo et al., 2013, 2015). If soil microbial activity is
critical for both the decomposition and stabilization of SOM,
then a better understanding of the microbial response to a ma-
jor perturbation such as changing plant productivity would be
critical to assessing the validity of the soil carbon dilemma.

In this study, we test whether or not there is a trade-off
between sequestering and using SOC by utilizing a unique
set of samples from a long-term agricultural trial in southern
Australia. In particular, we exploit the spike in atmospheric
14CO2 due to aboveground nuclear weapons testing to de-
termine whether intrinsic SOC cycling rates (defined as the
decay constants) differed among agricultural management
regimes that make up a large productivity gradient. A change
in SOC decay rates in response to management would indi-
cate a biological feedback to SOC decomposition that is cur-
rently omitted from traditional C cycling models. The 14C-
based soil carbon turnover rates are then supported by mea-
surements of SOM chemistry and short-term soil microbial
activity. Finally, we discuss the results in terms of biological

controls on SOC cycling and how soil microbial processes
are represented in carbon models.

2 Materials and methods

2.1 Trial description

The Permanent Rotation Trial at the Waite Agricultural Re-
search Institute, South Australia, was established on a for-
mer open Eucalyptus woodland in 1925 to study the agro-
nomic effects of 10 different cropping rotations, including
the use of long fallows and pasture phases. The site has a
Mediterranean climate typical of the region. Mean annual
rainfall is 626 mm, with 487 mm falling in the April–October
growing season. Maximum and minimum mean annual tem-
peratures are 21 and 12 ◦C, respectively. The soil is clas-
sified as a Rhodoxeralf (USDA; Soil Survey Staff, 1999)
or Chromic Luvisol (WRB; FAO, 1998) with a fine sandy
loam texture in the upper soil horizons. Soil in the upper
10 cm had an average pH (H2O) of 5.9 and a clay content
of 18 % (Grace et al., 1995). As most Australian soils are
typically deficient in phosphorus (Richardson et al., 2009),
a basal dressing of superphosphate fertilizer was applied
annually across all managements. No nitrogenous fertiliz-
ers were used in the trial. Cultivars, cultivation and stub-
ble management were consistent with typical district prac-
tice throughout the trial and have been detailed in Grace
et al. (1995). Full agronomic production and climatic data
records can be downloaded from the CSIRO Data Access
Portal (doi:10.4225/08/55E5165EC0D29).

In this current study we have chosen to analyze archived
soil samples from five plots representing a gradient in pro-
ductivity: permanent pasture (Pa), 2 years of wheat followed
by 4 years of pasture (2W4Pa), continuous wheat (WW),
wheat–oat–fallow rotation (WOF) and wheat–fallow rotation
(WF). While every phase of each rotation was represented
annually, we randomly chose one plot for each of these ro-
tations (WF, WOF, 2W4Pa) for analysis. Detailed records of
grain yield, aboveground dry matter production, pasture pro-
duction and composition were kept for the duration of the
trial. In 1963, 1973, 1983 and 1993 soil samples from the
0–10 cm layer were collected by compositing 20 soil cores
taken along the 90 m length of each plot prior to sowing.
Samples were dried in a forced fan oven at 40 ◦ C for at
least 48 h before being stored in glass jars.

2.2 Soil analyses

All soil samples were analyzed for OC content (mg C g−1)
via high temperature combustion (LECO CNS-2000, LECO
Corp., St. Joseph, MI). Soil OC stocks (Mg C ha−1) were
then calculated by multiplying measured total organic car-
bon (TOC) values (mg C g soil−1) with bulk density mea-
surements (Mg soil m−3) adjusted for sampling depth. No
gravel correction was necessary. Bulk density (BD) was
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only measured in all rotations in 1997 (Baldock, 1998). To
overcome this data limitation, we have developed a pedo-
transfer function using 132 samples from the 1997 dataset
(see Appendix A), recognizing that since soil texture was
similar across the trial, the main variation in BD will be
due to changes in TOC content. This pedotransfer function
(BD=−0.109×TOC (%) +1.543, Fig. A1 in Appendix A)
was then applied to the measured TOC values for the 1963–
1993 samples. Given the small range in measured BD (1.25–
1.58) across a 5-fold gradient in TOC, this approximation for
BD appears to be the best of a range of options to minimize
uncertainty and bias in calculated SOC stocks.

Mid-infrared spectroscopy in combination with partial
least-squares regression (MIR-PLSR) was used to estimate
the distribution of OC into three biologically meaningful
pools, the particulate (POC), humus (HOC), and resistant
(ROC) organic carbon fractions (Baldock et al., 2013a,
b), using the Unscrambler X software package (CAMO
Software, Oslo, Norway). Prediction statistics (Hotelling’s
T square and Mahalanobis distance) suggested that this soil
type was well represented in the calibration set of Bal-
dock et al. (2013b). Given that the three fractions were pre-
dicted independently, the sum of the fractions did not al-
ways equal the measured TOC values (mean carbon mass
balance= 101± 5 % (SD)). Thus, the predicted fraction data
were adjusted to sum to the measured TOC values by calcu-
lating the fractional distribution of the MIR-PLSR predicted
fractions (i.e., POC / (POC+HOC+ROC)) and then multi-
plying these proportional allocations by the measured SOC
stock.

