Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-609-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Tatjana C. Speckert
CORRESPONDING AUTHOR
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Jeannine Suremann
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Konstantin Gavazov
Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Maria J. Santos
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Frank Hagedorn
Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Guido L. B. Wiesenberg
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Related authors
Dario Püntener, Tatjana Carina Speckert, Yves-Alain Brügger, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1546, https://doi.org/10.5194/egusphere-2025-1546, 2025
Short summary
Short summary
Alpine soils store much carbon but warming and changes in vegetation could reverse this by turning them into carbon sources. In a one-year laboratory study, we examined alpine forest and pasture soils and added fresh grass litter marked with a carbon tracer to track decomposition under different temperatures. Our findings reveal that fresh plant material drives soil breakdown more than temperature alone, offering new insights into how climate change may affect carbon storage in mountain regions.
Tatjana Carina Speckert, Arnaud Huguet, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-870, https://doi.org/10.5194/egusphere-2024-870, 2024
Preprint archived
Short summary
Short summary
Afforestation on former pasture and its potential implication on the soil microbial community structure remains still an open question, particularly in mountainous regions. We investigate the effect of afforestation on a subalpine pasture on the soil microbial community structure by combining the analysis of PLFA and GDGTs. We found differences in the microbial community structure with evidence of increasing decomposition of soil organic matter due to the alteration in substrate quality.
Claudia Guidi, Sia Gosheva-Oney, Markus Didion, Roman Flury, Lorenz Walthert, Stephan Zimmermann, Brian J. Oney, Pascal A. Niklaus, Esther Thürig, Toni Viskari, Jari Liski, and Frank Hagedorn
Biogeosciences, 22, 4107–4122, https://doi.org/10.5194/bg-22-4107-2025, https://doi.org/10.5194/bg-22-4107-2025, 2025
Short summary
Short summary
Predicting soil organic carbon (SOC) stocks in forests is crucial to determining the C balance, yet drivers of SOC stocks remain uncertain at large scales. Across a broad environmental gradient in Switzerland, we compared measured SOC stocks with those modeled by Yasso, which is commonly used for greenhouse gas budgets. We show that soil mineral properties and climate are the main controls of SOC stocks, indicating that better accounting of these processes will advance the accuracy of SOC stock predictions.
Kaan Karaman, Yuchang Jiang, Damien Robert, Vivien Sainte Fare Garnot, Maria Joao Santos, and Jan Dirk Wegner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 487–494, https://doi.org/10.5194/isprs-annals-X-G-2025-487-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-487-2025, 2025
Frank Hagedorn, Josephine Imboden, Pavel A. Moiseev, Decai Gao, Emmanuel Frossard, Patrick Schleppi, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
Biogeosciences, 22, 2959–2977, https://doi.org/10.5194/bg-22-2959-2025, https://doi.org/10.5194/bg-22-2959-2025, 2025
Short summary
Short summary
At treeline, plant species change abruptly from low-stature plants in tundra to trees in forests. Our study documents that from tundra towards forest, the litter layer becomes strongly enriched in nutrients. We show that these litter quality changes alter nutrient processing by soil microbes and increase nutrient release during decomposition in forests compared to tundra. The associated improvement in nutrient availability in forests potentially stimulates tree growth and treeline shifts.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Dario Püntener, Tatjana Carina Speckert, Yves-Alain Brügger, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1546, https://doi.org/10.5194/egusphere-2025-1546, 2025
Short summary
Short summary
Alpine soils store much carbon but warming and changes in vegetation could reverse this by turning them into carbon sources. In a one-year laboratory study, we examined alpine forest and pasture soils and added fresh grass litter marked with a carbon tracer to track decomposition under different temperatures. Our findings reveal that fresh plant material drives soil breakdown more than temperature alone, offering new insights into how climate change may affect carbon storage in mountain regions.
