Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-59-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-59-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Daniel Rath
CORRESPONDING AUTHOR
Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
Nathaniel Bogie
Department of Geology, San Jose State University, San Jose, CA 95192, USA
Leonardo Deiss
School of Environment and Natural Resources, Ohio State University, Wooster, OH 44691, USA
Sanjai J. Parikh
Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
Daoyuan Wang
Department of Environmental Science and Engineering, Shanghai University, Shanghai, 200444, China
Samantha Ying
Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
Nicole Tautges
Michael Fields Agricultural Institute, East Troy, WI 53120, USA
Asmeret Asefaw Berhe
Department of Life and Environmental Sciences, University of California Merced, Merced, CA 95342, USA
Teamrat A. Ghezzehei
Department of Life and Environmental Sciences, University of California Merced, Merced, CA 95342, USA
Kate M. Scow
Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95618, USA
Related authors
No articles found.
Teneille Nel, Manisha Dolui, Abbygail R. McMurtry, Stephanie Chacon, Joseph A. Mason, Laura M. Phillips, Erika Marin-Spiotta, Marie-Anne de Graaff, Asmeret A. Berhe, and Teamrat A. Ghezzehei
EGUsphere, https://doi.org/10.5194/egusphere-2025-5164, https://doi.org/10.5194/egusphere-2025-5164, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Buried ancient topsoils (Brady paleosol, Nebraska) sequester vast SOC. We found repeated drying/rewetting causes greater C loss than continuous wetting, destabilizing the slow-cycling C pool, especially in shallower soils. Decomposition rates are higher in erosional settings. Burial depth and moisture regime are key to the long-term vulnerability of these ancient C stocks under climate change.
Leila Maria Wahab, Sora L. Kim, and Asmeret Asefaw Berhe
Biogeosciences, 22, 3915–3930, https://doi.org/10.5194/bg-22-3915-2025, https://doi.org/10.5194/bg-22-3915-2025, 2025
Short summary
Short summary
Soils are a large reservoir of carbon (C) on land, and there is uncertainty regarding how this reservoir will be affected by climate change. Currently, active research on (1) how changing precipitation patterns, a key aspect of climate change, will affect soil C and (2) how vulnerable subsoils are to climate change is still being undertaken. In this study, we examined subsoils after 20 years of experimentally manipulated precipitation shifts to see whether increasing precipitation would affect C amounts and chemistry.
Kailiang Yu, Johan van den Hoogen, Zhiqiang Wang, Colin Averill, Devin Routh, Gabriel Reuben Smith, Rebecca E. Drenovsky, Kate M. Scow, Fei Mo, Mark P. Waldrop, Yuanhe Yang, Weize Tang, Franciska T. De Vries, Richard D. Bardgett, Peter Manning, Felipe Bastida, Sara G. Baer, Elizabeth M. Bach, Carlos García, Qingkui Wang, Linna Ma, Baodong Chen, Xianjing He, Sven Teurlincx, Amber Heijboer, James A. Bradley, and Thomas W. Crowther
Earth Syst. Sci. Data, 14, 4339–4350, https://doi.org/10.5194/essd-14-4339-2022, https://doi.org/10.5194/essd-14-4339-2022, 2022
Short summary
Short summary
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance of soil fungi versus bacteria) to generate the first quantitative map of soil fungal proportion across terrestrial ecosystems. We reveal striking latitudinal trends. Fungi dominated in regions with low mean annual temperature (MAT) and net primary productivity (NPP) and bacteria dominated in regions with high MAT and NPP.
Toshiyuki Bandai and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 26, 4469–4495, https://doi.org/10.5194/hess-26-4469-2022, https://doi.org/10.5194/hess-26-4469-2022, 2022
Short summary
Short summary
Scientists use a physics-based equation to simulate water dynamics that influence hydrological and ecological phenomena. We present hybrid physics-informed neural networks (PINNs) to leverage the growing availability of soil moisture data and advances in machine learning. We showed that PINNs perform comparably to traditional methods and enable the estimation of rainfall rates from soil moisture. However, PINNs are challenging to train and significantly slower than traditional methods.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Jing Yan and Teamrat Ghezzehei
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-52, https://doi.org/10.5194/bg-2022-52, 2022
Publication in BG not foreseen
Short summary
Short summary
Although hydraulic redistribution (HR) is a well-documented phenomenon, whether it is a passive happy accident or actively controlled by roots is not well understood. Our modeling study suggests HR is long-range feedback between roots that inhabit heterogeneously resourced soil regions. When nutrients and organic matter are concentrated in shallow layers that experience frequent drying, root-exudation facilitated HR allows plants to mineralize and extract the otherwise inaccessible nutrients.