Organic matter chemistry was assessed using solid-state
cross-polarization magic-angle spinning 13C nuclear mag-
netic resonance (NMR) spectroscopy and by quantification
of amino sugars. Solid-state 13C NMR spectra were ob-
tained for the 1983 soil samples using a Bruker 200 Avance
spectrometer (Bruker Corporation, Billerica, MA, USA)
equipped with a 4.7 T , wide-bore superconducting magnet
operating at a resonance frequency of 50.33 MHz. Soils were
first demineralized using 2 % hydrofluoric acid (HF) to con-
centrate C and remove paramagnetic interferences (Skjem-
stad et al., 1994). The HF procedure resulted in an average C
loss of 17.4 %. Operating conditions were identical to those
reported in Baldock et al. (2013a). In order to quantify abso-
lute differences in chemical composition, data were reported
by normalizing the recorded signal intensity by the amount
of observable C, determined following the conventions of
Smernik and Oades (2000), in the analyzed sample.

Amino sugars, used here as a biomarker for microbial
derived OM (Liang and Balser, 2008), were extracted and
derivatized to form aldonitrile acetate derivatives from 300
to 500 mg of ground soil following the procedure of Zhang
and Amelung (1996) as modified by Liang et al. (2012). The
aldonitrile acetate derivatives were identified and quantified
relative to a six-point calibration curve containing all com-
pounds of interest and relative to the internal standard (myo-

inositol) on an Agilent 7890G GC and 5977 MS using a
30 m DB-5 column (Agilent Technologies, Santa Clara, CA,
USA). The recovery standard N-methylglucamine monitored
derivatization efficiency.

Radiocarbon activity was measured by accelerator mass
spectrometry at the Australian National University Radio-
carbon Dating Laboratory (Fallon et al., 2010) and reported
using the geochemical 114C notation (Stuiver and Polash,
1977). Analysis of radiocarbon data is presented in the next
section.

To assess the short-term availability and turnover of car-
bon, we measured extractable OC, basal respiration, and the
turnover of a 14C-labeled synthetic root exudate cocktail on
the 0–10 cm samples from all plots and from all years with
three analytical replicates. Extractable OC was quantified
from a 0.5 M K2SO4 extract (1 : 5 soil : solution) on a Ther-
malox TOC analyzer (Analytical Sciences, Cambridge, UK).
Basal respiration was measured as the CO2 accumulation in
a 24 h period at 22 ◦C on 5 g dry weight soil in a 50 mL cen-
trifuge tube capped with a Subaseal using an infrared gas
analyzer (LiCor Li-820, LI-COR Biosciences, Lincoln, NE,
USA), after pre-incubation of 2 weeks at 60 % water-holding
capacity (WHC). The mineralization of 14C-tagged synthetic
root exudates (300 µg C g−1 soil, 5 kBq mL−1) was quanti-
fied over a period of one week in identically pre-incubated
soils by liquid scintillation counting (Tri-Carb 3110 TR liq-
uid scintillation counter and HiSafe 3 scintillation cocktail;
Perkin Elmer Inc., Waltham, MA, USA) after trapping of
respired 14C-CO2 in 1 M NaOH. The synthetic root exu-
date cocktail, used to approximate the soil microbial commu-
nity response to inputs of labile C, consisted of 65 % carbo-
hydrates (glucose, fructose, sucrose; 2 : 1 : 1), 30 % organic
acids (citrate, oxalate; 6 : 4) and 5 % amino acids (glutamate,
alanine, glycine; 2 : 1 : 1) and was based on the chemistry of
Zea mays root exudates (Kraffczyk, 1984). Root exudate C
not taken up by the microbial community was quantified as
14C remaining in 0.5 M Na2SO4 extracts of the soil at the
end of the incubation; on average 5.1 % of the added 14C was
recovered in the extract, indicating near-complete microbial
uptake.

Root exudate-C mineralization was modeled by fitting a
single first-order exponential curve (Paul and Clark, 1996) to
the cumulative 14CO2 data (curve fits shown in Fig. B1 in
Appendix B):

Mass loss= A+Cmine
(−rt),

where A is the asymptote, Cmin is the size of the modeled
pool that was mineralized and r is the decay rate of the root
exudate C (h−1). Curve fitting was performed in SigmaPlot
12.3 (Systat Software Inc., San Jose, CA). We justified the
use of a single-pool model because the size of the modeled
pool of mineralized root exudate C (57± 2.3 % of total root
exudate C added) did not vary significantly with management
(P = 0.492). The half-life (t1/2) of this modeled pool was
calculated as ln(2)/r .
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2.3 Bomb-spike 14C turnover modeling

