Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of natural infrastructure on water erosion mitigation in the Andes
Veerle Vanacker
CORRESPONDING AUTHOR
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Armando Molina
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Programa para el Manejo del Agua y del Suelo (PROMAS), Facultad de
Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador
Miluska A. Rosas
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Departamento Académico de Ingeniería, Pontifica Universidad
Católica del Perú, Lima, Perú
previously published under the name Miluska Rosas-Barturen
Vivien Bonnesoeur
Consorcio para el Desarrollo de la Ecorregión Andina (CONDESAN),
Lima, Perú
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Francisco Román-Dañobeytia
Consorcio para el Desarrollo de la Ecorregión Andina (CONDESAN),
Lima, Perú
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Boris F. Ochoa-Tocachi
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Department of Civil and Environmental Engineering & Grantham
Institute – Climate Change and the Environment, London, United Kingdom
ATUK Consultoria Estrategica, Cuenca 01015, Ecuador
Wouter Buytaert
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Department of Civil and Environmental Engineering & Grantham
Institute – Climate Change and the Environment, London, United Kingdom
Related authors
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Sudhanshu Dixit, Sumit Sen, Tahmina Yasmin, Kieran Khamis, Debashish Sen, Wouter Buytaert, and David Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2025-2081, https://doi.org/10.5194/egusphere-2025-2081, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flash floods are becoming more frequent in mountainous regions due to heavier rainstorms. To protect people and property, we are working to better understand local hydrology and improve the efficiency of early warning systems for urban flooding in Lesser Himalayas. By combining community knowledge, low-cost technology, we can enhance understanding of flood dynamics and strengthen preparedness in mountains. This work is a step toward building resilience by bridging science and community insight.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
William Veness, Alejandro Dussaillant, Gemma Coxon, Simon De Stercke, Gareth H. Old, Matthew Fry, Jonathan G. Evans, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2035, https://doi.org/10.5194/egusphere-2025-2035, 2025
Short summary
Short summary
We investigated what users want from the next-generation of hydrological monitoring systems to better support science and innovation. Through literature review and interviews with experts, we found that beyond providing high-quality data, users particularly value additional support for collecting their own data, sharing it with others, and building collaborations with other data users. Designing systems with these needs in mind can greatly boost long-term engagement, data coverage and impact.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025, https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Short summary
We combine two globally capable glacier evolution models to include processes that are typically neglected but thought to control tropical glacier retreat (e.g. sublimation). We apply the model to Peru's Vilcanota-Urubamba Basin. The model captures observed glacier mass changes,but struggles with surface albedo dynamics. Projections show glacier mass shrinking to 17 % or 6 % of 2000 levels by 2100 under moderate- and high-emission scenarios, respectively.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Cited articles
Aguilar, G., Cabré, A., Fredes, V., and Villela, B.: Erosion after an extreme storm event in an arid fluvial system of the southern Atacama Desert: an assessment of the magnitude, return time, and conditioning factors of erosion and debris flow generation, Nat. Hazards Earth Syst. Sci., 20, 1247–1265, https://doi.org/10.5194/nhess-20-1247-2020, 2020.
Balthazar, V., Vanacker, V., Molina, A., and Lambin, E. F.: Impacts of
forest cover change on ecosystem services in high Andean mountains,
Ecol. Indic., 48, 63–75,
https://doi.org/10.1016/j.ecolind.2014.07.043, 2015.
Bathurst, J. C., Iroumé, A., Cisneros, F., Fallas, J., Iturraspe, R.,
Gaviño Novillo, M., Urciuolo, A., de Bievre, B., Guerrero Borges, V.,
Coello, C., Cisneros, P., Gayoso, J., Miranda, M., and Ramirez, M.: Forest
Impact on Floods Due to Extreme Rainfall and Snowmelt in Four Latin American
Environments 1: Field Data Analysis, J. Hydrol., 400,
281–291, https://doi.org/10.1016/j.jhydrol.2010.11.044, 2011.
Bathurst, J. C., Fahey, B., Iroumé, A., and Jones, J.: Forests and
Floods: Using Field Evidence to Reconcile Analysis Methods, Hydrol. Process., 34, 3295–3310, https://doi.org/10.1002/hyp.13802, 2020.
Bilsborrow, R. E.: Population Growth, Internal Migration, and Environmental
Degradation in Rural Areas of Developing Countries, Eur. J. Popul., 8, 125–148, https://doi.org/10.1007/BF01797549, 1992.
