Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-467-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A quantitative assessment of the behavior of metallic elements in urban soils exposed to industrial dusts near Dunkerque (northern France)
Marine Casetta
CORRESPONDING AUTHOR
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
Sylvie Philippe
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
Lucie Courcot
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
David Dumoulin
Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000 Lille, France
Gabriel Billon
Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000 Lille, France
François Baudin
Sorbonne Université – CNRS, UMR 7193 ISTeP – Institut des Sciences de la Terre de Paris, 75005 Paris, France
Françoise Henry
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
Michaël Hermoso
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
Jacinthe Caillaud
LOG, Laboratoire d'Océanologie et de Géosciences, Université du Littoral Côte d'Opale, Université de Lille, CNRS, IRD, UMR 8187, 62930 Wimereux, France
Related authors
No articles found.
Goulwen Le Guevel, Fabrice Minoletti, Carla Geisen, Gwendoline Duong, Virginia Rojas, and Michaël Hermoso
Biogeosciences, 22, 2287–2308, https://doi.org/10.5194/bg-22-2287-2025, https://doi.org/10.5194/bg-22-2287-2025, 2025
Short summary
Short summary
This study explores the impact of environmental conditions on the chemistry of coccoliths, calcite minerals produced by marine algae, to better understand past climate changes. By cultivating different species of coccolithophores under various CO2 and pH levels, we have shown that the isotopic composition of certain species varies with CO2 concentration and quantified these variations.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Sophie Hage, Megan L. Baker, Nathalie Babonneau, Guillaume Soulet, Bernard Dennielou, Ricardo Silva Jacinto, Robert G. Hilton, Valier Galy, François Baudin, Christophe Rabouille, Clément Vic, Sefa Sahin, Sanem Açikalin, and Peter J. Talling
Biogeosciences, 21, 4251–4272, https://doi.org/10.5194/bg-21-4251-2024, https://doi.org/10.5194/bg-21-4251-2024, 2024
Short summary
Short summary
The land-to-ocean flux of particulate organic carbon (POC) is difficult to measure, inhibiting accurate modeling of the global carbon cycle. Here, we quantify the POC flux between one of the largest rivers on Earth (Congo) and the ocean. POC in the form of vegetation and soil is transported by episodic submarine avalanches in a 1000 km long canyon at up to 5 km water depth. The POC flux induced by avalanches is at least 3 times greater than that induced by the background flow related to tides.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Chloé Truong, Sylvain Bernard, François Baudin, Aurore Gorlas, and François Guyot
Eur. J. Mineral., 36, 813–830, https://doi.org/10.5194/ejm-36-813-2024, https://doi.org/10.5194/ejm-36-813-2024, 2024
Short summary
Short summary
Known as black smokers, sulfur-rich hydrothermal vents expel hot metal-rich water (~ 400°C). These extreme environments host micro-organisms capable of living at over 100°C. But to date, we do not know whether these microorganisms influence the formation of hydrothermal vents. The comparative study of minerals along the chimney wall is an essential step in determining whether microorganisms may have colonized and influenced mineral formation in certain parts of the chimney.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Camille Godbillot, Fabrice Minoletti, Franck Bassinot, and Michaël Hermoso
Clim. Past, 18, 449–464, https://doi.org/10.5194/cp-18-449-2022, https://doi.org/10.5194/cp-18-449-2022, 2022
Short summary
Short summary
We test a new method to reconstruct past atmospheric CO2 levels based on the geochemistry of pelagic algal biominerals (coccoliths), which recent culture and numerical experiments have related to ambient CO2 concentrations. By comparing the isotopic composition of fossil coccoliths to the inferred surface ocean CO2 level at the time they calcified, we outline a transfer function and argue that coccolith vital effects can be used to reconstruct geological pCO2 beyond the ice core record.
Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Sabine Houot, Florent Levavasseur, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré
Biogeosciences, 19, 375–387, https://doi.org/10.5194/bg-19-375-2022, https://doi.org/10.5194/bg-19-375-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) is crucial for climate regulation, soil quality, and food security. Predicting its evolution over the next decades is key for appropriate land management policies. However, SOC projections lack accuracy. Here we show for the first time that PARTYSOC, an approach combining thermal analysis and machine learning optimizes the accuracy of SOC model simulations at independent sites. This method can be applied at large scales, improving SOC projections on a continental scale.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Cited articles
Albertsson, G. J., Engström, F., and Teng, L.: Effect of the Heat Treatment on the Chromium Partition in Cr-Containing Industrial and Synthetic Slags, Steel Res. Int., 85, 1418–1431, https://doi.org/10.1002/srin.201300231, 2014.
Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., and Galloo, J.-C.: PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone, Atmos. Res., 96, 612–625, https://doi.org/10.1016/j.atmosres.2010.02.008, 2010.