Atmospheric nuclear weapons testing in the middle of the
20th century nearly doubled the 14C content of the atmo-
sphere. When time series samples are available, this excess
14C can be utilized as a highly sensitive tracer of carbon
fluxes in terrestrial ecosystems (Trumbore, 1993; Baisden
et al., 2013). Here, we have applied a steady-state soil car-
bon turnover model to estimate SOC turnover times (τ ) in
the five rotations. The model is nearly identical to the two-
pool model presented by Baisden et al. (2013) with the ex-
ception that inputs (Cin) are partitioned into three pools (ac-
tive, slow and passive) each with a characteristic decay rates
(kpool, where τpool = 1/kpool). Carbon entering the soil each
year will have the 14C / 12C ratio of the previous year’s at-
mospheric CO2. Inputs are then apportioned into the three
pools in proportion to their fractional distribution (fpool)
in the soil and losses are determined by first-order kinetics
(i.e., kpool×Cpool) with shifts in 14C / 12C ratio of each pool
also effected by radioactive decay (λ= 1.21× 10−4 yr−1).
Data for the Southern Hemisphere were taken from Currie
et al. (2011). The overall SOC decay rate (koverall) was cal-
culated as the pool weighted mean value and then the overall
SOC turnover time (τoverall) is the reciprocal of this value.

In this model there are five tuneable parameters: the decay
constants (kpool) for the three pools and the fractional allo-
cation of Cin into the pools (given factive+ fslow+ fresistant
must equal 1, only two of the three pools can be solved for).
In order to avoid overfitting, since we have only four obser-
vations per treatment, no more than three parameters could
be solved for in any given scenario. We chose to take two
complimentary approaches to fit the model. In the first sce-
nario, we used the distribution of SOC into measurable frac-
tions as determined by MIR-PLSR to fix the f parameters
and solved for the kpool values by minimizing the sum of
squared errors between observed and predicted SOC 114C
values. In the second scenario, the kpool values were fixed at
0.33, 0.02 and 0.001 yr−1 for the active, slow and resistant
pools and the model was solved for factive and fslow. These
kpool values were chosen because they are the default values
in the Rothamsted Soil Carbon (RothC) model (Jenkinson,
1990) with the resistant pool being equivalent to that found
in the CENTURY model (Parton et al., 1987).

Models were evaluated using root mean square error
(RMSE) and standard error (SE) between measured (yi) and
predicted (y) values:

RMSE=

√∑n
i=1
(
yi − ŷ

)2
n

,

SE=

√∑n
i=1
(
yi − ŷ−Bias

)2
n− 1

, where

Bias=

∑n
i=1

(
yi − ŷ

)
n

.

Lastly, because the SOC stocks are known, the annual het-
erotrophic respiration (Rh = SOC/τ ) can be calculated and
compared to estimates of Cin as an independent check on the
reality of the model because, at steady state, inputs should
equal losses. Carbon inputs (Cin) to the upper 10 cm were es-
timated using measured aboveground dry matter production
(DM) and yield (Yield) data as follows:

Cin = Cdm× [(DM-Yield)×StubRet+DM×RtS×Froot] ,

where Cdm is the carbon content of plant residues estimated
as 450 mg C g−1; StubRet is the stubble retention factor,
which was set to 0.40 for both crops and pasture phases
based on agronomic records (Grace et al., 1995); RtS is the
root-to-shoot ratio, which was set to 0.40 for wheat and oats
and to 0.55 for pasture as adopted in the Australian National
GHG Accounting system (Skjemstad et al., 2004); and Froot
is the fraction of total root biomass found in the upper 10 cm,
which was estimated at 0.65 for crops and 0.63 for improved
pastures based on root biomass distribution data of similar
varieties in similar soil conditions (Siddique et al., 1990;
Lodge and Murphy, 2006).

2.4 Data analysis

One-way repeated-measures analysis of variance (ANOVA)
tests with year as subject and rotation as factor were used
to determine whether significant differences existed between
the different rotations for carbon stocks, fractional distribu-
tion, amino sugar yields and short-term availability/activity
measurements using SigmaPlot 12.3 (Systat Software Inc.,
San Jose, CA). Pairwise multiple comparisons were per-
formed using the conservative Holms–Sidak method (α =
0.05). Aboveground dry matter production and soil carbon
input data were normalized using square root or square root
(Y + 1) transformations when fallows were excluded or in-
cluded, respectively, prior to testing for significant differ-
ences between mean annual data for 1963–1993 time period
using a one-way ANOVA for the factor rotation.