Danielle L. Gelardi, Irfan H. Ainuddin, Devin A. Rippner, Janis E. Patiño, Majdi Abou Najm, and Sanjai J. Parikh
SOIL, 7, 811–825, https://doi.org/10.5194/soil-7-811-2021, https://doi.org/10.5194/soil-7-811-2021, 2021
Short summary
Short summary
Biochar is purported to alter soil water dynamics and reduce nutrient loss when added to soils, though the mechanisms are often unexplored. We studied the ability of seven biochars to alter the soil chemical and physical environment. The flow of ammonium through biochar-amended soil was determined to be controlled through chemical affinity, and nitrate, to a lesser extent, through physical entrapment. These data will assist land managers in choosing biochars for specific agricultural outcomes.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Jing Yan, Nathaniel A. Bogie, and Teamrat A. Ghezzehei
Biogeosciences, 17, 6377–6392, https://doi.org/10.5194/bg-17-6377-2020, https://doi.org/10.5194/bg-17-6377-2020, 2020
Short summary
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
Cited articles
Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., and Mueller, C. W.: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds, Soil Biol. Biochem., 122, 19–30, https://doi.org/10.1016/j.soilbio.2018.03.026, 2018.
Aquino, A. J. A., Tunega, D., Schaumann, G. E., Haberhauer, G., Gerzabek, M. H., and Lischka, H.: The functionality of cation bridges for binding polar groups in soil aggregates, Int. J. Quantum Chem., 111, 1531–1542, https://doi.org/10.1002/qua.22693, 2011.
Baes, A. U. and Bloom, P. R.: Diffuse reflectance Fourier transform infrared (DRIFT) of humic and fulvic acids, Soil Sci. Soc. Am. J., 53, 695–700, https://doi.org/10.2136/sssaj1989.03615995005300030008x, 1989.
Banfield, C. C., Dippold, M. A., Pausch, J., Hoang, D. T. T., and Kuzyakov, Y.: Biopore history determines the microbial community composition in subsoil hotspots, Biol. Fert. Soils, 53, 573–588, https://doi.org/10.1007/S00374-017-1201-5, 2017.
Bernal, B., McKinley, D. C., Hungate, B. A., White, P. M., Mozdzer, T. J., and Megonigal, J. P.: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs, Soil Biol. Biochem., 98, 85–94, https://doi.org/10.1016/J.SOILBIO.2016.04.007, 2016.
Blake, G. R. and Hartge, K. H.: Bulk Density, in: Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods, edited by: Klute, A., SSSA Book Ser. 5.1. SSSA, ASA, Madison, WI, 363–375, Soil Science Society of America, American Society of Agronomy, https://doi.org/10.2136/sssabookser5.1.2ed.c13, 1986.
Bleam, W. F.: Soil Science Applications of Nuclear Magnetic Resonance Spectroscopy, Adv. Agron., 46, 91–155, https://doi.org/10.1016/S0065-2113(08)60579-9, 1991.
Bonkowski, M.: Protozoa and plant growth: the microbial loop in soil revisited, New Phytol., 162, 617–631, https://doi.org/10.1111/j.1469-8137.2004.01066.x, 2004.
Bossio, D. A. and Scow, K. M.: Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns, Microb. Ecol., 35, 265–278, https://doi.org/10.1007/s002489900082, 1998.
Brady, N. C. and Weil, R. R.: The Nature and Properties of Soils, 15th Edn., Pearson Education, Pearson Press,
Columbus, Ohio, ISBN-13 978-0133254488, 2017.
Brooks, E. S., Boll, J., and McDaniel, P. A.: A hillslope-scale experiment to measure lateral saturated hydraulic conductivity, Water Resour. Res., 40, 4208, https://doi.org/10.1029/2003WR002858, 2004.
Buchmann, C. and Schaumann, G. E.: The contribution of various organic matter fractions to soil–water interactions and structural stability of an agriculturally cultivated soil, J. Plant Nutr. Soil Sc., 181, 586–599, https://doi.org/10.1002/jpln.201700437, 2018.
Buyer, J. S. and Sasser, M.: High throughput phospholipid fatty acid analysis of soils, Appl.
Soil Ecol., 61, 127–130, https://doi.org/10.1016/j.apsoil.2012.06.005, 2012.
Çerçioğlu, M., Anderson, S. H., Udawatta, R. P., and Alagele, S.: Effect of cover crop management on soil hydraulic properties, Geoderma, 343, 247–253, https://doi.org/10.1016/j.geoderma.2019.02.027, 2019.
Chabbi, A., Kögel-Knabner, I., and Rumpel, C.: Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, Soil Biol. Biochem., 41, 256–261, https://doi.org/10.1016/j.soilbio.2008.10.033, 2009.
Chantigny, M. H.: Dissolved and water-extractable organic matter in soils: A review on the
influence of land use and management practices, Geoderma, 113, 357–380,
https://doi.org/10.1016/S0016-7061(02)00370-1, 2003.
Chen, G. and Weil, R. R.: Penetration of cover crop roots through compacted soils, Plant Soil, 331, 31–43, https://doi.org/10.1007/s11104-009-0223-7, 2010.
Chen, S., Martin, M. P., Saby, N. P. A., Walter, C., Angers, D. A., and Arrouays, D.: Fine resolution map of top- and subsoil carbon sequestration potential in France, Sci. Total Environ., 630, 389–400, https://doi.org/10.1016/j.scitotenv.2018.02.209, 2018.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations, Soil Till. Res., 188, 41–52, https://doi.org/10.1016/j.still.2018.04.011, 2019.
Cole, J. S. and Mathews, O. R.: Subsoil moisture under semiarid conditions, Technical Bulletins 167381, United States Department of Agriculture, Economic Research
Service, https://doi.org/10.22004/ag.econ.167381, 1939.
