Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-133-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of natural infrastructure on water erosion mitigation in the Andes
Veerle Vanacker
CORRESPONDING AUTHOR
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Armando Molina
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Programa para el Manejo del Agua y del Suelo (PROMAS), Facultad de
Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador
Miluska A. Rosas
Georges Lemaitre Center for Earth and Climate Research, Earth and Life
Institute, UCLouvain, Louvain-la-Neuve, Belgium
Departamento Académico de Ingeniería, Pontifica Universidad
Católica del Perú, Lima, Perú
previously published under the name Miluska Rosas-Barturen
Vivien Bonnesoeur
Consorcio para el Desarrollo de la Ecorregión Andina (CONDESAN),
Lima, Perú
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Francisco Román-Dañobeytia
Consorcio para el Desarrollo de la Ecorregión Andina (CONDESAN),
Lima, Perú
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Boris F. Ochoa-Tocachi
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Department of Civil and Environmental Engineering & Grantham
Institute – Climate Change and the Environment, London, United Kingdom
ATUK Consultoria Estrategica, Cuenca 01015, Ecuador
Wouter Buytaert
Regional Initiative for Hydrological Monitoring of Andean Ecosystems
(iMHEA), Lima, Perú
Department of Civil and Environmental Engineering & Grantham
Institute – Climate Change and the Environment, London, United Kingdom
Related authors
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2553, https://doi.org/10.5194/egusphere-2024-2553, 2024
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains, within south Africa they are regarded as ancient landforms and can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2553, https://doi.org/10.5194/egusphere-2024-2553, 2024
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains, within south Africa they are regarded as ancient landforms and can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Sebastián Páez-Bimos, Armando Molina, Marlon Calispa, Pierre Delmelle, Braulio Lahuatte, Marcos Villacís, Teresa Muñoz, and Veerle Vanacker
Hydrol. Earth Syst. Sci., 27, 1507–1529, https://doi.org/10.5194/hess-27-1507-2023, https://doi.org/10.5194/hess-27-1507-2023, 2023
Short summary
Short summary
This study analyzes how vegetation influences soil hydrology, water fluxes, and chemical weathering rates in the high Andes. There are clear differences in the A horizon. The extent of soil chemical weathering varies depending on vegetation type. This difference is attributed mainly to the water fluxes. Our findings reveal that vegetation can modify soil properties in the uppermost horizon, altering the water balance, solutes, and chemical weathering throughout the entire soil profile.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Benjamin Campforts, Veerle Vanacker, Frédéric Herman, Matthias Vanmaercke, Wolfgang Schwanghart, Gustavo E. Tenorio, Patrick Willems, and Gerard Govers
Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, https://doi.org/10.5194/esurf-8-447-2020, 2020
Short summary
Short summary
In this contribution, we explore the spatial determinants of bedrock river incision in the tropical Andes. The model results illustrate the problem of confounding between climatic and lithological variables, such as rock strength. Incorporating rock strength explicitly into river incision models strongly improves the explanatory power of all tested models and enables us to clarify the role of rainfall variability in controlling river incision rates.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
François Clapuyt, Veerle Vanacker, Marcus Christl, Kristof Van Oost, and Fritz Schlunegger
Solid Earth, 10, 1489–1503, https://doi.org/10.5194/se-10-1489-2019, https://doi.org/10.5194/se-10-1489-2019, 2019
Short summary
Short summary
Using state-of-the-art geomorphic techniques, we quantified a 2-order of magnitude discrepancy between annual, decadal, and millennial sediment fluxes of a landslide-affected mountainous river catchment in the Swiss Alps. Our results illustrate that the impact of a single sediment pulse is strongly attenuated at larger spatial and temporal scales by sediment transport. The accumulation of multiple sediment pulses has rather a measurable impact on the regional pattern of sediment fluxes.
He Zhang, Emilien Aldana-Jague, François Clapuyt, Florian Wilken, Veerle Vanacker, and Kristof Van Oost
Earth Surf. Dynam., 7, 807–827, https://doi.org/10.5194/esurf-7-807-2019, https://doi.org/10.5194/esurf-7-807-2019, 2019
Short summary
Short summary
We evaluated the performance of a drone system to reconstruct 3-D topography. We used a direct georeferencing method to make the pictures have precise coordinates, which also improves the survey efficiency. With both consumer-grade and professional-grade camera and drone setups, we obtained centimetric accuracy, which provides a flexible application in topography remote sensing using drones.