3 Results

Mean annual dry matter production varied from 2.0 to
9.6 Mg DM ha−1 yr−1 and mean Cin varied from 0.48 to
3.24 Mg C ha−1 yr−1from WF to Pa rotations (Table 1) with
most of the within treatment variability between 1963 and
1993 being due to differences in annual rainfall (Fig. 1a).
Grain yield trends are discussed in detail in Grace et
al. (1995) and are not shown here. By 1963, most of the
change in SOC stocks had occurred (at the commencement
of the trial in 1925, Grace et al., 1995, estimated that the top
10 cm contained 2.75 % C, equating to 34.2 Mg C ha−1 us-
ing the BD pedotransfer function presented in Fig. 1) with
the exception of the WOF treatment where stocks showed
a near-significant (P = 0.08) negative linear trend with time
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Figure 1. Annual precipitation and carbon inputs for the five crop-
ping systems (a), and measured soil organic carbon stocks to 10 cm
at the four sampling dates in these cropping systems (b). Crop-
ping systems are as follows: Pa, permanent pasture; 2W4Pa, 2 years
of wheat followed by 4 years of pasture; WW, continuous wheat;
WOF, wheat–oat–fallow rotation; WF, wheat–fallow rotation.

between 1963 and 1993 (Fig. 1b). Averaged across this pe-
riod, SOC stocks ranged from 14.4 to 32.6 Mg C ha−1 in the
same general order of increasing treatment production (Ta-
ble 2). The C : N ratio of the bulk SOM was slightly but sig-
nificantly lower in the treatments with pasture phases rela-
tive to the treatments without pastures (Table 2). Particulate
OC stocks varied from 1.0 to 5.5 Mg C ha−1 across the treat-
ments resulting in a doubling of the proportional distribution
of SOC into POC versus HOC+ROC fractions (Table 2).

Solid-state 13C NMR spectra normalized to the amount of
observable C in the measured sample also suggested more
active cycling carbon in the treatments with pasture phases
(Fig. 2). All treatments had a similar amount of aryl (110–
145 ppm) and O-aryl C (145–165 ppm) but there were in-
creasing amounts of alkyl (0–45 ppm), N-alkyl (45–60 ppm)
and O-alkyl C (60–95 ppm) with increasing productivity. The
alkyl to O-alkyl C ratio, indicative of the degree of microbial
processing of OM (Baldock et al., 1997), decreased with in-
creasing productivity and SOC content, suggesting less mi-
crobially processed OM in the high-productivity treatments
(Fig. 2 inset).

The yield of total amino sugars was significantly
(P = 0.009) impacted by the rotation, with the permanent
pasture having significant more amino sugars per gram of
soil than most other rotations (Table 3). This trend was

Figure 2. Solid-state 13C NMR spectra (a) and total signal intensity
integrated into eight major chemical shift regions (b) for the 1983
soil samples from the five treatments. Signal intensity has been nor-
malized for number of scans, nc_proc, C observability and C con-
tent in NMR rotor (y axis units are irrelevant). Inset in (b) shows
the alkyl C to O-alkyl C ratio plotted as a function of SOC content
(R2
= 0.51, P = 0.17).

present in every amino sugar (glucosamine P = 0.008; galac-
tosamine P = 0.012, muramic acid P = 0.008) except man-
nosamine (P = 0.70). There were significant positive linear
trends between individual and total amino sugar yields and
SOC stocks for all sugars except mannosamine (data not
shown).

The degree of uptake of the bomb spike in atmospheric
14CO2 into the soil also followed an increasing trend with in-
creasing productivity with the exception that the WOF treat-
ment had more negative 114C values than the WF treatment
in all years except 1963 (Fig. 3). Both modeling scenarios
provided good representations of the114C data (Figs. 3, C1)
with scenario 1 (kpool values solved for while allocations to
pools were fixed using estimates from MIR-PLSR) perform-
ing slightly better (Table 4). In scenario 1, the turnover time
(τ ) for each pool decreased along the treatment productivity
gradient (Fig. 4a). In scenario 2 with fixed kpool values, the
proportion of SOC allocated to the active and slow cycling
pools generally increased while the allocation to the resis-
tant pool decreased with increasing productivity (Fig. 4c),
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Table 1. Mean and standard deviation of annual treatment production and soil C input data during 1963–1993. Significant differences
(one-way ANOVA, α<0.05) between rotations are indicated with different letters in each column.

Dry matter (Mg DM ha−1) C inputs (Mg C ha−1)

Rotation Annual mean1,2 Cumulative Annual mean1,2 Cumulative

Pa 9.63± 3.11a 298.63 3.24± 1.05a 100.32
2W4Pa 6.49± 3.28b 201.10 2.07± 1.17b 64.23
WW 2.66± 1.28c,d 82.52 0.63± 0.30c 19.66
WOF 3.10± 2.81c 96.01 0.70± 0.67c 21.84
WF 2.02± 2.31d 62.76 0.48± 0.59c 15.02

1 Annual mean includes a value of 0 for fallow years. 2 Data transformed using square root (value +1)
for ANOVA.

Table 2. Soil carbon data summary. Mean across time and standard deviation given for each rotation. Significant differences (one-way
repeated-measures ANOVA, α<0.05) between rotations are indicated with different letters in each column.

Measured MIR-PLSR predicted data 114C value

Rotationa SOC C : N POCb HOCb ROCb f (POC)c f (HOC)c f (ROC)c SOC

(Mg C ha−1) (Mg C ha−1) (‰)

Pa 32.6± 1.6a 10.9± 0.4a 5.2± 0.7a 17.8± 0.7a 9.4± 0.7a 0.16± .01a 0.55± .01a 0.29± .01a 90.8± 51.7a

2W4Pa 25.1± 1.0b 10.9± 0.3a 2.8± 0.3b 14.4± 0.5b 8.0± 0.5b 0.11± .01b 0.57± .01b 0.32± .01b 59.1± 63.8a,b

WW 20.6± 1.4c 11.9± 0.3b 1.9± 0.2b 11.9± 0.8b 6.6± 0.6b,c 0.09± .01b 0.58± .00b,c 0.32± .01b,c 22.7± 44.3b,c

WOF 18.8± 2.5d 11.7± 0.3a,b 1.3± 0.3c 11.0± 1.5c 6.5± 0.8c 0.07± .01c 0.58± .01b,c 0.35± .01c
−27.4± 24.8c

WF 14.4± 1.5e 12.1± 0.7b 1.1± 0.3c 8.6± 0.7d 4.8± 0.5d 0.07± .01c 0.60± .01c 0.33± .01b,c
−2.2± 50.0c

a Pa, permanent pasture; 2W4Pa, 2 years of wheat followed by 4 years of pasture; WW, continuous wheat; WOF, wheat–oat–fallow rotation; WF, wheat–fallow rotation. b POC, particulate organic
carbon; HOC, humic organic carbon; ROC, resistant organic carbon. c Fraction as a proportion of bulk soil carbon.

although these changes were overestimated relative to actual
fraction distributions (Table 2). In both scenarios this resulted
in a decrease in τoverall from 40–30 to 13–8 years (Fig. 4 c,
d).

To complement the long-term integrative data presented
above using 114C, assays pertinent to short-term C cycling
were also conducted (Table 5). In general, trends in absolute
(per gram of soil) terms followed the long-term integrative
data, in that Pa had the greatest amount of extractable C, the
highest basal respiration rate, and the fastest turnover (short-
est t1/2) of respired root exudate C, whereas the reverse was
observed for WF. Other rotations were intermediate.

4 Discussion

Globally, there are ever increasing demands on soils to meet
growing food demand on a finite land area. Simultaneously,
there is a recognition that gains in agricultural production
cannot continue to come simply by mining the soil resource.
Given the additional desire to offset agriculture’s GHG foot-
print, management that promotes the regeneration of SOM
is now a high priority on many nations’ research, develop-
ment and extension agendas (Bustamante et al., 2014). How-
ever, there is debate as to whether soils can simultaneously
mitigate climate change through carbon sequestration and
provide the nutrition needed for increased crop production

Figure 3. 114C values of soil organic carbon in upper 10 cm
along with yearly output from the best-fit bomb-spike model so-
lutions for scenario 1 (curve fits for scenario 2 shown in Fig. C1
in Appendix C) where the allocation of C to pools was fixed us-
ing the estimated fractions from MIR-PLSR analysis and the model
was solved for k values. Southern Hemisphere atmospheric 14CO2
record is shown for reference (dashed line).
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Table 3. Amino sugar data (mean± 1 SD reported). One-way repeated-measures ANOVA summary given below each data column and
pairwise comparisons between rotations are indicated with different letters in each column when significant (α<0.05).

Rotation Glucosamine Mannosamine Galactosamine Muramic acid Total yield
(mg amino sugar g soil−1)

Pa 0.84± 0.18a 0.022± 0.017 0.32± 0.08a 0.059± 0.016a 1.24± 0.30a

2W4Pa 0.47± 0.34a,b 0.016± 0.013 0.14± 0.12a,b 0.026± 0.032b 0.66± 0.50a,b

W 0.32± 0.22b 0.021± 0.025 0.11± 0.06b 0.026± 0.013b 0.48± 0.31b

WOF 0.27± 0.10b 0.008± 0.002 0.10± 0.04b 0.015± 0.006b 0.40± 0.17b

WF 0.42± 0.14a,b 0.012± 0.001 0.15± 0.04a,b 0.029± 0.018a,b 0.63± 0.22a,b

P value 0.008 0.700 0.012 0.008 0.009

Table 4. Turnover model goodness-of-fit statistics.

Scenario 1: fit k with f fixed Scenario 2: fit f with k fixed

Rotation RMSEa SEb Rc
h RMSEa SEb Rc

h

Pa 0.25 0.29 3.35 4.74 5.39 2.45
2W4Pa 7.63 8.81 3.18 21.08 23.91 1.78
WW 15.08 17.42 0.95 12.26 13.95 1.20
WOF 12.61 14.56 0.47 11.93 13.78 0.66
WF 19.35 22.34 0.43 23.48 26.88 0.29

a RMSE, root mean square error. b SE, standard error. c Rh, steady-state heterotrophic respiration
(tC ha−1 yr−1).

(Janzen, 2006). The Waite trial data demonstrate that a higher
carbon return management strategy can provide both of these
benefits as the results indicate significantly increased soil mi-
crobial activity and greater SOC stocks.