Chun Chung Yeung, Harald Bugmann, Frank Hagedorn, Margaux Moreno Duborgel, and Olalla Díaz-Yáñez
EGUsphere, https://doi.org/10.5194/egusphere-2025-1022, https://doi.org/10.5194/egusphere-2025-1022, 2025
Short summary
Short summary
To address the uncertain interactions between soil nitrogen (N) and carbon (C), we set up a model “experiment” in silico to test several hypothesized responses of decomposers to N. We found that decomposers were stimulated by N when decomposing high C:N detritus, but inhibited when decomposing low C:N, processed organic C. The consequence is that under exogenous N addition (e.g., contemporary N deposition), forests may accumulate light fraction C predominantly, at the expense of coarse detritus.
Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, and Michael W. I. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-299, https://doi.org/10.5194/egusphere-2025-299, 2025
Short summary
Short summary
To understand how warming will change the dynamics of roots across soil profile, we took usage of a long-term field warming experiment and incubated 13C-labelled roots at three different depths. After 3 years of incubation, warming only accelerate the decomposition of root in topsoil (< 20 cm) but not in subsoil (> 20 cm). Hydrolysable lipids derived from root, which are considered as recalcitrant compounds and could be preserved for long time in the soil, are also decomposed faster in topsoil.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Kien Nguyen and Maria J. Santos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2544, https://doi.org/10.5194/egusphere-2024-2544, 2024
Preprint archived
Short summary
Short summary
Plants affect the Amazon's water cycle through processes such as transpiration and evaporation. Characteristics related to leaf size and biomass have the most significant impact on atmospheric water content and land surface temperature, but they affect soil moisture content only minimally. These relationships also vary at extreme water cycle values and across Amazon subbasins. The study underscores the critical role of plants in maintaining the resilience of the Amazon’s hydrological processes.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Tatjana Carina Speckert, Arnaud Huguet, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-870, https://doi.org/10.5194/egusphere-2024-870, 2024
Preprint archived
Short summary
Short summary
Afforestation on former pasture and its potential implication on the soil microbial community structure remains still an open question, particularly in mountainous regions. We investigate the effect of afforestation on a subalpine pasture on the soil microbial community structure by combining the analysis of PLFA and GDGTs. We found differences in the microbial community structure with evidence of increasing decomposition of soil organic matter due to the alteration in substrate quality.
Kien Nguyen and Maria J. Santos
EGUsphere, https://doi.org/10.5194/egusphere-2023-3069, https://doi.org/10.5194/egusphere-2023-3069, 2024
Preprint archived
Short summary
Short summary
Plants can impact the water cycle in the Amazon via transpiration and evaporation. Plants characteristics relating to leaf size and biomass have the strongest influence on atmospheric water content and land surface temperature, while having little effect on soil moisture content. The relationships also vary at extreme values of water process parameters and across Amazon subbasins. This study emphasizes the role of plants in maintaining the resilience of the Amazon's hydrological processes.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021, https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Short summary
How subsoil microorganisms respond to warming is largely unknown, despite their crucial role in the soil organic carbon cycle. We observed that the subsoil microbial community composition was more responsive to warming compared to the topsoil community composition. Decreased microbial abundance in subsoils, as observed in this study, might reduce the magnitude of the respiration response over time, and a shift in the microbial community will likely affect the cycling of soil organic carbon.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Cited articles
Bárcena, T. G., Kiær, L. P., Vesterdal, L., Stefánsdóttir, H. M., Gundersen, P., and Sigurdsson, B. D.: Soil carbon stock change following afforestation in Northern Europe: A meta-analysis, Glob. Change Biol., 20, 2393–2405, https://doi.org/10.1111/gcb.12576, 2014.
Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C. M., and Crowther, T. W.: The global tree restoration potential, Science, 365, 76–79, https://doi.org/10.1126/science.aax0848, 2019.
Brändli, U. B., Abegg, M., and Allgaier Leuch, B.: Schweizerisches Landesforstinventar, Ergebnisse der vierten Erhebung 2009–2017, Birmensdorf: Eidgenöss Forschanstalt WSL, 341 pp., 2020.
Bettoni, M., Maerker, M., Sacchi, R., Bosino, A., Conedera, M., Simoncelli, L., and Vogel, S.: What makes soil landscape robust? Landscape sensitivity towards land use changes in a Swiss southern Alpine valley, Sci. Total Environ., 858, 159779, https://doi.org/10.1016/j.scitotenv.2022.159779, 2023.