Amar, M., Benzerzour, M., Kleib, J., and Abriak, N.-E.: From dredged sediment to supplementary cementitious material: characterization, treatment, and reuse, Int. J. Sediment Res., 36, 92–109, https://doi.org/10.1016/j.ijsrc.2020.06.002, 2021.
Aran, D., Maul, A., and Masfaraud, J.-F.: A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance, CR Geosci., 340, 865–871, https://doi.org/10.1016/j.crte.2008.07.015, 2008.
Baize, D.: Teneurs totales en éléments traces métalliques dans les sols (France), INRA Editions, Paris, 408 pp., ISBN 978-2-7380-0747-6, 1997.
Baize, D. and Girard, M.-C.: Référentiel pédologique, [Éd.] 2008, Éd. Quae, Versailles, ISBN 978-2-7592-0185-3, 2009.
Balaria, A., Johnson, C. E., and Xu, Z.: Molecular-Scale Characterization of Hot-Water-Extractable Organic Matter in Organic Horizons of a Forest Soil, Soil Sci. Soc. Am. J., 73, 812–821, https://doi.org/10.2136/sssaj2008.0075, 2009.
Barman, M., Datta, S. P., Rattan, R. K., and Meena, M. C.: Chemical fractions and bioavailability of nickel in alluvial soils, Plant Soil Environ., 61, 17–22, https://doi.org/10.17221/613/2014-PSE, 2015.
Bibak, A., Møberg, J. P., and Borggaard, O. K.: Content and Distribution of Cobalt, Copper, Manganese and Molybdenum in Danish Spodosols and Ultisols, Acta Agr. Scand. B-S. P., 44, 208–213, https://doi.org/10.1080/09064719409410247, 1994.
Bielefeldt, A. R. and Vos, C.: Stability of biologically reduced chromium in soil, J. Environ. Chem. Eng., 2, 550–556, https://doi.org/10.1016/j.jece.2013.10.012, 2014.
Billon, G.: Géochimie des métaux et du soufre dans les sédiments des estuaires de la Seine et de l'Authie, These de doctorat, Lille 1, https://scirp.org/reference/referencespapers?referenceid=3171390 (last access: 17 March 2022), 2001.
Birch, G. F.: Determination of sediment metal background concentrations and enrichment in marine environments – A critical review, Sci. Total Environ., 580, 813–831, https://doi.org/10.1016/j.scitotenv.2016.12.028, 2017.
Boguta, P. and Sokołowska, Z.: Zinc Binding to Fulvic acids: Assessing the Impact of pH, Metal Concentrations and Chemical Properties of Fulvic Acids on the Mechanism and Stability of Formed Soluble Complexes, Molecules, 25, 1297, https://doi.org/10.3390/molecules25061297, 2020.
Borùvka, L. and Drábek, O.: Heavy metal distribution between fractions of humic substances in heavily polluted soils, Plant Soil Environ., 50, 339–345, https://doi.org/10.17221/4041-PSE, 2004.
Bout-Roumazeilles, V., Cortijo, E., Labeyrie, L., and Debrabant, P.: Clay mineral evidence of nepheloid layer contributions to the Heinrich layers in the northwest Atlantic, Palaeogeogr. Palaeocl., 146, 211–228, https://doi.org/10.1016/S0031-0182(98)00137-0, 1999.
Bradl, H. B.: Adsorption of heavy metal ions on soils and soils constituents, J. Colloid Interf. Sci., 277, 1–18, https://doi.org/10.1016/j.jcis.2004.04.005, 2004.
Brady, N. C.: The nature and properties of soils, 9th edn., Macmillan/Collier Macmillan, New York, London, 750 pp., ISBN 978-0-02-313340-4, 1984.
Bronick, C. J. and Lal, R.: Soil structure and management: a review, Geoderma, 124, 3–22, https://doi.org/10.1016/j.geoderma.2004.03.005, 2005.
Cabrera-Real, H., Romero-Serrano, A., Zeifert, B., Hernandez-Ramirez, A., Hallen-Lopez, M., and Cruz-Ramirez, A.: Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags, J. Mater. Cycles and Waste, 14, 317–324, https://doi.org/10.1007/s10163-012-0072-y, 2012.
Calabrese, E. J., Stanek, E. J., James, R. C., and Roberts, S. M.: Soil ingestion: a concern for acute toxicity in children., Environ. Health Persp., 105, 1354–1358, https://doi.org/10.1289/ehp.971051354, 1997.
Campillo-Cora, C., Conde-Cid, M., Arias-Estévez, M., Fernández-Calviño, D., and Alonso-Vega, F.: Specific Adsorption of Heavy Metals in Soils: Individual and Competitive Experiments, Agronomy, 10, 1113, https://doi.org/10.3390/agronomy10081113, 2020.
Campos, V.: Trace Elements in Pesticides, Commun. Soil Sci. Plan., 34, 1261–1268, https://doi.org/10.1081/CSS-120020442, 2003.