Colla, G., Mitchell, J. P., Joyce, B. A., Huyck, L. M., Wallender, W. W., Temple, S. R., Hsiao, T. C., and Poudel, D. D.: Soil physical properties and tomato yield and quality in alternative cropping systems, Agron. J., 92, 924–932, https://doi.org/10.2134/agronj2000.925924x, 2000.
Coonan, E. C., Kirkby, C. A., Kirkegaard, J. A., Amidy, M. R., Strong, C. L., and Richardson, A. E.: Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics, Nutr. Cycl. Agroecosys., 117, 273–298, https://doi.org/10.1007/s10705-020-10076-8, 2020.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Cui, Y., Zhang, Y., Duan, C., Wang, X., Zhang, X., Ju, W., Chen, H., Yue, S., Wang, Y., Li, S., and Fang, L.: Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems, Soil Till. Res., 197, 104463, https://doi.org/10.1016/j.still.2019.104463, 2020.
Dalal, R. C. and Henry, R. J.: Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry, Soil Sci. Soc. Am. J., 50, 120–123, https://doi.org/10.2136/sssaj1986.03615995005000010023x, 1986.
Dangal, S. R. S., Sanderman, J., Wills, S., and Ramirez-Lopez, L.: Accurate and Precise Prediction of Soil Properties from a Large Mid-Infrared Spectral Library, Soil Systems, 3, 11, https://doi.org/10.3390/SOILSYSTEMS3010011, 2019.
Deiss, L., Margenot, A. J., Culman, S. W., and Demyan, M. S.: Optimizing acquisition parameters in diffuse reflectance infrared Fourier transform spectroscopy of soils, Soil Sci. Soc. Am. J., 84, 930–948, https://doi.org/10.1002/saj2.20028, 2020.
Deiss, L., Sall, A., Demyan, M. S., and Culman, S. W.: Does crop rotation affect soil organic matter stratification in tillage systems, Soil Till. Res., 209, 104932, https://doi.org/10.1016/j.still.2021.104932, 2021.
Demyan, M. S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., and Cadisch, G.: Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem, Eur. J. Soil Sci., 63, 189–199, https://doi.org/10.1111/j.1365-2389.2011.01420.x, 2012.
de Queiroz, M. G., da Silva, T. G. F., Zolnier, S., Jardim, A. M. da R. F., de Souza, C. A. A., Araújo Júnior, G. do N., de Morais, J. E. F., and de Souza, L. S. B.: Spatial and temporal dynamics of soil moisture for surfaces with a change in land use in the semi-arid region of Brazil, CATENA, 188, 104457, https://doi.org/10.1016/J.CATENA.2020.104457, 2020.
Dick, R. P.: A review: long-term effects of agricultural systems on soil biochemical and microbial parameters, Agr. Ecosyst. Environ., 40, 25–36, https://doi.org/10.1016/0167-8809(92)90081-L, 1992.
Ding, G., Liu, X., Herbert, S., Novak, J., Amarasiriwardena, D., and Xing, B.: Effect of cover crop management on soil organic matter, Geoderma, 130, 229–239, https://doi.org/10.1016/J.GEODERMA.2005.01.019, 2006.
Doane, T. A. and Horwáth, W. R.: Spectrophotometric determination of nitrate with a single reagent, Anal. Lett., 36, 2713–2722, https://doi.org/10.1081/AL-120024647, 2003.
Drenovsky, R. E., Vo, D., Graham, K. J., and Scow, K. M.: Soil water content and organic carbon availability are major determinants of soil microbial community composition, Microb. Ecol., 48, 424–430, https://doi.org/10.1007/s00248-003-1063-2, 2004.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Glob. Change Biol., 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, 2012.
Edwards, P.: Sulfur cycling, retention, and mobility in soils: a review, available at: http://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/1998/gtrne250.pdf (last access: 10 April 2020), 1998.
Elliott, E. T.: Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils, Soil Sci. Soc. Am. J., 50, 627–633, https://doi.org/10.2136/sssaj1986.03615995005000030017x, 1986.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth for temperate agricultural crops, Field Crop. Res., 189, 68–74, https://doi.org/10.1016/j.fcr.2016.02.013, 2016.
Fanin, N., Kardol, P., Farrell, M., Nilsson, M. C., Gundale, M. J., and Wardle, D. A.: The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils, Soil Biol. Biochem., 128, 111–114, https://doi.org/10.1016/j.soilbio.2018.10.010, 2019.
Fierer, N., Allen, A. S., Schimel, J. P., and Holden, P. A.: Controls on microbial CO2 production: A comparison of surface and subsurface soil horizons, Glob. Change Biol., 9, 1322–1332, https://doi.org/10.1046/j.1365-2486.2003.00663.x, 2003a.
Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial community composition through two soil depth profiles, Soil Biol. Biochem., 35, 167–176, https://doi.org/10.1016/S0038-0717(02)00251-1, 2003b.
Franzluebbers, A. J.: Water infiltration and soil structure related to organic matter and its stratification with depth, Soil Till. Res., 66, 197–205, https://doi.org/10.1016/S0167-1987(02)00027-2, 2002.
Frostegård, Å., Tunlid, A., and Bååth, E.: Use and misuse of PLFA measurements in soils, Soil Biol. Biochem., 43, 1621–1625, https://doi.org/10.1016/j.soilbio.2010.11.021, 2011.