Budge, K., Leifeld, J., Hiltbrunner, E., and Fuhrer, J.: Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times, Biogeosciences, 8, 1911–1923, https://doi.org/10.5194/bg-8-1911-2011, 2011.
Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., and Lindahl, B. D.: Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests, New Phytol., 205, 1525–1536, https://doi.org/10.1111/nph.13208, 2015.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Davis, M., Nordmeyer, A., Henley, D., and Watt, M.: Ecosystem carbon accretion 10 years after afforestation of depleted subhumid grassland planted with three densities of Pinus nigra, Glob. Change Biol., 13, 1414–1422, https://doi.org/10.1111/j.1365-2486.2007.01372.x, 2007.
De Deyn, G. B., Cornelissen, J. H., and Bardgett, R. D.: Plant functional traits and soil carbon sequestration in contrasting biomes, Ecol. Lett., 11, 516–531, https://doi.org/10.1111/j.1461-0248.2008.01164.x, 2008.
De Gryze, S., Six, J., Paustian, K., Morris, S. J., Paul, E. A., and Merckx, R.: Soil organic carbon pool changes following land-use conversions, Glob. Change Biol., 10, 1120–1132, https://doi.org/10.1111/j.1529-8817.2003.00786.x, 2004.
Djukic, I., Zehetner, F., Tatzber, M., and Gerzabek, M. H.: Soil organic matter stocks and characteristics along an Alpine elevation gradient, J. Plant Nutr. Soil Sc., 173, 30–38, https://doi.org/10.1002/jpln.200900027, 2010.
Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C., Subke, J. A., and Wookey, P. A.: Tree planting in organic soils does not result in net carbon sequestration on decadal timescales, Glob. Change Biol., 26, 5178–5188, https://doi.org/10.1111/gcb.15229, 2020.
Garcia-Pausas, J., Romanyà, J., Montané, F., Rios, A. I., Taull, M., Rovira, P., and Casals, P.: Are soil carbon stocks in Mountain grasslands compromised by land-use changes?, in: High Mountain Conservation in a Changing World. Advances in Global Change Research, vol 62, edited by: Catalan, J., Ninot, J., and Aniz, M., Springer, Cham, https://doi.org/10.1007/978-3-319-55982-7_9, 2017.
Grünzweig, J. M., Gelfand, I., Fried, Y., and Yakir, D.: Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland, Biogeosciences, 4, 891–904, https://doi.org/10.5194/bg-4-891-2007, 2007.
Gocke, M. I., Kessler, F., van Mourik, J. M., Jansen, B., and Wiesenberg, G. L. B.: Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands, SOIL, 2, 537–549, https://doi.org/10.5194/soil-2-537-2016, 2016.
Gosheva, S., Walthert, L., Niklaus, P. A., Zimmermann, S., Gimmi, U., and Hagedorn, F.: Reconstruction of historic forest cover changes indicates minor effects on carbon stocks in Swiss forest soils, Ecosystems, 20, 1512–1528, https://doi.org/10.1007/s10021-017-0129-9, 2017.
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: A meta-analysis, Glob. Change Biol., 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002.
Guo, L. B., Wang, M., and Gifford, R. M.: The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation, Plant Soil, 299, 251–262, https://doi.org/10.1007/s11104-007-9381-7, 2007.
Guidi, C., Vesterdal, L., Gianelle, D., and Rodeghiero, M.: Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps, Forest Ecol. Manag., 328, 103–116, https://doi.org/10.1016/j.foreco.2014.05.025, 2014.
Gunina, A., Smith, A. R., Godbold, D. L., Jones, D. L., and Kuzyakov, Y.: Response of soil microbial community to afforestation with pure and mixed species, Plant Soil, 412, 357–368, https://doi.org/10.1007/s11104-016-3073-0, 2017.
Hagedorn, F., Martin, M., Rixen, C., Rusch, S., Bebi, P., Zürcher, A., Siegwolf, R. T. W., Wipf, S., Escape, C., Roy, J., and Hättenschwiler, S.: Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline, Biogeochemistry, 97, 7–19, https://doi.org/10.1007/s10533-009-9297-9, 2010.