Blodgett, T. A. and Isacks, B. L.: Landslide Erosion Rate in the Eastern
Cordillera of Northern Bolivia, Earth Interact., 11, 1–30,
https://doi.org/10.1175/2007EI222.1, 2007.
Bonnesoeur, V., Locatelli, B., Guariguata, M. R., Ochoa-Tocachi, B. F.,
Vanacker, V., Mao, Z., Stokes, A., and Mathez-Stiefel, S. L.: Impacts of
Forests and Forestation on Hydrological Services in the Andes: A Systematic
Review, Forest Ecol. Manag., 433, 569–584,
https://doi.org/10.1016/j.foreco.2018.11.033, 2019.
Borja, P., Molina, A., Govers, G., and Vanacker, V.: Check dams and
afforestation reducing sediment mobilization in active gully systems in the
Andean mountains, Catena, 165, 42–53, https://doi.org/10.1016/j.catena.2018.01.013, 2018.
Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M. A.,
Martinod, J., Guyot, J. L., Hérail, G., and Riquelme, R.: Review of
Erosion Dynamics along the Major N-S Climatic Gradient in Chile and
Perspectives, Geomorphology, 300, 45–68,
https://doi.org/10.1016/j.geomorph.2017.10.016, 2018.
Ceccherini, G., Ameztoy, I., Hernández, C. P. R., and Moreno, C. C.:
High-Resolution Precipitation Datasets in South America and West Africa
based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital
Elevation Model, Remote Sens., 7, 6454–6488, https://doi.org/10.3390/rs70506454, 2015.
Cohen-Shacham, E., Walters, G., Janzen, C., and Maginnis, S.: Nature-based
Solutions to address global societal challenges, Gland, Switzerland: IUCN,
97 pp., 2016.
Coppus, R. and Imeson, A. C.: Extreme Events Controlling Erosion and
Sediment Transport in a Semi-Arid Sub-Andean Valley, Earth Surf. Proc. Land., 27, 1365–1375, https://doi.org/10.1002/esp.435, 2002.
De Noni, G., Viennot, M., Asseline, J., and Trujillo, G.: Terre d'altitude,
terres de risque. La lutte contre l'érosion dans les Andes
équatoriennes, IRD éditions, Collection Latitudes 23, Paris, France, ISBN 2-7099-1469-7, 2001.
Devenish, C. and Gianella, C.: 20 years of sustainable mountain development in the Andes – from Rio 1992 to 2012 and beyond, Consorcio para el Desarollo Sostenible de la Ecoregion Andina, Lima, Peru, 66pp., 2012.
Farley, K. A. and Bremer, L. L.: “Water Is Life”: Local Perceptions of
Páramo Grasslands and Land Management Strategies Associated with Payment
for Ecosystem Services, Ann. Am. Assoc. Geogr.,
107, 371–381, https://doi.org/10.1080/24694452.2016.1254020, 2017.
Franzluebbers, A. J.: Soil Organic Matter Stratification Ratio as an
Indicator of Soil Quality, Soil Till. Res., 66, 95–106,
https://doi.org/10.1016/S0167-1987(02)00018-1, 2002.
Guns, M. and Vanacker, V.: Shifts in Landslide Frequency-Area Distribution
after Forest Conversion in the Tropical Andes, Anthropocene, 6, 75–85,
https://doi.org/10.1016/j.ancene.2014.08.001, 2014.
Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G.: Meta-Analysis
and the Science of Research Synthesis, Nature, 555, 175–182,
https://doi.org/10.1038/nature25753, 2018.
Guzman, C. D., Hoyos-Villada, F., Da Silva, M., Zimale, F. A., Chiranda, N.,
Botero, C., Morales Vargas, A., Rivera, B., Moreno, P., and Steenhuis, T. S.:
Variability of soil surface characteristics in a mountainous watershed in
Valle del Cauca, Colombia: Implications for runoff, erosion, and
conservation, J. Hydrol., 576, 273–286, https://doi.org/10.1016/j.jhydrol.2019.06.002, 2019.
Harden, C. P.: Interrelationship between land abandonment and land
degradation: a case from the Ecuadorian Andes, Mt. Res. Dev., 16, 274–280, https://doi.org/10.2307/3673950,
1996.
Harden, C. P.: Soil Erosion and Sustainable Mountain Development, Mt. Res. Dev., 21, 77–83,
https://doi.org/10.1659/0276-4741(2001)021[0077:SEASMD]2.0.CO;2, 2001.