After nearly 70 years under consistent management rep-
resenting a 5-fold gradient in plant productivity (Table 1),
a gradient in SOC stocks ranging from 14 to 33 Mg C ha−1

was established. It is important to acknowledge here that the
range of observed SOC stocks was a result of greater SOC
losses in the low-productivity treatments relative to the 1925
initial stocks, with most of this loss occurring between 1925
and 1963 (Grace et al., 1995). The leveling-off in the loss
rates suggests that these treatments were close to a steady-
state SOC value with respect to the long-term management.
The strong linear relationship between inputs and SOC is
well supported by findings in other agricultural trials (e.g.,
Rasmussen and Parton, 1994; Paustian et al., 1997; Kong et
al., 2005) and forms one of the principle tenets of most con-
ceptual (Jenny, 1941) and numerical models of SOC dynam-
ics (e.g., Parton et al., 1987; Jenkinson 1990).

There were strong correlations between nearly all of the
measured, estimated and modeled parameters (Table 6). With
increasing annual C inputs, a greater proportion of SOC in
what is regarded as a readily available form (i.e., POC) was
found. A more nuanced picture emerges from interpreta-
tion of the NMR data (Fig. 2a); by normalizing the NMR
spectra to observable C content, all treatments appear to

have a similar amount of char-like carbon (peak centered at
130 ppm) but increasing amounts of both plant (i.e., POC-
like, high fraction of O-alkyl C) and microbial-like (i.e.,
highly aliphatic compounds, alkyl and N-alkyl C) OM with
increasing productivity, agreeing with the C fractionation
data. The amino sugar results lend further support for in-
creasing amounts of microbially derived OM in the soils un-
der the higher input rotations. Modeling scenario 2 supported
this notion as well with an increase in proportion of SOC in
the active and slow cycling pools at the expense of the re-
sistant pool (Fig. 4c). These findings, again, are consistent
with expectations from previous research across a range of
ecosystems (e.g., Cambardella and Elliot, 1992; Kong et al.,
2005; Lajtha et al., 2014) and would be more or less simu-
lated by most multiple-pool numerical models. For example,
Kong et al. (2005) found a 5 Mg C ha−1 gradient in POC,
measured as the 250–2000 µm size fraction, after 10 years
under a range of management practices resulting in a tenfold
gradient in C inputs.

The striking and unexpected feature of this analysis was
the 3-fold increase in carbon cycling rates (koverall) with in-
creasing productivity revealed by modeling the incorpora-
tion of the bomb spike in atmospheric 14CO2. We used the
term “unexpected” because this rate of increase in carbon cy-
cling was much greater than would be predicted from simple
steady-state or pool distribution considerations (Fig. 5). The
most basic way to estimate koverall would be to assume a sin-

www.soil-journal.net/3/1/2017/ SOIL, 3, 1–16, 2017
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Figure 4. Turnover time for soil organic carbon (SOC) pools (a) and inventory-weighted SOC turnover time (b) for best-fit model solutions
when allocation of C to fractions from MIR-PLSR predictions was used (scenario 1). In (c), best-fit model solutions for allocation of SOC
to pools when turnover times were fixed at 3, 50 and 1000 years for active, slow and resistant pools, respectively (scenario 2), with the
inventory-weighted overall turnover time given in (d). Colors representing the five treatment sites as in Fig. 1.

Table 5. Short-term microbiological activity assays (mean of sampling times ±1 SD reported). One-way repeated-measures ANOVA sum-
mary given below each data column and pairwise comparisons between rotations are indicated with different letters in each column when
significant (α<0.05).

Root exudate curve fit parameters

Rotation Extractable OC Basal Size of Decay rate Half-life
respiration mineralized pool of pool of pool

(µg C g soil−1) (µmol CO2 d−1) (%) (h−1) (h)

Pa 207± 26a 7.1± 0.4a 57.2± 3.2 0.033± .005a 21.5± 3.0a

W4PA 132± 22b 5.6± 0.6a 55.8± 2.0 0.029± .006a,b 24.4± 4.0a,b

WW 67± 7.1c 3.5± 0.2b 56.6± 2.8 0.027± .005a,b 26.5± 4.8a,b

WOF 64± 12c 3.4± 0.4b 56.6± 0.6 0.026± .002b 27.3± 2.4a,b

WF 55± 22a 3.1± 0.6b 58.8± 2.2 0.023± .003b 30.4± 4.4b

P value < 0.001 < 0.001 0.227 0.004 0.009

gle homogenous pool at steady state so koverall = Cin /SOC.
This calculation suggests koverall increases 75 % from the
low to high productivity systems (Fig. 5). Another method
is to assume that each fraction has a characteristic k (as in
CENTURY or RothC), and with the estimated distribution
of C into fractions from the MIR-PLSR analysis (Table 2),
koverall similarly increases by 75 % with increasing produc-
tivity. However, the koverall determined from the more robust
14C modeling increased 300 % from low to high productiv-

ity (Fig. 5). Importantly, the increase in koverall with increas-
ing productivity could not be explained by the RothC model
(Sanderman et al., 2016). Sanderman et al. (2016) found that
the decay constants in RothC needed to be adjusted in a simi-
lar manner as seen in Fig. 4a in order to explain the SOC and
14C data across the five treatments.