Ghestem, M., Sidle, R. C., and Stokes, A.: The influence of plant root systems on subsurface flow: Implications for slope stability, Bioscience, 61, 869–879, https://doi.org/10.1525/bio.2011.61.11.6, 2011.
Gulick, S. H., Grimes, D. W., Munk, D. S., and Goldhamer, D. A.: Cover-Crop-Enhanced Water Infiltration of a Slowly Permeable Fine Sandy Loam, Soil Sci. Soc. Am. J., 58, 1539–1546, https://doi.org/10.2136/sssaj1994.03615995005800050038x, 1994.
Hangen, E., Buczko, U., Bens, O., Brunotte, J., and Hüttl, R. F.: Infiltration patterns into two soils under conventional and conservation tillage: Influence of the spatial distribution of plant root structures and soil animal activity, Soil Till. Res., 63, 181–186, https://doi.org/10.1016/S0167-1987(01)00234-3, 2002.
Harrison, R. B., Footen, P. W., and Strahm, B. D.: Deep soil horizons: Contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change, Forest Sci., 57, 67–76, 2011.
Haruna, S. I., Nkongolo, N. V., Anderson, S. H., Eivazi, F., and Zaibon, S.: In situ infiltration as influenced by cover crop and tillage management, J. Soil Water Conserv., 73, 164–172, https://doi.org/10.2489/jswc.73.2.164, 2018.
Hesse, M., Meier, H., and Zeeh, B.: Spektroskopische Methoden in der Organischen Chemie, Georg Thieme Verlag, Stuttgart, https://doi.org/10.1002/pauz.19960250417, 2005 (in German).
Hicks Pries, C. E., Sulman, B. N., West, C., O'Neill, C., Poppleton, E., Porras, R. C., Castanha, C., Zhu, B., Wiedemeier, D. B., and Torn, M. S.: Root litter decomposition slows with soil depth, Soil Biol. Biochem., 125, 103–114, https://doi.org/10.1016/j.soilbio.2018.07.002, 2018.
Jenny, H.: Factors of Soil Formation: A System of Quantitative Pedology, Dover Publications,
New York, ISBN 978-05-9853-785-0, 1941.
Jilling, A., Kane, D., Williams, A., Yannarell, A. C., Davis, A., Jordan, N. R., Koide, R. T., Mortensen, D. A., Smith, R. G., Snapp, S. S., Spokas, K. A., and Stuart Grandy, A.: Rapid and distinct responses of particulate and mineral-associated organic nitrogen to conservation tillage and cover crops, Geoderma, 359, 114001, https://doi.org/10.1016/j.geoderma.2019.114001, 2020.
Johnston, A. E. and Poulton, P. R.: The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience, Eur. J. Soil Sci., 69, 113–125, https://doi.org/10.1111/ejss.12521, 2018.
Jones, D. L. and Willett, V. B.: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil, Soil Biol. Biochem., 38, 991–999, https://doi.org/10.1016/J.SOILBIO.2005.08.012, 2006.
Joyce, B. A., Wallender, W. W., Mitchell, J. P., Huyck, L. M., Temple, S. R., Brostrom, P. N., and Hsiao, T. C.: Infiltration and Soil Water Storage Under Winter Cover Cropping in California's Sacramento Valley, T. ASAE, 45, 315–326, https://doi.org/10.13031/2013.8526, 2002.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/J.SOILBIO.2012.04.002, 2012.
Kautz, T., Amelung, W., Ewert, F., Gaiser, T., Horn, R., Jahn, R., Javaux, M., Kemna, A., Kuzyakov, Y., Munch, J. C., Pätzold, S., Peth, S., Scherer, H. W., Schloter, M., Schneider, H., Vanderborght, J., Vetterlein, D., Walter, A., Wiesenberg, G. L. B., and Köpke, U.: Nutrient acquisition from arable subsoils in temperate climates: A review, Soil Biol. Biochem., 57, 1003–1022, https://doi.org/10.1016/j.soilbio.2012.09.014, 2013.
Keel, S. G., Anken, T., Büchi, L., Chervet, A., Fliessbach, A., Flisch, R., Huguenin-Elie, O., Mäder, P., Mayer, J., Sinaj, S., Sturny, W., Wüst-Galley, C., Zihlmann, U., and Leifeld, J.: Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices, Agr. Ecosyst. Environ., 286, 106654, https://doi.org/10.1016/j.agee.2019.106654, 2019.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by root exudates, Nat. Clim. Change, 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
Kirkby, C. A., Kirkegaard, J. A., Richardson, A. E., Wade, L. J., Blanchard, C., and Batten, G.: Stable soil organic matter: A comparison of ratios in Australian and other world soils, Geoderma, 163, 197–208, https://doi.org/10.1016/j.geoderma.2011.04.010, 2011.
Kirkby, C. A., Richardson, A. E., Wade, L. J., Batten, G. D., Blanchard, C., and Kirkegaard, J. A.: Carbon-nutrient stoichiometry to increase soil carbon sequestration, Soil Biol. Biochem., 60, 77–86, https://doi.org/10.1016/j.soilbio.2013.01.011, 2013.