Hagedorn, F., Gavazov, K., and Alexander, J. M.: Above – and belowground linkages shape responses of mountain vegetation to climate change, Science, 365, 1119–1123, https://doi.org/10.1126/science.aax4737, 2019.
Hiltbrunner, D., Zimmermann, S., and Hagedorn, F.: Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage, Biogeochemistry, 115, 251–266, https://doi.org/10.1007/s10533-013-9832-6, 2013.
Hobbie, E. A., Weber, N. S., and Trappe, J. M.: Mycorrhizal vs saprotrophic status of fungi: The isotopic evidence, New Phytol., 150, 601–610, 2001.
Hong, S., Yin, G., Piao, S., Dybzinski, R., Cong, N., Li, X., Wang, K., Peñuelas, J., Zeng, H., and Chen, A.: Divergent responses of soil organic carbon to afforestation, Nature Sustainability, 3, 694–700, https://doi.org/10.1038/s41893-020-0557-y, 2020.
Jahn, R., Blume, H. P., Asio, V., Spaargaren, O., and Schad, P.: Guidelines for Soil Description, FAO, 2006.
Jansen, B. and Wiesenberg, G. L. B.: Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science, SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, 2017.
Jílková, V., Jandová, K., Cajthaml, T., Kukla, J., and Jansa, J.: Differences in the flow of spruce-derived needle leachates and root exudates through a temperate coniferous forest mineral topsoil, Geoderma, 405, 115441, https://doi.org/10.1016/j.geoderma.2021.115441, 2022.
Laganière, J., Angers, D. A., and Pare, D.: Carbon accumulation in agricultural soils after afforestation: A meta-analysis, Glob. Change Biol., 16, 439–453, https://doi.org/10.1111/j.1365-2486.2009.01930.x, 2010.
Linder, S.: Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce, Ecol. Bull., 44, 178–190, 1995.
Lorenz, M., Derrien, D., Zeller, B., Udelhoven, T., Werner, W., and Thiele-Bruhn, S.: The linkage of 13C and 15N soil depth gradients with C:N and O:C stoichiometry reveals tree species effects on organic matter turnover in soil, Biogeochemistry, 151, 203–220, https://doi.org/10.1007/s10533-020-00721-3, 2020.
Municipality of Jaun: https://www.jaun.ch (last access: 2021), 2021.
Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L.: Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging, Geosci. Model Dev., 7, 1197–1210, https://doi.org/10.5194/gmd-7-1197-2014, 2014.
Ofiti, N. O., Zosso, C. U., Soong, J. L., Solly, E. F., Torn, M. S., Wiesenberg, G. L. B., and Schmidt, M. W. I.: Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter, Soil Biol. Biochem., 156, 108185, https://doi.org/10.1016/j.soilbio.2021.108185, 2021.
Paul, K. I., Polglase, P. J., Nyakuengama, J. G., and Khanna, P. K.: Change in soil carbon following afforestation, Forest Ecol. Manag., 168, 241–257, https://doi.org/10.1016/S0378-1127(01)00740-X, 2002.
Peichl, M., Leava, N. A., and Kiely, G.: Above-and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland, Plant Soil, 350, 281–296, https://doi.org/10.1007/s11104-011-0905-9, 2012.
Pérez-Cruzado, C., Sande, B., Omil, B., Rovira, P., Martin-Pastor, M., Barros, N., Salgado, J., and Merino, A.: Organic matter properties in soils afforested with Pinus radiata, Plant Soil, 374, 381–398, https://doi.org/10.1007/s11104-013-1896-5, 2014.
Pizzeghello, D., Francioso, O., Concheri, G., Muscolo, A., and Nardi, S.: Land use affects the soil C sequestration in alpine environment, NE Italy, Forests, 8, 197, https://doi.org/10.3390/f8060197, 2017.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe, Geoderma, 192, 189–201, https://doi.org/10.1016/j.geoderma.2012.08.003, 2013.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B. A. S., Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon after land-use change in the temperate zone – Carbon response functions as a model approach, Glob. Change Biol., 17, 2415–2427, https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Post, W. M. and Kwon, K. C.: Soil carbon sequestration and land-use change: Processes and potential, Glob. Change Biol., 6, 317–327, https://doi.org/10.1046/j.1365-2486.2000.00308.x, 2000.