Anoop Kumar Shukla, Chandra Shekhar Prasad Ojha, Ana Mijic, Wouter Buytaert, Shray Pathak, Rahul Dev Garg, and Satyavati Shukla
Hydrol. Earth Syst. Sci., 22, 4745–4770, https://doi.org/10.5194/hess-22-4745-2018, https://doi.org/10.5194/hess-22-4745-2018, 2018
Short summary
Short summary
Geospatial technologies and OIP are promising tools to study the effect of demographic changes and LULC transformations on the spatiotemporal variations in the water quality (WQ) across a large river basin. Therefore, this study could help to assess and solve local and regional WQ-related problems over a river basin. It may help the policy makers and planners to understand the status of water pollution so that suitable strategies could be planned for sustainable development in a river basin.
Gina Tsarouchi and Wouter Buytaert
Hydrol. Earth Syst. Sci., 22, 1411–1435, https://doi.org/10.5194/hess-22-1411-2018, https://doi.org/10.5194/hess-22-1411-2018, 2018
Short summary
Short summary
This work quantifies how future land-use and climate change may affect the hydrology of the Upper Ganges basin. Three sets of modelling experiments are run for the period 2000–2035, considering (1) only climate change, (2) only land-use change and (3) both climate and land-use change. Results point towards a severe increase in high flows. The changes are greater in the combined land-use and climate change experiment. We also show that future winter water demands in the region may not be met.
François Clapuyt, Veerle Vanacker, Fritz Schlunegger, and Kristof Van Oost
Earth Surf. Dynam., 5, 791–806, https://doi.org/10.5194/esurf-5-791-2017, https://doi.org/10.5194/esurf-5-791-2017, 2017
Short summary
Short summary
This work aims at understanding the behaviour of an earth flow located in the Swiss Alps by reconstructing very accurately its topography over a 2-year period. Aerial photos taken from a drone, which are then processed using a computer vision algorithm, were used to derive the topographic datasets. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure, which is evolving over time.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Himanshu Arora, Chandra Shekhar Prasad Ojha, Wouter Buytaert, Gujjunadu Suryaprakash Kaushika, and Chetan Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-388, https://doi.org/10.5194/hess-2017-388, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In many agrarian countries (like India), the agricultural practices are usually rainfall dependent. Therefore keeping the water budget into account, precipitation being an important component must be analysed thoroughly for its occurrence and amount. The analysis of trends can provide an insight in understanding the possible impacts in future, which can assist living beings to adapt and cope up with changing climate and hydrological cycle.
Eric Laloy, Koen Beerten, Veerle Vanacker, Marcus Christl, Bart Rogiers, and Laurent Wouters
Earth Surf. Dynam., 5, 331–345, https://doi.org/10.5194/esurf-5-331-2017, https://doi.org/10.5194/esurf-5-331-2017, 2017
Short summary
Short summary
Over very long timescales, 100 000 years or more, landscapes may drastically change. Sediments preserved in these landscapes have a cosmogenic radionuclide inventory that tell us when and how fast such changes took place. In this paper, we provide first evidence of an elevated long-term erosion rate of the northwestern Campine Plateau (lowland Europe), which can be explained by the loose nature of the subsoil.
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016, https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
Susana Almeida, Nataliya Le Vine, Neil McIntyre, Thorsten Wagener, and Wouter Buytaert
Hydrol. Earth Syst. Sci., 20, 887–901, https://doi.org/10.5194/hess-20-887-2016, https://doi.org/10.5194/hess-20-887-2016, 2016
Short summary
Short summary
The absence of flow data to calibrate hydrologic models may reduce the ability of such models to reliably inform water resources management. To address this limitation, it is common to condition hydrological model parameters on regionalized signatures. In this study, we justify the inclusion of larger sets of signatures in the regionalization procedure if their error correlations are formally accounted for and thus enable a more complete use of all available information.
P. Blair and W. Buytaert
Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, https://doi.org/10.5194/hess-20-443-2016, 2016
Short summary
Short summary
This paper reviews literature surrounding many aspects of socio-hydrological modelling; this includes a background to the subject of socio-hydrology, reasons why socio-hydrological modelling would be used, what is to be modelled in socio-hydrology and concepts that underpin this, as well as several modelling techniques and how they may be applied in socio-hydrology.