Kong, A. Y. Y., Fonte, S. J., van Kessel, C., and Six, J.: Transitioning from standard to
minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide
emissions, and N availability in irrigated cropping systems, Soil Till. Res., 104,
256–262, https://doi.org/10.1016/J.STILL.2009.03.004, 2009.
Kuzyakov, Y.: Priming effects: Interactions between living and dead organic matter, Soil Biol. Biochem., 42, 1363–1371, https://doi.org/10.1016/j.soilbio.2010.04.003, 2010.
Laos, F., Satti, P., Walter, I., Mazzarino, M. J., and Moyano, S.: Nutrient availability of composted and noncomposted residues in a Patagonian Xeric Mollisol, Biol. Fert. Soils, 31, 462–469, https://doi.org/10.1007/s003740000192, 2000.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Glob. Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Leifeld, J., Siebert, S., and Kögel-Knabner, I.: Changes in the chemical composition of soil organic matter after application of compost, Eur. J. Soil Sci., 53, 299–309, https://doi.org/10.1046/j.1351-0754.2002.00453.x, 2002.
Leinemann, T., Preusser, S., Mikutta, R., Kalbitz, K., Cerli, C., Höschen, C., Mueller, C. W., Kandeler, E., and Guggenberger, G.: Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles, Soil Biol. Biochem., 118, 79–90, https://doi.org/10.1016/j.soilbio.2017.12.006, 2018.
Li, S., Zheng, X., Liu, C., Yao, Z., Zhang, W., and Han, S.: Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis, Sci. Total Environ., 631–632, 105–114, https://doi.org/10.1016/j.scitotenv.2018.02.238, 2018.
Liebmann, P., Wordell-Dietrich, P., Kalbitz, K., Mikutta, R., Kalks, F., Don, A., Woche, S. K., Dsilva, L. R., and Guggenberger, G.: Relevance of aboveground litter for soil organic matter formation – a soil profile perspective, Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, 2020.
Lorenz, K. and Lal, R.: The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons, Adv. Agron., 88, 35–66, https://doi.org/10.1016/S0065-2113(05)88002-2, 2005.
Mailapalli, D. R., Horwath, W. R., Wallender, W. W., and Burger, M.: Infiltration, Runoff, and Export of Dissolved Organic Carbon from Furrow-Irrigated Forage Fields under Cover Crop and No-Till Management in the Arid Climate of California, J. Irrig. Drain. E., 138, 35–42, https://doi.org/10.1061/(asce)ir.1943-4774.0000385, 2012.
Maltais-Landry, G., Scow, K., and Brennan, E.: Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils, Soil Biol. Biochem., 78, 255–262, https://doi.org/10.1016/J.SOILBIO.2014.08.013, 2014.
Margenot, A. J., Calderón, F. J., Bowles, T. M., Parikh, S. J., and Jackson, L. E.: Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields, Soil Sci. Soc. Am. J., 79, 772–782, https://doi.org/10.2136/sssaj2015.02.0070, 2015.
Margenot, A. J., Calderon, F. J., and Parikh, S. J.: Limitations and potential of spectral subtractions in Fourier-transform infrared spectroscopy of soil samples, Soil Sci. Soc. Am. J., 80, 10–26, https://doi.org/10.2136/sssaj2015.06.0228, 2016.
Margenot, A. J., Parikh, S. J., and Calderón, F. J.: Improving infrared spectroscopy characterization of soil organic matter with spectral subtractions, JOVE-J. Vis. Exp., 2019, e57464, https://doi.org/10.3791/57464, 2019.
Matlou, M. C. and Haynes, R. J.: Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study, Appl. Soil Ecol., 34, 160–167, https://doi.org/10.1016/j.apsoil.2006.02.005, 2006.
Maxin, C. R. and Kogel-Knabner, I.: Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter, Eur. J. Soil Sci., 46, 193–204, https://doi.org/10.1111/j.1365-2389.1995.tb01827.x, 1995.
Medellín-Azuara, J., Howitt, R. E., MacEwan, D. J., and Lund, J. R.: Economic impacts of climate-related changes to California agriculture, Clim. Change, 109, 387–405, https://doi.org/10.1007/s10584-011-0314-3, 2011.
Mehlich, A.: Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plan., 15, 1409–1416, https://doi.org/10.1080/00103628409367568, 1984.
Min, K., Berhe, A. A., Khoi, C. M., van Asperen, H., Gillabel, J., and Six, J.: Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers, Biogeochemistry, 148, 255–269, https://doi.org/10.1007/s10533-020-00658-7, 2020.
Mise, K., Maruyama, R., Miyabara, Y., Kunito, T., Senoo, K., and Otsuka, S.: Time-series analysis of phosphorus-depleted microbial communities in carbon/nitrogen-amended soils, Appl. Soil Ecol., 145, 103346, https://doi.org/10.1016/j.apsoil.2019.08.008, 2020.
Mobley, M. L., Lajtha, K., Kramer, M. G., Bacon, A. R., Heine, P. R., and Richter, D. D.: Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development, Glob. Change Biol., 21, 986–996, https://doi.org/10.1111/GCB.12715, 2015.
Moore-Kucera, J. and Dick, R. P.: PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence, Microb. Ecol., 55, 500–511, https://doi.org/10.1007/s00248-007-9295-1, 2008.