Henry, A., Mabit, L., Jaramillo, R. E., Cartagena, Y., and Lynch, J. P.:
Land Use Effects on Erosion and Carbon Storage of the Río Chimbo
Watershed, Ecuador, Plant Soil, 367, 477–491,
https://doi.org/10.1007/s11104-012-1478-y, 2013.
Horn, R., Domzzał, H., Słowińska-Jurkiewicz, A., and van Ouwerkerk,
C.: Soil Compaction Processes and Their Effects on the Structure of Arable
Soils and the Environment, Soil Till. Res., 35, 23–36,
https://doi.org/10.1016/0167-1987(95)00479-C, 1995.
Jacobi, J., Schneider, M., Bottazzi, P., Pillco, M., Calizaya, P., and Rist,
S.: Agroecosystem resilience and farmers' perceptions of climate change
impacts on cocoa farms in Alto Beni, Bolivia, Renew. Agr. Food
Syst., 30, 170–183, https://doi.org/10.1017/S174217051300029X, 2015.
Janeau, J. L., Grellier, S., and Podwojewski, P.: Influence of rainfall
interception by endemic plants versus short cycle crops on water
infiltration in high altitude ecosystems of Ecuador, Hydrol. Res.,
46, 1008–1018, https://doi.org/10.2166/nh.2015.203, 2015.
Jantz, N. and Behling, H.: A Holocene Environmental Record Reflecting
Vegetation, Climate, and Fire Variability at the Páramo of Quimsacocha,
Southwestern Ecuadorian Andes, Veg. Hist. Archaeobot., 21,
169–185, https://doi.org/10.1007/s00334-011-0327-x, 2012.
Keating, P. L.: Fire Ecology and Conservation in the High Tropical Andes:
Observations from Northern Ecuador, Journal of Latin American Geography, 6, 43–62,
https://www.jstor.org/stable/25765157 (last access: 15 June 2021), 2007.
Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K. and
Spehn, E. M.: A global inventory of mountains for bio-geographical
applications, Alp Botany, 127, 1–15, https://doi.org/10.1007/s00035-016-0182-6, 2017.
Latrubesse, E. M. and Restrepo, J. D.: Sediment Yield along the Andes:
Continental Budget, Regional Variations, and Comparisons with Other Basins
from Orogenic Mountain Belts, Geomorphology, 216, 225–233,
https://doi.org/10.1016/j.geomorph.2014.04.007, 2014.
Little, M. A.: Human Populations in the Andes: The Human Science Basis for
Research Planning, Mt. Res. Dev., 1, 145–170,
https://doi.org/10.2307/3673120, 1981.
Locatelli, B., Homberger, J. M., Ochoa-Tocachi, B. F., Bonnesoeur, V., Román, F., Drenkhan, F., and Buytaert, W.: Impactos de Las Zanjas de Infiltración En El Agua y Los Suelos: ?`Qué Sabemos? Resumen de políticas, Proyecto “infraestructura natural para la Seguridad hídrica”, Forest Trends, Lima, Peru, http://hal.cirad.fr/cirad-02615502 (last access: 15 June 2021), 2020.
Moher, D., Stewart, L., and Shekelle, P.: All in the Family: Systematic
Reviews, Rapid Reviews, Scoping Reviews, Realist Reviews, and More,
Sys. Rev., 4, 1–2, https://doi.org/10.1186/s13643-015-0163-7,
2015.
Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E., and
Cisneros, F.: Runoff Generation in a Degraded Andean Ecosystem: Interaction
of Vegetation Cover and Land Use, Catena, 71, 357–370,
https://doi.org/10.1016/j.catena.2007.04.002, 2007.
Molina, A., Govers, G., Poesen, J., Van Hemelryck, H., De Bièvre, B. and
Vanacker, V.: Environmental factors controlling spatial variation in
sediment yield in a central Andean mountain area, Geomorphology, 98, 176–186,
https://doi.org/10.1016/j.geomorph.2006.12.025, 2008.
Molina, A., Govers, G., Van den Putte, A., Poesen, J., and Vanacker, V.: Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling, Hydrol. Earth Syst. Sci., 13, 1823–1836, https://doi.org/10.5194/hess-13-1823-2009, 2009.
Molina, A., Vanacker, V., Brisson, E., Mora, D., and Balthazar, V.: Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes, Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, 2015.
Montgomery, D. R., Balco, G., and Willett, S. D.: Climate, Tectonics, and the
Morphology of the Andes, Geology, 29, 579–582,
https://doi.org/10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2, 2001.
Morera, S. B., Condom, T., Crave, A., Steer, A., and Guyot, J. L.: The
Impact of Extreme El Niño Events on Modern Sediment Transport along the
Western Peruvian Andes (1968–2012), Scientific Reports, 7, 1–14,
https://doi.org/10.1038/s41598-017-12220-x, 2017.
Nichols, S., Webb, A., Norris, R., and Stewardson, M.: Eco Evidence analysis
methods manual: a systematic approach to evaluate causality in environmental
science, eWater Cooperative Research Centre, Canberra, ISBN 978-1-921543-43-2, 2011.
Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M.,
Oviedo-Ocaña, R., Buytaert, W., and Ochoa-Tocachi, B. F.: Influence of
Land Use on Hydro-Physical Soil Properties of Andean Páramos and Its
Effect on Streamflow Buffering, Catena, 202, 105227,
https://doi.org/10.1016/j.catena.2021.105227, 2021.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-Smart Soils, Nature, 532, 49–57,
https://doi.org/10.1038/nature17174, 2016.
Pesantez, P. G. and Seminario, M. O.: Identificación de zonas degradadas
y en proceso de erosión, Eng. Thesis, Faculty of Agronomy, Universidad
de Cuenca, Cuenca, Ecuador, 2010.
Podwojewski, P., Poulenard, J., Zambrana, T., and Hofstede, R.: Overgrazing
Effects on Vegetation Cover and Properties of Volcanic Ash Soil in the
Paramo of the Llangahua and Esperanza (Tungurahua, Ecuador), Soil Use Manage., 18, 45–55, https://doi.org/10.1111/j.1475-2743.2002.tb00049.x,
2002.
Pohlert, T.: PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, Retrieved from https://CRAN.R-project.org/package=PMCMRplus (last access: 24 December 2021), 2018.
Posthumus, H. and De Graaff, J.: Cost-benefit analysis of bench terraces, a case study in Peru, Land Degrad. Dev., 16, 1–11, https://doi.org/10.1002/ldr.637, 2005.
Poulenard, J., Podwojewski, P., Janeau, J. L., and Collinet, J.: Runoff and
soil erosion under rainfall simulation of Andisols from the Ecuadorian
paramo: effect of tillage and burning, Catena 45, 185–207, https://doi.org/10.1016/S0341-8162(01)00148-5, 2001.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 24 December 2021.
Restrepo, J. D., Kettner, A. J., and Syvitski, J. P. M.: Recent Deforestation
Causes Rapid Increase in River Sediment Load in the Colombian Andes,
Anthropocene, 10, 13–28, https://doi.org/10.1016/j.ancene.2015.09.001,
2015.
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J.
P.: Environmental Signal Propagation in Sedimentary Systems across
Timescales, Earth-Sci. Revi., 153, 7–29,
https://doi.org/10.1016/j.earscirev.2015.07.012, 2016.
Romero-Díaz, A., de Vente, J., and Díaz-Pereira, E.: Assessment of
the Ecosystem Services Provided by Agricultural Terraces, Pirineos., 174,
e043, https://doi.org/10.3989/pirineos.2019.174003, 2019.
Sandor, J. A. and Eash, N. S.: Ancient Agricultural Soils in the Andes
of Southern Peru, Soil Sci. Soc. Am. J., 59, 170–179,
https://doi.org/10.2136/sssaj1995.03615995005900010026x, 1995.
Suescún, D., Villegas, J. C. , León, J. D., Flórez, C. P.,
García-Leoz, V., and Correa-Londoño, G. A.: Vegetation Cover and
Rainfall Seasonality Impact Nutrient Loss via Runoff and Erosion in the
Colombian Andes, Reg. Environ. Change, 17, 827–839,
https://doi.org/10.1007/s10113-016-1071-7, 2017.
Tolorza, V., Carretier, S., Andermann, C., Ortega-Culaciati, F., Pinto, L.,
and Mardones, M.: Contrasting Mountain and Piedmont Dynamics of Sediment
Discharge Associated with Groundwater Storage Variation in the Biobío
River, J. Geophys. Res.-Earth, 119, 2730–2753,
https://doi.org/10.1002/2014JF003105, 2014.