A. Molina, V. Vanacker, E. Brisson, D. Mora, and V. Balthazar
Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, https://doi.org/10.5194/hess-19-4201-2015, 2015
Short summary
Short summary
Andean catchments play a key role in the provision of freshwater resources. The development of megacities in the inter-Andean valleys raises severe concerns about growing water scarcity. This study is one of the first long-term (1970s-now) analyses of the role of land cover and climate change on provision and regulation of streamflow in the tropical Andes. Forest conversion had the largest impact on streamflow, leading to a 10 % net decrease in streamflow over the last 40 years.
S. Moulds, W. Buytaert, and A. Mijic
Geosci. Model Dev., 8, 3215–3229, https://doi.org/10.5194/gmd-8-3215-2015, https://doi.org/10.5194/gmd-8-3215-2015, 2015
Short summary
Short summary
The contribution of lulcc is to provide a free and open-source framework for land use change modelling. The software, which is provided as an R package, addresses problems associated with the current paradigm of closed-source, specialised land use change modelling software which disrupt the scientific process. It is an attempt to move the discipline towards open and transparent science and to ensure land use change models are accessible to scientists working across the geosciences.
G. M. Tsarouchi, W. Buytaert, and A. Mijic
Hydrol. Earth Syst. Sci., 18, 4223–4238, https://doi.org/10.5194/hess-18-4223-2014, https://doi.org/10.5194/hess-18-4223-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
Z. Zulkafli, W. Buytaert, C. Onof, W. Lavado, and J. L. Guyot
Hydrol. Earth Syst. Sci., 17, 1113–1132, https://doi.org/10.5194/hess-17-1113-2013, https://doi.org/10.5194/hess-17-1113-2013, 2013
Related subject area
Soil degradation
Gully rehabilitation in southern Ethiopia – value and impacts for farmers
Status and influential factors of soil nutrients and acidification in Chinese tea plantations
A millennium of arable land use – the long-term impact of tillage and water erosion on landscape-scale carbon dynamics
Sensitivity of source sediment fingerprinting to tracer selection methods
Response of soil nutrients and erodibility to slope aspect in the northern agro-pastoral ecotone, China
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Validating plutonium-239+240 as a novel soil redistribution tracer – a comparison to measured sediment yield
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems
Dynamics of carbon loss from an Arenosol by a forest to vineyard land use change on a centennial scale
Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr, and Pb pollution
The effect of tillage depth and traffic management on soil properties and root development during two growth stages of winter wheat (Triticum aestivum L.)
Potential effect of wetting agents added to agricultural sprays on the stability of soil aggregates
Environmental behaviors of (E) pyriminobac-methyl in agricultural soils
Spatial distribution of argan tree influence on soil properties in southern Morocco
Assessing soil redistribution of forest and cropland sites in wet tropical Africa using 239+240Pu fallout radionuclides
Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China
Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils
Complex soil food web enhances the association between N mineralization and soybean yield – a model study from long-term application of a conservation tillage system in a black soil of Northeast China
Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling
Variation of soil organic carbon, stable isotopes, and soil quality indicators across an erosion–deposition catena in a historical Spanish olive orchard
Impacts of land use and topography on soil organic carbon in a Mediterranean landscape (north-western Tunisia)
Spatial assessments of soil organic carbon for stakeholder decision-making – a case study from Kenya
How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling
Enzymatic biofilm digestion in soil aggregates facilitates the release of particulate organic matter by sonication
Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions
Determination of hydrological roughness by means of close range remote sensing
Can we manipulate root system architecture to control soil erosion?
SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network
Gully geometry: what are we measuring?
Short-term recovery of soil physical, chemical, micro- and mesobiological functions in a new vineyard under organic farming
Ecological soil quality affected by land use and management on semi-arid Crete
Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health
Wolde Mekuria, Euan Phimister, Getahun Yakob, Desalegn Tegegne, Awdenegest Moges, Yitna Tesfaye, Dagmawi Melaku, Charlene Gerber, Paul D. Hallett, and Jo U. Smith
SOIL, 10, 637–654, https://doi.org/10.5194/soil-10-637-2024, https://doi.org/10.5194/soil-10-637-2024, 2024
Short summary
Short summary
In Ethiopia, we studied (a) the effectiveness of low-cost gully rehabilitation measures in reducing soil loss and upward expansion of gully heads and (b) how farmers and communities view gully interventions. The tested low-cost gully rehabilitation measures were effective in mitigating the upward expansion of gully heads and in reducing soil loss. Farmers also perceive success, but scaling-out can be constrained by diverse challenges.