Ng, E. L., Patti, A. F., Rose, M. T., Schefe, C. R., Wilkinson, K., and Cavagnaro, T. R.: Functional stoichiometry of soil microbial communities after amendment with stabilised organic matter, Soil Biol. Biochem., 76, 170–178, https://doi.org/10.1016/j.soilbio.2014.05.016, 2014.
Ogilvie, C. M., Ashiq, W., Vasava, H. B., and Biswas, A.: Quantifying Root-Soil Interactions in Cover Crop Systems: A Review, Agriculture, 11, 218, https://doi.org/10.3390/agriculture11030218, 2021.
Orlov, D. S.: Humus acids of soil, Balkema, Rotterdam, https://doi.org/10.1002/jpln.19871500116, 1986.
Orwin, K. H., Dickie, I. A., Holdaway, R., and Wood, J. R.: A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions, Soil Biol. Biochem., 117, 27–35, https://doi.org/10.1016/j.soilbio.2017.10.036, 2018.
Øygarden, L., Kværner, J., and Jenssen, P. D.: Soil erosion via preferential flow to drainage systems in clay soils, Geoderma, 76, 65–86, https://doi.org/10.1016/S0016-7061(96)00099-7, 1997.
Ozelim, L. C. de S. M. and Cavalcante, A. L. B.: Representative Elementary Volume Determination for Permeability and Porosity Using Numerical Three-Dimensional Experiments in Microtomography Data, Int. J. Geomech., 18, 04017154, https://doi.org/10.1061/(asce)gm.1943-5622.0001060, 2018.
Pagliai, M., Vignozzi, N., and Pellegrini, S.: Soil structure and the effect of management practices, Soil Till. Res., 79, 131–143, https://doi.org/10.1016/J.STILL.2004.07.002, 2004.
Parikh, S. J., Margenot, A. J., Mukome, F. N. D., Calderon, F., and Goyne, K. W.: Soil Chemical Insights Provided through Vibrational Spectroscopy, Adv. Agron., 126, 1–148, 2014.
Pathak, T., Maskey, M., Dahlberg, J., Kearns, F., Bali, K., and Zaccaria, D.: Climate Change Trends and Impacts on California Agriculture: A Detailed Review, Agronomy, 8, 25, https://doi.org/10.3390/agronomy8030025, 2018.
Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., and Lyon, D. J.: Radiocarbon Dating for Determination of Soil Organic Matter Pool Sizes and Dynamics, Soil Sci. Soc. Am. J., 61, 1058–1067, https://doi.org/10.2136/sssaj1997.03615995006100040011x, 1997.
Paul, E. A., Collins, H. P., and Leavitt, S. W.: Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring 14C abundance, Geoderma, 104, 239–256, https://doi.org/10.1016/S0016-7061(01)00083-0, 2001.
Petersen, S. O. and Klug, M. J.: Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community, Appl. Environ. Microb., 60, 2421–2430, https://doi.org/10.1128/AEM.60.7.2421-2430.1994, 1994.
Pignatello, J. J.: The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media, Adv. Agron., 69, 1–73, https://doi.org/10.1016/S0065-2113(08)60946-3, 1999.
Preusch, P. L., Adler, P. R., Sikora, L. J., and Tworkoski, T. J.: Nitrogen and Phosphorus Availability in Composted and Uncomposted Poultry Litter, J. Environ. Qual., 31, 2051–2057, https://doi.org/10.2134/jeq2002.2051, 2002.
Rath, D., Bogie, N., Deiss, L., Parikh, S., Wang, D., Tautges, N., Berhe, A. A., and Scow, K.: danrath/2018_RRCARBON_DEPTH: Data and Code for Submission to Soil EGU Journal 2_23_21 (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4558161, 2021a.
Rath, D., Bogie, N., Deiss, L., Parikh, S., Wang, D., Tautges, N., Berhe, A. A., and Scow, K.: danrath/2018_RRCARBON_DEPTH: Data and Code for Submission to Soil EGU Journal 2_23_21 (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4558161, 2021b.
Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W., and Veldhuis, H.: Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape, Global Biogeochem. Cy., 12, 687–701, https://doi.org/10.1029/98GB02336, 1998.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 13 January 2022), 2017.
Rhine, E. D., Mulvaney, R. L., Pratt, E. J., and Sims, G. K.: Improving the Berthelot reaction for determining ammonium in soil extracts and water, Soil Sci. Soc. Am. J., 62, 473–480, 1998.
Richardson, A. E., Kirkby, C. A., Banerjee, S., and Kirkegaard, J. A.: The inorganic nutrient cost of building soil carbon, Carbon Manag., 5, 265–268, https://doi.org/10.1080/17583004.2014.923226, 2014.
Roth, V. N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall, T., Griffiths, R. I., Mellado-Vázquez, P. G., Mommer, L., Oram, N. J., Weigelt, A., Dittmar, T., and Gleixner, G.: Persistence of dissolved organic matter explained by molecular changes during its passage through soil, Nat. Geosci., 12, 755–761, https://doi.org/10.1038/s41561-019-0417-4, 2019.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but poorly understood component of terrestrial C cycle, Plant Soil, 338, 143–158, 2011.
Rumpel, C., Chabbi, A., and Marschner, B.: Carbon storage and sequestration in subsoil horizons: Knowledge, gaps and potentials, in: Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle, 445–464, Springer Netherlands, https://doi.org/10.1007/978-94-007-4159-1_20, 2012.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms, Glob. Change Biol., 16, 416–426, https://doi.org/10.1111/j.1365-2486.2009.01884.x, 2010.
Samson, M. E., Chantigny, M. H., Vanasse, A., Menasseri-Aubry, S., Royer, I., and Angers, D. A.: Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils, Soil Biol. Biochem., 148, 107867, https://doi.org/10.1016/j.soilbio.2020.107867, 2020.
Sanaullah, M., Chabbi, A., Leifeld, J., Bardoux, G., Billou, D., and Rumpel, C.: Decomposition and stabilization of root litter in top- and subsoil horizons: What is the difference?, Plant Soil, 338, 127–141, https://doi.org/10.1007/s11104-010-0554-4, 2011.
Sanderman, J. and Amundson, R.: A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils, Biogeochemistry, 89, 309–327, https://doi.org/10.1007/s10533-008-9221-8, 2008.
Schmidt, J. E., Peterson, C., Wang, D., Scow, K. M., and Gaudin, A. C. M.: Agroecosystem tradeoffs associated with conversion to subsurface drip irrigation in organic systems, Agr. Water Manage., 202, 1–8, https://doi.org/10.1016/j.agwat.2018.02.005, 2018.
Scott, H. D., Waddle, B. A., Williams, W., Frans, R. E., and Keisling, T. C.: Winter cover crops influence on cotton yield and selected soil properties1, Commun. Soil Sci. Plan., 25, 3087–3100, https://doi.org/10.1080/00103629409369250, 1994.
Scow, K., Bryant, D. M., Burger, M., and Torbert, E.: Russell Ranch Sustainable Agriculture Facility, available at: https://www.researchgate.net/publication/255668835 (last access: 17 November 2021), 2012.
Sharpley, A. and Moyer, B.: Phosphorus Forms in Manure and Compost and Their Release during Simulated Rainfall, J. Environ. Qual., 29, 1462–1469, https://doi.org/10.2134/jeq2000.00472425002900050012x, 2000.
Silhavy, T. J., Kahne, D., and Walker, S.: The bacterial cell envelope, CSH Perspect. Biol., 2, a000414, https://doi.org/10.1101/cshperspect.a000414, 2010.
Singh, G., Kaur, G., Williard, K. W. J., and Schoonover, J. E.: Cover crops and tillage effects on carbon–nitrogen pools: A lysimeter study, Vadose Zone J., 20, e20110, https://doi.org/10.1002/VZJ2.20110, 2021.
Slessarev, E. W., Lin, Y., Jiménez, B. Y., Homyak, P. M., Chadwick, O. A., D'Antonio, C. M., and Schimel, J. P.: Cellular and extracellular C contributions to respiration after wetting dry soil, Biogeochemistry, 147, 307–324, https://doi.org/10.1007/s10533-020-00645-y, 2020.
Smernik, R. J. and Oades, J. M.: Paramagnetic Effects on Solid State Carbon-13 Nuclear Magnetic Resonance Spectra of Soil Organic Matter, J. Environ. Qual., 31, 414–420, https://doi.org/10.2134/JEQ2002.4140, 2002.
Smith, B. C.: Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd Edn., CRC Press, Taylor and Francis Group, ISBN-13 978-1420069297, 2011.
Smitii, A.: Seasonal subsoil temperature variations, J. Agric. Res., 44, 421–428, 1932.
Soil Survey Staff: Keys to Soil Taxonomy, 12th Edn., USDA-Natural Resources Conservation Service, Washington, DC, ISBN 978-03-5957-324-0, 2014.
Sokol, N. W. and Bradford, M. A.: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input, Nat. Geosci., 12, 46–53, https://doi.org/10.1038/s41561-018-0258-6, 2019.
Soong, J. L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., and Richter, A.: Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling, Glob. Change Biol., 26, 1953–1961, https://doi.org/10.1111/gcb.14962, 2020.
Soong, J. L., Castanha, C., Pries, C. E. H., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. I., and Torn, M. S.: Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux, Sci. Adv., 7, eabd1343, https://doi.org/10.1126/SCIADV.ABD1343, 2021.
Spohn, M., Klaus, K., Wanek, W., and Richter, A.: Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling, Soil Biol. Biochem., 96, 74–81, https://doi.org/10.1016/j.soilbio.2016.01.016, 2016.
Sradnick, A., Oltmanns, M., Raupp, J., and Joergensen, R. G.: Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil, Geoderma, 226–227, 79–84, https://doi.org/10.1016/j.geoderma.2014.03.005, 2014.
Steenwerth, K. and Belina, K. M.: Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem, Appl. Soil Ecol., 40, 359–369, https://doi.org/10.1016/j.apsoil.2008.06.006, 2008.
Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N., and Robertson, G. P.: Agricultural Management and Soil Carbon Storage in Surface vs. Deep Layers, Soil Sci. Soc. Am. J., 75, 92–101, https://doi.org/10.2136/sssaj2009.0414, 2011.
Tautges, N. E., Chiartas, J. L., Gaudin, A. C. M., O'Geen, A. T., Herrera, I., and Scow, K. M.: Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils, Glob. Change Biol., 25, 3753–3766, https://doi.org/10.1111/gcb.14762, 2019.
Taylor, J. P., Wilson, B., Mills, M. S., and Burns, R. G.: Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques, Soil Biol. Biochem., 34, 387–401, https://doi.org/10.1016/S0038-0717(01)00199-7, 2002.
van Bavel, C. H. M.: Mean Weight-Diameter of Soil Aggregates as a Statistical Index of Aggregation, Soil Sci. Soc. Am. J., 14, 20–23, https://doi.org/10.2136/sssaj1950.036159950014000c0005x, 1950.
VandenBygaart, A. J., Bremer, E., McConkey, B. G., Ellert, B. H., Janzen, H. H., Angers, D. A., Carter, M. R., Drury, C. F., Lafond, G. P., and McKenzie, R. H.: Impact of Sampling Depth on Differences in Soil Carbon Stocks in Long-Term Agroecosystem Experiments, Soil Sci. Soc. Am. J., 75, 226–234, https://doi.org/10.2136/sssaj2010.0099, 2011.
Vinten, A. J. A., Vivian, B. J., Wright, F., and Howard, R. S.: A comparative study of nitrate leaching from soils of differing textures under similar climatic and cropping conditions, J. Hydrol., 159, 197–213, https://doi.org/10.1016/0022-1694(94)90256-9, 1994.
Wang, D., Fonte, S. J., Parikh, S. J., Six, J., and Scow, K. M.: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates, Geoderma, 303, 110–117, https://doi.org/10.1016/j.geoderma.2017.05.027, 2017.
West, J. R., Cates, A. M., Ruark, M. D., Deiss, L., Whitman, T., and Rui, Y.: Winter rye does not increase microbial necromass contributions to soil organic carbon in continuous corn silage in North Central US, Soil Biol. Biochem., 148, 107899, https://doi.org/10.1016/j.soilbio.2020.107899, 2020.
White, K. E., Brennan, E. B., Cavigelli, M. A., and Smith, R. F.: Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California, edited by: Snapp, S. S., PLoS One, 15, e0228677, https://doi.org/10.1371/journal.pone.0228677, 2020.
Whitmore, A. P., Kirk, G. J. D., and Rawlins, B. G.: Technologies for increasing carbon storage in soil to mitigate climate change, Soil Use Manage, 31, 62–71, https://doi.org/10.1111/sum.12115, 2015.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the Tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Williams, E. K., Fogel, M. L., Berhe, A. A., and Plante, A. F.: Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter, Geoderma, 330, 107–116, https://doi.org/10.1016/j.geoderma.2018.05.024, 2018.
Wolf, K. M., Torbert, E. E., Bryant, D., Burger, M., Denison, R. F., Herrera, I., Hopmans, J., Horwath, W., Kaffka, S., Kong, A. Y. Y., Norris, R. F., Six, J., Tomich, T. P., and Scow, K. M.: The century experiment: the first twenty years of UC Davis' Mediterranean agroecological experiment, Ecology, 99, 503, https://doi.org/10.1002/ecy.2105, 2018.
Wright, A. L., Provin, T. L., Hons, F. M., Zuberer, D. A., and White, R. H.: Compost impacts on dissolved organic carbon and available nitrogen and phosphorus in turfgrass soil, Waste Manage., 28, 1057–1063, https://doi.org/10.1016/j.wasman.2007.04.003, 2008.
Wuest, S.: Seasonal Variation in Soil Organic Carbon, Soil Sci. Soc. Am. J., 78, 1442–1447, https://doi.org/10.2136/sssaj2013.10.0447, 2014.
Xiang, S. R., Doyle, A., Holden, P. A., and Schimel, J. P.: Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils, Soil Biol. Biochem., 40, 2281–2289, https://doi.org/10.1016/j.soilbio.2008.05.004, 2008.
Yost, J. L. and Hartemink, A. E.: How deep is the soil studied – an analysis of four soil science journals, Plant Soil, 452, 5–18, https://doi.org/10.1007/s11104-020-04550-z, 2020.
Zeynoddin, M., Bonakdari, H., Ebtehaj, I., Esmaeilbeiki, F., Gharabaghi, B., and Zare Haghi, D.: A reliable linear stochastic daily soil temperature forecast model, Soil Till. Res., 189, 73–87, https://doi.org/10.1016/J.STILL.2018.12.023, 2019.
Zhang, Y., Zheng, N., Wang, J., Yao, H., Qiu, Q., and Chapman, S. J.: High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology, Soil Biol. Biochem., 135, 323–330, https://doi.org/10.1016/j.soilbio.2019.05.023, 2019.
Zhou, X., Chen, C., Wu, H., and Xu, Z.: Dynamics of soil extractable carbon and nitrogen under different cover crop residues, J. Soil. Sediment., 12, 844–853, https://doi.org/10.1007/S11368-012-0515-Z, 2012.
Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., and Chen, Y.: Dissolved organic carbon (DOC) as a parameter of compost maturity, Soil Biol. Biochem., 37, 2109–2116, https://doi.org/10.1016/j.soilbio.2005.03.013, 2005.
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Storing C in subsoils can help mitigate climate change, but this requires a better understanding...