Torero Zegarra, E., Pender, J., Maruyama, E., Keefe, M., and Stoorvogel,
J. M.: Socioeconomic and Technical Considerations to Mitigate Land and Water
Degradation in the Peruvian Andes, CPWF Project Report Series PN70, Colombo,
Sri Lanka, 2010.
USGS: Global Ecosystems Viewer, https://rmgsc.cr.usgs.gov/ArcGIS/rest/services/contSA/MapServer, last access: 27 April 2021.
Valentin, C., Agus, F., Alamban, R., Boosaner, A., Bricquet, J. P., Chaplot,
V., de Guzman, T. de Rouw, A., Janeau, J. L., Orange, D., Phachomphonh, K., Phai, D. D., Podwojewski, P., Ribolzi, O., Silvera, N., Subagyono, K.,
Thiébaux, J. P., Toan, T. D., and Vadari, T.: Runoff and Sediment
Losses from 27 Upland Catchments in Southeast Asia: Impact of Rapid Land Use
Changes and Conservation Practices, Agriculture, Ecosystems and Environment,
128, 225–238, https://doi.org/10.1016/j.agee.2008.06.004, 2008.
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J.,
Deckers, J., and Kubik, P.: Restoring Dense Vegetation Can Slow Mountain
Erosion to near Natural Benchmark Levels, Geology, 35, 303–306,
https://doi.org/10.1130/G23109A.1, 2007a.
Vanacker, V., Govers, G., Molina, A., Poesen, J., and Deckers, J.: Spatial
variation of suspended sediment concentration in a tropical Andean river
system: the Paute River, southern Ecuador, Geomorphology, 87, 53–67,
https://doi.org/10.1016/j.geomorph.2006.06.042, 2007b.
Vanacker, V., Bellin, N., Molina, A., and Kubik, P. W.: Erosion regulation as
a function of human disturbances to vegetation cover: A conceptual model,
Landscape Ecol., 29, 293–309,
https://doi.org/10.1007/s10980-013-9956-z, 2014.
Vanacker, V., Guns, M., Clapuyt, F. Balthazar, V., Tenorio, G., and Molina,
A.: Distribución Espacio-Temporal de Los Deslizamientos y Erosión
Hídrica En Una Cuenca Andina Tropical, Pirineos, 175, 051,
https://doi.org/10.3989/pirineos.2020.175001, 2020.
Vanacker, V., Molina, A., and Rosas-Barturen, M.: Data and ancillary data for publication: Natural infrastructure and water erosion mitigation in the Andes, Zenodo [data set], https://doi.org/10.5281/zenodo.6203174, 2022.
Vásquez, A. and Tapia, M.: Cuantificación de la erosión
hídrica superficial en las laderas semiáridas de la Sierra Peruana,
Revista Ingenieria UC, 18, 42–50, 2011.
Velez, M. I., Salgado, J., Brenner, M., Hooghiemstra, H., Escobar, J., Boom,
A., Bird, B., Curtis, J. H., Temoltzin-Loranca, Y., Patiño, L. F.,
Gonzalez-Arango, C., Metcalfe, S. E., Simpson, G. L., and Velasquez, C.: Novel
responses of diatoms in neotropical mountain lakes to indigenous and
post-European occupation, Anthropocene, 34, 100294,
https://doi.org/10.1016/j.ancene.2021.100294, 2021,
Verstraeten, G., Broothaerts, N., Van Loo, M., Notebaert, B., D'Haen, K.,
Dusar, B., and De Brue, H.: Variability in Fluvial Geomorphic Response to
Anthropogenic Disturbance, Geomorphology, 294, 20–39,
https://doi.org/10.1016/j.geomorph.2017.03.027, 2017.
Viechtbauer, W.: Conducting Meta-Analyses in R with the Metafor, J. Stat. Softw., 36, 1–48, 2010.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J., and Kögel-Knabner, I.: Soil
Organic Carbon Storage as a Key Function of Soils – A Review of Drivers and
Indicators at Various Scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wunder, S.: Deforestation and the Uses of Wood in the Ecuadorian Andes,
Mt. Res. Dev., 16, 367–381,
https://doi.org/10.2307/3673987, 1996.
Zimmerer, K. S.: Soil Erosion and Labor Shortages in the Andes with Special
Reference to Bolivia, 1953–1991: Implications for
“Conservation-with-Development”, World Dev., 21, 1659–1675,
https://doi.org/10.1016/0305-750X(93)90100-N, 1993.
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
The Andes region is prone to natural hazards due to its steep topography and climatic...