Casetta, M., Courcot, L., Caillaud, J., Dumoulin, D., Alaimo, V., Cornille, V., Billon, G., Courcot, D., Hermoso, M., and Philippe, S.: Use of potentially toxic elements in sedimentable industrial dust to trace their input in soils (Northern France), J. Soils Sediments, 1–21, https://doi.org/10.1007/s11368-024-03817-7, 2024.
Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A. F., Savignac, F., Soucémarianadin, L. N., and Barré, P.: A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018, 2018.
Chapman, D. V. (Ed.): Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring, 2nd Edn., E & FN Spon, London, 626 pp., ISBN 978-0-419-21590-5, 1996.
Chen, C.-W., Kao, C. M., Chen, C.-F., and Dong, C.-D.: Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan, Chemosphere, 66, 1431–40, https://doi.org/10.1016/j.chemosphere.2006.09.030, 2007.
Chitolina, G. M., Mendes, K. F., Almeida, C. S., Alonso, F. G., Junqueira, L. V., and Tornisielo, V. L.: Influence of Soil Depth on Sorption and Desorption Processes of Hexazinone, Planta Daninha, 38, e020217734, https://doi.org/10.1590/S0100-83582020380100016, 2020.
Crea, F., Foti, C., Milea, D., and Sammartano, S.: Speciation of Cadmium in the Environment, in: Cadmium: From Toxicity to Essentiality, edited by: Sigel, A., Sigel, H., and Sigel, R. K., Springer Netherlands, Dordrecht, 63–83, https://doi.org/10.1007/978-94-007-5179-8_3, 2013.
Crispo, M., Dobson, M. C., Blevins, R. S., Meredith, W., Lake, J. A., and Edmondson, J. L.: Heavy metals and metalloids concentrations across UK urban horticultural soils and the factors influencing their bioavailability to food crops, Environ. Pollut., 288, 117960, https://doi.org/10.1016/j.envpol.2021.117960, 2021.
DesMarais, T. L. and Costa, M.: Mechanisms of Chromium-Induced Toxicity, Curr. Opin. Toxicol., 14, 1–7, https://doi.org/10.1016/j.cotox.2019.05.003, 2019.
Disnar, J.-R., Guillet, B., Kéravis, D., Di-Giovanni, C., and Sebag, D.: Soil organic matter (SOM) characterization by Rock-Eval pyrolysis, Org. Geochem., 34, 327–343, https://doi.org/10.1016/S0146-6380(02)00239-5, 2003.
Donisa, C., Mocanu, R., and Steinnes, E.: Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils, Geoderma, 111, 75–84, https://doi.org/10.1016/S0016-7061(02)00254-9, 2003.
Douay, F., Pelfrêne, A., Planque, J., Fourrier, H., Richard, A., Roussel, H., and Girondelot, B.: Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables, Environ. Monit. Assess., 185, 3665–3680, https://doi.org/10.1007/s10661-012-2818-3, 2013.
Dror, I., Yaron, B., and Berkowitz, B.: The Human Impact on All Soil-Forming Factors during the Anthropocene, ACS Environ. Au, 2, 11–19, https://doi.org/10.1021/acsenvironau.1c00010, 2022.
Duchaufour, P.: Humification et écologie, Cahiers ORSTOM, Série Pédologie, 8, 379–390, 1970.
Duchaufour, P., Faivre, P., Poulenard, J., and Gury, M.: Introduction à la science du sol: sol, végétation, environnement: licence 3, master, Capes, Dunod, Malakoff (Hauts-de-Seine), ISBN 978-2-10-081992-8, 2020.
Duodu, G. O., Goonetilleke, A., and Ayoko, G. A.: Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia, Mar. Pollut. Bull., 117, 523–531, https://doi.org/10.1016/j.marpolbul.2017.02.017, 2017.
Duzgoren-Aydin, N. S., Wong, C. S. C., Aydin, A., Song, Z., You, M., and Li, X. D.: Heavy Metal Contamination and Distribution in the Urban Environment of Guangzhou, SE China, Environ. Geochem. Hlth., 28, 375–391, https://doi.org/10.1007/s10653-005-9036-7, 2006.
Emadodin, I. and Bork, H. R.: Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview, J. Land Use Sci., 7, 203–219, https://doi.org/10.1080/1747423X.2011.560292, 2012.
Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A.: Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution, Rev. Inst. Fr. Pet. Ann., 32, 23–42, https://doi.org/10.2516/ogst:1977002, 1977.
Espitalié, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval et ses applications. Deuxième partie., Rev. Inst. Fr. Pet. Ann., 40, 755–784, https://doi.org/10.2516/ogst:1985045, 1985.
Falsone, G., Celi, L., Caimi, A., Simonov, G., and Bonifacio, E.: The effect of clear cutting on podzolisation and soil carbon dynamics in boreal forests (Middle Taiga zone, Russia), Geoderma, 177–178, 27–38, https://doi.org/10.1016/j.geoderma.2012.01.036, 2012.
FAO (edn.): World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps, FAO, Rome, ISBN 978-92-5-108369-7, 2014.
FAO and UNEP: Global assessment of soil pollution – Summary for policy makers, Rome, FAO, https://doi.org/10.4060/cb4827en, 2021.
Fendorf, S. E.: Surface reactions of chromium in soils and waters, Geoderma, 67, 55–71, https://doi.org/10.1016/0016-7061(94)00062-F, 1995.
Feng, X., Hong, Y., Hong, B., and Ni, J.: Mobility of some potentially toxic trace elements in the coal of Guizhou, China, Environ. Geol., 39, 372–377, https://doi.org/10.1007/s002540050016, 2000.
Fernández-Turiel, J. L., de Carvalho, W., Cabañas, M., Querol, X., and López-Soler, A.: Mobility of heavy metals from coal fly ash, Geo, 23, 264–270, https://doi.org/10.1007/BF00766741, 1994.
Fiedler, S., Vepraskas, M. J., and Richardson, J. L.: Soil Redox Potential: Importance, Field Measurements, and Observations, in: Advances in Agronomy, vol. 94, edited by: Sparks, D. L., Academic Press, 1–54, https://doi.org/10.1016/S0065-2113(06)94001-2, 2007.
Fijałkowski, K., Kacprzak, M., Grobelak, A., and Placek, A.: The influence of selected soil parameters on the mobility of heavy metals in soil, Inẓynieria i Ochrona Środowiska/Engineering and Protection of Environment, 15, 81–92, 2012.
Gardner, M., Comber, S., Scrimshaw, M. D., Cartmell, E., Lester, J., and Ellor, B.: The significance of hazardous chemicals in wastewater treatment works effluents, Sci. Total Environ., 437, 363–372, https://doi.org/10.1016/j.scitotenv.2012.07.086, 2012.
Géorisques: Pollution des sols, SIS et anciens sites industriels: https://www.georisques.gouv.fr/risques/sites-et-sols-pollues/donnees, last access: 17 April 2023a.
Géorisques: Registre des émissions polluantes: https://www.georisques.gouv.fr/risques/registre-des-emissions-polluantes/etablissement/donnees, last access: 17 April 2023b.
Girard, M.-C.: Sols et environnement: cours, exercices et études de cas, Dunod, Paris, ISBN 978-2-10-005520-3, 2005.
GIS Sol and RMT Sols et Territoires: Pédologie – Les sols dominants de France métropolitaine, https://www.gissol.fr/donnees/carte-sur-le-geoportail-4789 (last access: 9 October 2023), 2019.
Goix, S., Mombo, S., Schreck, E., Pierart, A., Lévêque, T., Deola, F., and Dumat, C.: Field isotopic study of lead fate and compartmentalization in earthworm–soil–metal particle systems for highly polluted soil near Pb recycling factory, Chemosphere, 138, 10–17, https://doi.org/10.1016/j.chemosphere.2015.05.010, 2015.
Goldberg, S., Forster, H. s., and Godfrey, C. l.: Molybdenum Adsorption on Oxides, Clay Minerals, and Soils, Soil Sci. Soc. Am. J., 60, 425–432, https://doi.org/10.2136/sssaj1996.03615995006000020013x, 1996.
Guo, G., Wu, F., Xie, F., and Zhang, R.: Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China, J. Environ. Sci., 24, 410–418, https://doi.org/10.1016/S1001-0742(11)60762-6, 2012.
Hailegnaw, N. S., Bayabil, H. K., Li, Y. C., and Gao, B.: Seawater flooding of calcareous soils: Implications for trace and alkaline metals mobility, Sci. Total Environ., 927, 172210, https://doi.org/10.1016/j.scitotenv.2024.172210, 2024.
Hamdoun, H., Leleyter, L., Van-Veen, E., Coggan, J., Basset, B., Lemoine, M., and Baraud, F.: Comparison of three procedures (single, sequential and kinetic extractions) for mobility assessment of Cu, Pb and Zn in harbour sediments, CR Geosci., 347, 94–102, https://doi.org/10.1016/j.crte.2015.03.003, 2015.
Han, L., Chen, B., Liu, T., and Choi, Y.: Leaching Characteristics of Iron and Manganese from Steel Slag with Repetitive Replenishment of Leachate, KSCE J. Civ. Eng., 23, 3297–3304, https://doi.org/10.1007/s12205-019-0250-8, 2019.
Hanna, K., Lassabatere, L., and Bechet, B.: Zinc and lead transfer in a contaminated roadside soil: Experimental study and modeling, J. Hazard. Mater., 161, 1499–1505, https://doi.org/10.1016/j.jhazmat.2008.04.124, 2009.
Harb, M. K., Ebqa'ai, M., Al-Rashidi, A., Alaziqi, B. H., Al Rashdi, M. S., and Ibrahim, B.: Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia, Environ. Earth Sci., 74, 1755–1763, 2015.
He, Z. L., Yang, X. E., and Stoffella, P. J.: Trace elements in agroecosystems and impacts on the environment, J. Trace Elem. Med. Bio., 19, 125–140, https://doi.org/10.1016/j.jtemb.2005.02.010, 2005.
Hernandez-Soriano, M. C. and Jimenez-Lopez, J. C.: Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals, Sci. Total Environ., 423, 55–61, https://doi.org/10.1016/j.scitotenv.2012.02.033, 2012.
Hetényi, M. and Nyilas, T.: Soil Organic Matter Characterization Using S3 and S4 Signals from Rock-Eval Pyrolysis, Pedosphere, 24, 563–574, https://doi.org/10.1016/S1002-0160(14)60042-4, 2014.
Hleis, D., Fernández-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T., and Courcot, D.: Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant, J. Hazard. Mater., 250–251, 246–255, https://doi.org/10.1016/j.jhazmat.2013.01.080, 2013.
Holtzapffel, T.: Les minéraux argileux: préparation, analyse diffractométrique et détermination, Société géologique du Nord, technical publication, 1985.
Impellitteri, C. A., Lu, Y., Saxe, J. K., Allen, H. E., and Peijnenburg, W. J. G. M.: Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils, Environ. Int., 28, 401–410, https://doi.org/10.1016/S0160-4120(02)00065-X, 2002.
Kandpal, G., Srivastava, P. C., and Ram, B.: Kinetics of Desorption of Heavy Metals from Polluted Soils: Influence of Soil Type and Metal Source, Water Air Soil Poll., 161, 353–363, https://doi.org/10.1007/s11270-005-5548-0, 2005.
Kassambara, A. and Mundt, F.: Extract and Visualize the Results of Multivariate Data Analyses [R package factoextra version 1.0.7], 2020.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., and Courcot, D.: PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model, J. Environ. Sci., 40, 114–128, https://doi.org/10.1016/j.jes.2015.10.025, 2016.
Khademi, H., Gabarrón, M., Abbaspour, A., Martínez-Martínez, S., Faz, A., and Acosta, J. A.: Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil, Chemosphere, 217, 695–705, https://doi.org/10.1016/j.chemosphere.2018.11.045, 2019.
Kiciñska, A.: Physical and chemical characteristics of slag produced during Pb refining and the environmental risk associated with the storage of slag, Environ. Geochem. Hlth., 43, 2723–2741, https://doi.org/10.1007/s10653-020-00738-5, 2021.
King, E. K., Perakis, S. S., and Pett-Ridge, J. C.: Molybdenum isotope fractionation during adsorption to organic matter, Geochim. Cosmochim. Ac., 222, 584–598, https://doi.org/10.1016/j.gca.2017.11.014, 2018.
Kubier, A., Wilkin, R. T., and Pichler, T.: Cadmium in soils and groundwater: A review, Appl. Geochem., 108, 1–16, https://doi.org/10.1016/j.apgeochem.2019.104388, 2019.
Kubová, J., Matúš, P., Bujdoš, M., Hagarová, I., and Medved', J.: Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil–plant metal transfer predictions in contaminated lands, Talanta, 75, 1110–1122, https://doi.org/10.1016/j.talanta.2008.01.002, 2008.
Lafargue, E., Marquis, F., and Pillot, D.: Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies, Rev. Inst. Fr. Pet. Ann., 53, 421–437, https://doi.org/10.2516/ogst:1998036, 1998.
Lasota, J., Błoñska, E., Łyszczarz, S., and Tibbett, M.: Forest Humus Type Governs Heavy Metal Accumulation in Specific Organic Matter Fractions, Water Air Soil Poll., 231, 80, https://doi.org/10.1007/s11270-020-4450-0, 2020.
Lê, S., Josse, J., and Husson, F.: FactoMineR: A Package for Multivariate Analysis, J. Stat. Softw., 25, 1–18, https://doi.org/10.18637/jss.v025.i01, 2008.
Lee, C. S., Li, X., Shi, W., Cheung, S. C., and Thornton, I.: Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics, Sci. Total Environ., 356, 45–61, https://doi.org/10.1016/j.scitotenv.2005.03.024, 2006.
Leifeld, J. and Kögel-Knabner, I.: Organic carbon and nitrogen in fine soil fractions after treatment with hydrogen peroxide, Soil Biol. Biochem., 33, 2155–2158, https://doi.org/10.1016/S0038-0717(01)00127-4, 2001.
Leplat, J., Sommé, J., Baeteman, C., and Paepe, R.: Carte géologique de la France à 1 50 000 – Dunkerque-Hondschoote, 1988.
Li, X., Lan, X., Liu, W., Cui, X., and Cui, Z.: Toxicity, migration and transformation characteristics of lead in soil-plant system: Effect of lead species, J. Hazard. Mater., 395, 122676, https://doi.org/10.1016/j.jhazmat.2020.122676, 2020.
Li, Z. and Shuman, L. M.: Heavy metal movement in metal-contaminated soil profiles, Soil Sci., 161, 736–750, https://doi.org/10.1097/00010694-199610000-00003, 1996.
Luo, W. T., Nelson, P. N., Li, M.-H., Cai, J. P., Zhang, Y. Y., Zhang, Y. G., Yang, S., Wang, R. Z., Wang, Z. W., Wu, Y. N., Han, X. G., and Jiang, Y.: Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China, Biogeosciences, 12, 7047–7056, https://doi.org/10.5194/bg-12-7047-2015, 2015.
Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., and Madrid, L.: Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions, Environ. Pollut., 147, 713–722, https://doi.org/10.1016/j.envpol.2006.09.005, 2007.
Manta, D. S., Angelone, M., Bellanca, A., Neri, R., and Sprovieri, M.: Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy, Sci. Total Environ., 300, 229–243, https://doi.org/10.1016/S0048-9697(02)00273-5, 2002.
Minami, K.: Soil and humanity: Culture, civilization, livelihood and health, Soil Sci. Plant Nutr., 55, 603–615, https://doi.org/10.1111/j.1747-0765.2009.00401.x, 2009.
Mombelli, D., Mapelli, C., Barella, S., Di Cecca, C., Le Saout, G., and Garcia-Diaz, E.: The effect of microstructure on the leaching behaviour of electric arc furnace (EAF) carbon steel slag, Process Saf. Environ., 102, 810–821, https://doi.org/10.1016/j.psep.2016.05.027, 2016.
Ortega Montoya, C. Y., López-Pérez, A. O., Ugalde Monzalvo, M., and Ruvalcaba Sánchez, Ma. L. G.: Multidimensional Urban Exposure Analysis of Industrial Chemical Risk Scenarios in Mexican Metropolitan Areas, Int. J. Env. Res. Pub. He., 18, 5674, https://doi.org/10.3390/ijerph18115674, 2021.
Orucoglu, E., Grangeon, S., Gloter, A., Robinet, J.-C., Madé, B., and Tournassat, C.: Competitive Adsorption Processes at Clay Mineral Surfaces: A Coupled Experimental and Modeling Approach, ACS Earth Space Chem., 6, 144–159, https://doi.org/10.1021/acsearthspacechem.1c00323, 2022.
Otunola, B. O. and Ololade, O. O.: A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environmental Technology and Innovation, 18, 100692, https://doi.org/10.1016/j.eti.2020.100692, 2020.
Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C. W., Hashimoto, Y., Hou, D., Bolan, N. S., Rinklebe, J., and Ok, Y. S.: Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review, Environ. Int., 134, 105046, https://doi.org/10.1016/j.envint.2019.105046, 2020.
Panagos, P., Ballabio, C., Lugato, E., Jones, A., Borrelli, P., Scarpa, S., Orgiazzi, A., and Montanarella, L.: Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils, Sustainability, 10, 2380, https://doi.org/10.3390/su10072380, 2018.
Pelfrêne, A., Sahmer, K., Waterlot, C., Glorennec, P., Douay, F., and Le Bot, B.: Evaluation of single-extraction methods to estimate the oral bioaccessibility of metal(loid)s in soils, Sci. Total Environ., 727, 138553, https://doi.org/10.1016/j.scitotenv.2020.138553, 2020.
Pellegrini, E., Contin, M., Mazhar, S., Bravo, C., and De Nobili, M.: Flooding by sea and brackish waters enhances mobility of Cd, Zn and Pb from airborne dusts in coastal soils, Sci. Total Environ., 922, 171038, https://doi.org/10.1016/j.scitotenv.2024.171038, 2024.
Philippe, S., Leterme, C., Lesourd, S., Courcot, L., Haack, U., and Caillaud, J.: Bioavailability of sediment-borne lead for ragworms (Hediste diversicolor) investigated by lead isotopes, Appl. Geochem., 23, 2932–2944, https://doi.org/10.1016/j.apgeochem.2008.04.012, 2008.
Preston, C. M. and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3, 397–420, https://doi.org/10.5194/bg-3-397-2006, 2006.
QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial Foundation Project, https://qgis.org (last access: 16 March 2023), 2023.
Querol, X., Fernández-Turiel, J., and López-Soler, A.: Trace elements in coal and their behaviour during combustion in a large power station, Fuel, 74, 331–343, https://doi.org/10.1016/0016-2361(95)93464-O, 1995.
R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org (last access: 16 March 2023), 2022.
Rajmohan, N., Prathapar, S. A., Jayaprakash, M., and Nagarajan, R.: Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin, Environ. Monit. Assess., 186, 5411–5427, https://doi.org/10.1007/s10661-014-3790-x, 2014.
Rao, C. R. M., Sahuquillo, A., and Lopez-Sanchez, J. F.: Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils, Anal. Chim. Acta, 662, 128–136, https://doi.org/10.1016/j.aca.2010.01.006, 2010.
Reimann, C. and De Caritat, P.: Chemical elements in the environment: factsheets for the geochemist and environmental scientist, Springer, Berlin, New York, 397 pp., ISBN 978-3-540-63670-0, 1998.
Ren, Z. L., Sivry, Y., Dai, J., Tharaud, M., Cordier, L., and Benedetti, M. F.: Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil, Eur. J. Soil Sci., 66, 973–982, https://doi.org/10.1111/ejss.12298, 2015.
Rengasamy, P. and Churchman, G. J.: Cation exchange capacity, exchangeable cations and sodicity, Collingwood, Vic, CSIRO Publishing, ISBN 978-0-643-06376-1, 1999.
Richer-De-Forges, A. C., Feller, C., Jamagne, M., and Arrouays, D. D.: Perdus dans le triangle des textures, Etude et Gestion des Sols, 15, p. 97, 2008.
Roosa, S., Prygiel, E., Lesven, L., Wattiez, R., Gillan, D., Ferrari, B. J. D., Criquet, J., and Billon, G.: On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach, Environ. Sci. Pollut. R., 23, 10679–10692, https://doi.org/10.1007/s11356-016-6198-z, 2016.
Saenger, A., Cécillon, L., Sebag, D., and Brun, J.-J.: Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: A Rock–Eval pyrolysis survey, Org. Geochem., 54, 101–114, https://doi.org/10.1016/j.orggeochem.2012.10.008, 2013.
dos Santos, J. V., Fregolente, L. G., Mounier, S., Hajjoul, H., Ferreira, O. P., Moreira, A. B., and Bisinoti, M. C.: Fulvic acids from Amazonian anthropogenic soils: Insight into the molecular composition and copper binding properties using fluorescence techniques, Ecotox. Environ. Safe., 205, 111173, https://doi.org/10.1016/j.ecoenv.2020.111173, 2020.
Sarkar, B., Mukhopadhyay, R., Ramanayaka, S., Bolan, N., and Ok, Y. S.: The role of soils in the disposition, sequestration and decontamination of environmental contaminants, Philos. T. R. Soc. B, 376, 20200177, https://doi.org/10.1098/rstb.2020.0177, 2021.
Schnitzer, M. and Kerndorff, H.: Reactions of fulvic acid with metal ions, Water Air Soil Poll., 15, 97–108, https://doi.org/10.1007/BF00285536, 1981.
Schulin, R., Curchod, F., Mondeshka, M., Daskalova, A., and Keller, A.: Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria), Geoderma, 140, 52–61, https://doi.org/10.1016/j.geoderma.2007.03.007, 2007.
Shi, Z., Peltier, E., and Sparks, D. L.: Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation, Environ. Sci. Technol., 46, 2212–2219, https://doi.org/10.1021/es202376c, 2012.
Smedley, P. L. and Kinniburgh, D. G.: Molybdenum in natural waters: A review of occurrence, distributions and controls, Appl. Geochem., 84, 387–432, https://doi.org/10.1016/j.apgeochem.2017.05.008, 2017.
Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J. I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J. M., Adhya, T., Scholes, R. J., and Scholes, M. C.: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils, Soil, 1, 665–685, https://doi.org/10.5194/soil-1-665-2015, 2015.
Smolders, E. and Degryse, F.: Fate and Effect of Zinc from Tire Debris in Soil, Environ. Sci. Technol., 36, 3706–3710, https://doi.org/10.1021/es025567p, 2002.
Snape, I., Scouller, R. C., Stark, S. C., Stark, J., Riddle, M. J., and Gore, D. B.: Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments, Chemosphere, 57, 491–504, https://doi.org/10.1016/j.chemosphere.2004.05.042, 2004.
Soil Science Division Staff: Soil survey manual, in: USDA Handbook 18, edited by: Ditzler, C., Scheffe, K., and Monger, H. C., Government Printing Office, Washington, D. C., 639, ISBN 978-016-093743-9, 2017.
Stavi, I., Bel, G., and Zaady, E.: Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review, Agron. Sustain. Dev., 36, 32, https://doi.org/10.1007/s13593-016-0368-8, 2016.
Sterckeman, T., Douay, F., Proix, N., and Fourrier, H.: Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France, Environ. Pollut., 107, 377–389, https://doi.org/10.1016/S0269-7491(99)00165-7, 2000.
Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., and Schvartz, C.: Factors affecting trace element concentrations in soils developed on recent marine deposits from northern France, Appl. Geochem., 19, 89–103, https://doi.org/10.1016/S0883-2927(03)00085-4, 2004.
Sun, J., Yu, R., Hu, G., Su, G., and Zhang, Y.: Tracing of heavy metal sources and mobility in a soil depth profile via isotopic variation of Pb and Sr, Catena, 171, 440–449, https://doi.org/10.1016/j.catena.2018.07.040, 2018.
Taylor, S. R. and McLennan, S. M.: The geochemical evolution of the continental crust, Rev. Geophys., 33, 241–265, https://doi.org/10.1029/95RG00262, 1995.
Tetteh, R. N.: Chemical soil degradation as a result of contamination: A review, JSSEM, 6, 301–308, https://doi.org/10.5897/JSSEM15.0499, 2015.
Townsend, A. T., Palmer, A. S., Stark, S. C., Samson, C., Scouller, R. C., and Snape, I.: Trace metal characterisation of marine sediment reference materials MESS-3 and PACS-2 in dilute HCl extracts, Mar. Pollut. Bull., 54, 236–239, https://doi.org/10.1016/j.marpolbul.2006.11.002, 2007.
Vandenbroucke, M. and Largeau, C.: Kerogen origin, evolution and structure, Org. Geochem., 38, 719–833, https://doi.org/10.1016/j.orggeochem.2007.01.001, 2007.
Varadachari, C., Mondal, A. H., Dulal, C., N., and Ghosh, K.: Clay-humus complexation: Effect of pH and the nature of bonding, Soil Biol. Biochem., 26, 1145–1149, https://doi.org/10.1016/0038-0717(94)90136-8, 1994.
Warwick, P., Hall, A., Pashley, V., Van der Lee, J., and Maes, A.: Zinc and cadmium mobility in sand: effects of pH, speciation, Cation Exchange Capacity (CEC), humic acid and metal ions, Chemosphere, 36, 2283–2290, https://doi.org/10.1016/S0045-6535(97)10197-7, 1998.
Waterlot, C., Douay, F., and Pelfrêne, A.: Chemical Availability of Cd, Pb and Zn in Anthropogenically Polluted Soil: Assessing the Geochemical Reactivity and Oral Bioaccessibility, Pedosphere, 27, 616–629, https://doi.org/10.1016/S1002-0160(17)60356-4, 2017.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation Matrix, https://CRAN.R-project.org/package=corrplot (last access: 16 March 2023), 2021.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, 2nd edn. 2016, Springer International Publishing: Imprint: Springer, Cham, 1 pp., https://doi.org/10.1007/978-3-319-24277-4, 2016.
Williams, D. E., Vlamis, J., Pukite, A. H., and Corey, J. E.: Metal movement in sludge-amended soils: A nine-year study, Soil Sci., 143, 124–131, https://doi.org/10.1097/00010694-198702000-00007, 1987.
Ye, C., Li, S., Zhang, Y., and Zhang, Q.: Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China, J. Hazard. Mater., 191, 366–372, https://doi.org/10.1016/j.jhazmat.2011.04.090, 2011.
Yong, R. N., Mohamed, A.-M. O., and Warkentin, B. P.: Principles of contaminant transport in soils, Elsevier, Amsterdam; New York, 327 pp., ISBN 978-0-444-88293-6, 1992.
Yu, D., Qiu, W., Zhang, Z., Glass, K., Su, J., DeMeo, D. L., Tantisira, K., and Weiss, S. T.: corTest: Robust Tests for Equal Correlation, https://CRAN.R-project.org/package=corTes (last access: 16 March 2023), 2020.
Yu, H., Li, C., Yan, J., Ma, Y., Zhou, X., Yu, W., Kan, H., Meng, Q., Xie, R., and Dong, P.: A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil, RSC Adv., 13, 3505–3519, https://doi.org/10.1039/D2RA07095B, 2023.
Yu, Z., Liu, E., Lin, Q., Zhang, E., Yang, F., Wei, C., and Shen, J.: Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning, Environ. Pollut., 269, 116212, https://doi.org/10.1016/j.envpol.2020.116212, 2021.
Zhao, S., Duan, Y., Lu, J., Gupta, R., Pudasainee, D., Liu, S., Liu, M., and Lu, J.: Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants, Fuel, 232, 463–469, https://doi.org/10.1016/j.fuel.2018.05.135, 2018.
Zhuang, P., McBride, M. B., Xia, H., Li, N., and Li, Z.: Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China, Sci. Total Environ., 407, 1551–1561, https://doi.org/10.1016/j.scitotenv.2008.10.061, 2009.
Short summary
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our work reveals the contamination of urban soils by metals from industrial dust, including Cr, Ni, Mo, Mn, Cd and Zn. While Cr, Ni and Mo are relatively stable in soils, Mn, Cd and Zn are more mobile and may pose environmental and health problems. Our findings highlight the need for careful consideration of future land use near industrial emitters, such as allotment gardens, due to these potential hazards.
This study examines soils in the highly industrialized Dunkerque agglomeration in France. Our...