Prietzel, J., Zimmermann, L., Schubert, A., and Christophel, D.: Organic matter losses in German Alps Forest soils since the 1970s most likely caused by warming, Nat. Geosci., 9, 543–548, https://doi.org/10.1038/ngeo2732, 2016.
R Core Team: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 20 October 2023), 2020.
Richter-Heitmann, T., Eickhorst, T., Knauth, S., Friedrich, M. W., and Schmidt, H.: Evaluation of strategies to separate root-associated microbial communities: A crucial choice in rhizobiome research, Front. Microbiol., 7, 773, https://doi.org/10.3389/fmicb.2016.00773, 2016.
Risch, A. C., Jurgensen, M. F., Page-Dumroese, D. S., Wildi, O., and Schütz, M.: Long-term development of above-and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park, Can. J. Forest Res., 38, 1590–1602, https://doi.org/10.1139/X08-014, 2008.
Schulp, C. J., Nabuurs, G. J., Verburg, P. H., and de Waal, R. W.: Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories, Forest Ecol. Manag., 256, 482–490, https://doi.org/10.1016/j.foreco.2008.05.007, 2008.
Smal, H., Ligęza, S., Pranagal, J., Urban, D., and Pietruczyk-Popławska, D.: Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study, Forest Ecol. Manag., 451, 117536, https://doi.org/10.1016/j.foreco.2019.117536, 2019.
Solly, E., Schöning, I., Boch, S., Müller, J., Socher, S. A., Trumbore, S. E., and Schrumpf, M.: Mean age of carbon in fine roots from temperate forests and grasslands with different management, Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, 2013.
Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. I., and Torn, M. S.: Five years of whole soil warming led to loss of subsoil carbon stocks and increased CO2 efflux, Science Advances, 7, eabd1343, https://doi.org/10.1126/sciadv.abd1343, 2021.
Speckert, T., Suremann, J., Gavazov, K., Santos, M. J., Hagedorn, F., and Wiesenberg, G. L. B.: Soil organic carbon stock of an afforestation sequence on a subalpine pasture, EnviDat [data set], https://www.doi.org/10.16904/envidat.464 (last access: 30 November 2023), 2023.
Strand, L. T., Fjellstad, W., Jackson-Blake, L., and De Wit, H. A.: Afforestation of a pasture in Norway did not result in higher soil carbon, 50 years after planting, Landscape Urban Plan., 207, 104007, https://doi.org/10.1016/j.landurbplan.2020.104007, 2021.
Thuille, A. and Schulze, E. D.: Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps, Glob. Change Biol., 12, 325–342, https://doi.org/10.1111/j.1365-2486.2005.01078.x, 2006.
University of Zurich: https://www.geo.uzh.ch/en/units/2b/Services/BC-material/Environmental-matrices.html (last access: 20 November 2021), 2023.
Volk, M., Bassin, S., Lehmann, M. F., Johnson, M. G., and Andersen, C. P.: 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition, Soil Biol. Biochem., 125, 178–184, https://doi.org/10.1016/j.soilbio.2018.07.014, 2018.
WRB: FAO, World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, World Soil Resources, 2015.
Yanai, R., Currie, W., and Goodale, C.: Soil Carbon Dynamics after Forest Harvest: An ecosystem paradigm reconsidered, Ecosystems 6, 197–212, https://doi.org/10.1007/s10021-002-0206-5, 2003.
Zeeman, M. J., Hiller, R., Gilgen, A. K., Michna, P., Plüss, P., Buchmann, N., and Eugster, W.: Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland, Agr. Forest Meteorol., 150, 519–530, https://doi.org/10.1016/j.agrformet.2010.01.011, 2010.
Zimmermann, M., Leifeld, J., and Fuhrer, J.: Quantifying soil organic carbon fractions by infrared-spectroscopy, Soil Biol. Biochem., 39, 224–231, https://doi.org/10.1016/j.soilbio.2006.07.010, 2007.
Zimmermann, P., Tasser, E., Leitinger, G., and Tappeiner, U.: Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps, Agr. Ecosyst. Environ. 139, 13–22, https://doi.org/10.1016/j.agee.2010.06.010, 2010.
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures...