Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-381-2025
https://doi.org/10.5194/soil-11-381-2025
SOIL Letters
 | Highlight paper
 | 
20 May 2025
SOIL Letters | Highlight paper |  | 20 May 2025

Calcium is associated with specific soil organic carbon decomposition products

Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico

Related authors

Availability of labile carbon controls the temperature-dependent response of soil organic matter decomposition in alpine soils
Dario Püntener, Tatjana Carina Speckert, Yves-Alain Brügger, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1546,https://doi.org/10.5194/egusphere-2025-1546, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Subsets of geostationary satellite data over international observing network sites for studying the diurnal dynamics of energy, carbon, and water cycles
Hirofumi Hashimoto, Weile Wang, Taejin Park, Sepideh Khajehei, Kazuhito Ichii, Andrew Michaelis, Alberto Guzman, Ramakrishna Nemani, Margaret Torn, Koong Yi, and Ian Brosnan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-33,https://doi.org/10.5194/essd-2025-33, 2025
Preprint under review for ESSD
Short summary
Warming accelerates the decomposition of root biomass in a temperate forest only in topsoil but not in subsoil
Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, and Michael W. I. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-299,https://doi.org/10.5194/egusphere-2025-299, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Afforestation induced shift in the microbial community explains enhanced decomposition of subsoil organic matter
Tatjana Carina Speckert, Arnaud Huguet, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-870,https://doi.org/10.5194/egusphere-2024-870, 2024
Preprint archived
Short summary
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024,https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary

Related subject area

Soils and biogeochemical cycling
Gradual drying of permafrost peat decreases carbon dioxide production in drier peat plateaus but not in wetter fens and bogs
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025,https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025,https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025,https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Depth dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025,https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
SOIL, 11, 141–147, https://doi.org/10.5194/soil-11-141-2025,https://doi.org/10.5194/soil-11-141-2025, 2025
Short summary

Cited articles

Beauvois, A., Vantelon, D., Jestin, J., Rivard, C., Bouhnik-Le Coz, M., Dupont, A., Briois, V., Bizien, T., Sorrentino, A., Wu, B., Appavou, M.-S., Lotfi-Kalahroodi, E., Pierson-Wickmann, A.-C., and Davranche, M.: How does calcium drive the structural organization of iron–organic matter aggregates? A multiscale investigation, Environ. Sci.-Nano, 7, 2833–2849, https://doi.org/10.1039/D0EN00412J, 2020. 
Chen, C., Dynes, J. J., Wang, J., and Sparks, D. L.: Properties of Fe-organic matter associations via coprecipitation versus adsorption, Environ. Sci. Technol., 48, 13751–13759, https://doi.org/10.1021/es503669u, 2014. 
Edwards, A. P. and Bremner, J. M.: Microaggregates in soil, J. Soil Sci., 18, 64, https://doi.org/10.1111/j.1365-2389.1967.tb01488.x, 1967. 
Fernández-Ugalde, O., Virto, I., Barré, P., Apesteguía, M., Enrique, A., Imaz, M. J., and Bescansa, P.: Mechanisms of macroaggregate stabilisation by carbonates: implications for organic matter protection in semi-arid calcareous soils, Soil Res., 52, 180–192, https://doi.org/10.1071/SR13234, 2014. 
Gaudinski, J. B., Torn, M. S., Riley, W. J., Swanston, C., Trumbore, S. E., Joslin, J. D., Majdi, H., Dawson, T. E., and Hanson, P. J.: Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling, Glob. Change Biol., 15, 992–1014, https://doi.org/10.1111/j.1365-2486.2008.01736.x, 2009. 
Download
Executive editor
This study investigates interactions between soil organic carbon (SOC) and calcium (Ca). It reveals that Ca contributes to SOC stability even in acidic soils, a finding that departs from previous assumptions that Ca's role is limited to neutral or alkaline soils. It also investigates the formation mechanisms driving the association of Ca with a characteristic fraction of SOC, highlighting the importance of decomposition processes in its formation. In this work, the authors employ advanced spectromicroscopy and targeted experiments to confirm that Ca binds SOC compounds rich in aromatic and phenolic groups after decomposition, preventing their loss as dissolved organic carbon. The identification of this biogeochemical mechanism has direct implications for improving soil carbon models and guiding Ca amendment practices in agriculture, enhancing soil carbon retention and contributing to climate resilience.
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Share