While the Waite trial represented a large productivity gra-
dient, the quality of the incoming organic matter was not
equal. The treatments with pasture phases contained N-fixing
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Table 6. Pearson’s correlation coefficients between mean annual C input (Cin), SOC stock, C : N ratio, fraction of SOC as POC (fPOC),
radiocarbon activity (114C),overall turnover time (given as the average of the two modeling scenarios, τmean), half-life of added root
exudates cocktail (t1/2), the alkyl /O-alkyl C ratio from NMR data (A /O-A), and the total yield of amino sugars (

∑
AS).

SOC C : N fPOC A /O-A
∑

AS 114C τmean t1/2

Cin 0.93∗∗ −0.94∗∗ 0.95∗∗ −0.72 0.87∗ 0.90∗∗ −0.83∗ −0.94∗∗

SOC −0.83∗ 0.96∗∗ −0.67 0.80 0.87∗ −0.86∗ −0.99∗∗

C : N −0.81∗ 0.76 −0.67 −0.80∗ 0.86∗ 0.90∗∗

fPOC −0.72 0.91∗∗ 0.95∗∗ −0.83∗ −0.93∗∗

A /O-A −0.54 −0.89∗∗ 0.93∗∗ 0.71∑
AS 0.85∗ −0.57 −0.74

114C −0.89∗∗ −0.86∗

τmean 0.90∗∗

Significance (n= 5): ∗ P<0.10, ∗∗ P<0.05.

Figure 5. Comparison of different approaches for estimating
changes in carbon cycling rates. Increases in koverall relative to the
WF treatment is given for a simple one-pool steady-state (SS) calcu-
lation (k =Cin /SOC), the predicted k based on measured fractions
assuming kpool = 0.33, 0.02 and 0.001 yr−1 in the POC, HOC and
ROC fraction, respectively, and the mean koverall value from mod-
eling the incorporation of 14C into the soil (scenario 1).

legumes (on average 26 % of the pasture production was at-
tributable to legumes based on pasture composition data in-
cluded in the public data repository) which likely resulted in
a more N-rich input material. The bulk soil C : N ratio was
significantly lower in the two pasture treatments compared
to the cropping rotations (Table 2). By providing more N to
a likely N-limited system (no nitrogenous fertilizer was used
in the trial), input quality may have acted in concert with in-
creased inputs to further increase the SOC cycling rates seen
in the Pa and 2W4Pa treatments (Fig. 4b). However, higher-
quality (i.e., lower C : N) litter will also likely be used more
efficiently by the microbial community thus potentially sta-
bilizing more of this litter as SOC (Lange et al., 2015).

Although long- and short-term C turnover rates were well
correlated with Cin and SOC stocks, the mechanisms behind
the observed increases in both C stocks and overall decom-
position rates (koverall) are not clear. Increased C inputs fre-
quently increase the size and the activity of the soil microbial
community and can result in the accelerated decomposition
or “priming” of more stable, nutrient rich SOM (Fontaine
et al., 2004; Dijkstra and Cheng 2007; Blagodatskya and
Kuzyakov, 2008). Given that microbial biomass is typically
positively associated with SOC levels (Wardle et al., 1999),
with higher Cin and SOC stocks, overall decomposition rates
(koverall) would increase as long as decomposition rate per
unit microbial biomass stayed constant (Manzoni and Por-
porato, 2009). However, in typical linear donor-control mod-
els (e.g., RothC), microbial biomass size is uncoupled from
SOC decomposition, which renders any changes in micro-
bial biomass size irrelevant for SOC turnover, and there-
fore (in the instance of increasing microbial biomass) poten-
tially underestimates koverall (Fang et al., 2005). An emerg-
ing class of nonlinear soil carbon models (e.g., Allison et
al., 2010) allows coupling between microbial biomass size
and SOC turnover, effectively representing the relationship
between biomass size and koverall, although the form of this
relationship remains unclear. Our results indicate that this ap-
proach is required at the Waite trial soils to accurately model
SOC dynamics, and should produce better projections of
SOC in response to change in management. Similarly, Lange
et al. (2015) postulated that with increasing plant diversity,
SOC stocks increased because a larger microbial community
was driving a more efficient transfer of SOC from a fast to
slow cycling C pool which effectively decreased the overall
turnover rate. Importantly, the acceleration in carbon cycling
(koverall) seen in the Waite trial data was not greater than the
size of the imbalance between inputs over losses; thus, we
observed a gradient of higher SOC stocks with increasing
productivity.

The modeling work presented here and in all of the ref-
erences discussed above assumes a static land surface yet

www.soil-journal.net/3/1/2017/ SOIL, 3, 1–16, 2017
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erosion and its associated C loss is known to be quanti-
tatively important in agricultural settings (Van Oost et al.,
2007; Chappell et al., 2015). Chappell et al. (2015) estimated
that at the Waite trial erosional loss of SOC could account
for approximately 10 % of the annual C flux from the soil on
decadal timescales with lower estimates for the treatments
with pasture phases and higher estimates for those with fal-
lows. While we have not attempted to account for soil re-
distribution in this study, our findings and conclusions would
not change if we had because the short-term microbial assays
are independent of any erosion and the amount of erosion
that has occurred (estimated as 3.0–7.7 mm per decade from
Chappell et al., 2015) would be included as a minor compo-
nent of the apparent C turnover rate for the upper 100 mm of
soil using time series 14C measurements. This minor compo-
nent would be within error margins.

In contrast to paradigms underlying most ecosystem soil
carbon models, the acceleration in microbial cycling may it-
self be leading to increased SOM stabilization rates, as mi-
crobial activity has been shown to contribute to SOM forma-
tion through the production of microbial biomass residues
(i.e., necromass) (Miltner et al., 2012; Cotrufo et al., 2013).
These residues can constitute a large proportion of the more
stable slow cycling OM pool and persist much longer than
plant necromass (Kiem and Kögel-Knaber, 2003; Liang and
Balser, 2008). Yet, where enhanced rates of stabilization oc-
cur, we find they are matched by enhanced turnover of the
SOM pool. The fate, formation and stabilization of microbial
biomass have therefore been highlighted as a major unknown
in advancing the scientific understanding of soil carbon sta-
bilization and turnover (e.g., Allison et al., 2010; Weider et
al., 2013). Our results, showing increased plant productivity
along with higher C stocks, faster C turnover and a greater
abundance of amino sugars, suggest, in line with the conclu-
sions of Lange et al. (2015), that concurrent increases in plant
inputs, microbial activity, and microbially derived carbon are
important for building and maintaining adequate SOM lev-
els.

It is important to consider that these findings pertain to
a specific but widely distributed soil type under a Mediter-
ranean climatic regime representative of only limited por-
tions of the globe. Unless soil moisture becomes very limit-
ing, there is little reason to doubt that the finding that micro-
bial activity would be accelerated with increased plant inputs
would not be broadly applicable to agricultural soils globally.
Whether or not this acceleration in plant inputs and micro-
bial activity results in greater soil carbon stocks and the im-
portance of microbial-derived carbon to the soil carbon pool
may depend upon and vary with the edaphic properties of a
particular soil (Barré et al., 2014; Sanderman et al., 2014).

5 Conclusions

The data from the Waite trial portray a nuanced and dynamic
picture whereby increasing carbon flow to the soil leads to
greater SOC stocks, but because of feedbacks to the micro-
bial community there can be an acceleration of SOM min-
eralization beyond what would be expected based on sim-
ple steady-state and carbon pool distribution shift arguments.
These feedbacks have important implications for how soil
carbon dynamics are represented in conceptual and numer-
ical models. From an agronomic standpoint, a simple but
important picture emerges whereby a higher carbon return
management system, in the case of the Waite trial meaning
a greater number of pasture phases and no fallows, results
in a soil with more soil carbon that is also supplying more
nutrients back to the crop.

6 Data availability

The full agronomic, production and climatic data and mea-
sured/predicted soil properties from selected trials can be
downloaded free of charge from the CSIRO Data Access Por-
tal (doi:10.4225/08/55E5165EC0D29).
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Appendix A: Bulk density pedotransfer function

Bulk density was not measured during the trial years of
1963–1993 but it was measured in detail in 1997 at all of
the Waite trial plots (Baldock, 1998 – data available upon re-
quest from either J. Sanderman or J. Baldock), not just the
five selected for this current study. Plots were split and two
full profiles were collected in 10 cm increments. Here we use
the data collected from the 0–10 and 10–20 cm horizons to
develop a relationship between bulk density and percent or-
ganic carbon which is then applied to the soil samples col-
lected in prior years.

 

y = -0.109x + 1.543
R² = 0.322
P < 0.0001

n = 132
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Figure A1. Relationship between organic carbon content ( %OC) and bulk density for the 0–10 and 10–20 cm soil layers collected in 1997
from all trial plots.
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Appendix B: Root exudate decay curves

Figure B1. Root exudate incubation results presented as percentage mass loss. Each point represents mean± 1 SEM (n= 3). Error bars are
smaller than symbols. Best-fit single-pool exponential models are also shown (adjusted R2 > 0.98 for all curves).

SOIL, 3, 1–16, 2017 www.soil-journal.net/3/1/2017/
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Appendix C: Alternate modeling scenario results

Figure C1. 114C values of soil organic carbon in upper 10 cm along with best-fit model solutions for scenario 2 (constant kpool values
solving for best distribution into C pools). Scenario 1 is shown in Fig. 3. Southern Hemisphere atmospheric 14CO2 record is shown for
reference (dashed line).
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