Dan Wang, Fei Li, Benjuan Liu, Zhihui Wang, Jianfeng Hou, Rui Cao, Yuqian Zheng, and Wanqin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2498, https://doi.org/10.5194/egusphere-2024-2498, 2024
Short summary
Short summary
Tea plantations in China were facing soil acidification, nutrient deficiencies and imbalance. Less than 45 % of tea plantations can classified as high-quality tea plantations. Soil nutrients and pH were closely related to geological and climatic factors and varied among soil types. The status of soil nutrients and pH can be modified by managerial practices such as cultivation period and fertilization strategy. Recommendations were made to tackle soil problems.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Yuxin Wu, Guodong Jia, Xinxiao Yu, Honghong Rao, Xiuwen Peng, Yusong Wang, Yushi Wang, and Xu Wang
SOIL, 10, 61–75, https://doi.org/10.5194/soil-10-61-2024, https://doi.org/10.5194/soil-10-61-2024, 2024
Short summary
Short summary
Vegetation restoration is an important method of ecological restoration that aims to control soil erosion and prevent soil degradation. Our study suggests that combinations of species such as C. korshinskii and L. bicolor are optimal for improving the soil nutrients and soil erodibility for any slope aspect. This study provides insight into the rational planning of vegetation restoration measures for slopes with various aspects in semi-arid areas of the northern agro-pastoral ecotone.
Mahdi Boroughani, Fahimeh Mirchooli, Mojtaba Hadavifar, and Stephanie Fiedler
SOIL, 9, 411–423, https://doi.org/10.5194/soil-9-411-2023, https://doi.org/10.5194/soil-9-411-2023, 2023
Short summary
Short summary
The present study used several different datasets, conducted a field survey, and paired the data with three different machine learning algorithms to construct spatial maps for areas at risk of land degradation for the Lut watershed in Iran. According to the land degradation map, almost the entire study region is at risk. A large fraction of 43 % of the area is prone to both high wind-driven and water-driven soil erosion.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023, https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Short summary
The response rate of soil organic matter (SOM) to the amount of straw return was inversely proportional to the initial SOM and the sand contents. From paddy to dryland, the SOM loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg-1 when the straw return amount reached 60–100%. The study revealed that straw return is beneficial to carbon sink in farmland and is a way to prevent a C source caused by the change of paddy field to upland.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL, 8, 517–539, https://doi.org/10.5194/soil-8-517-2022, https://doi.org/10.5194/soil-8-517-2022, 2022
Short summary
Short summary
Although present in food security key areas, Arenosols carbon stocks are barely studied. A 150-year-old land use change in a Mediterranean Arenosol showed a loss from 50 Gt C ha-1 to 3 Gt C ha-1 after grape cultivation. 14C showed that deep ploughing in a vineyard plot redistributed the remaining microbial carbon both vertically and horizontally. Despite the drastic degradation of the organic matter pool, Arenosols would have a high carbon storage potential, targeting the 4 per 1000 initiative.
Vanesa Santás-Miguel, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Montserrat Díaz-Raviña, Manuel Arias-Estévez, and David Fernández-Calviño
SOIL, 8, 437–449, https://doi.org/10.5194/soil-8-437-2022, https://doi.org/10.5194/soil-8-437-2022, 2022
Short summary
Short summary
A laboratory experiment was carried out for 42 d to study co-selection for tolerance of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr, and Pb). At high metal concentrations, the bacterial communities show tolerance to the metal itself, occurring for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals also showed long-term co-tolerance to TC, OTC, and CTC.
David Hobson, Mary Harty, Saoirse R. Tracy, and Kevin McDonnell
SOIL, 8, 391–408, https://doi.org/10.5194/soil-8-391-2022, https://doi.org/10.5194/soil-8-391-2022, 2022
Short summary
Short summary
Tillage practices and traffic management have significant implications for root architecture, plant growth, and, ultimately, crop yield. Soil cores were extracted from a long-term tillage trial to measure the relationship between soil physical properties and root growth. We found that no-traffic and low-tyre-pressure methods significantly increased rooting properties and crop yield under zero-tillage conditions compared to conventionally managed deep-tillage treatments with high tyre pressures.
Antonín Kintl, Vítězslav Vlček, Martin Brtnický, Jan Nedělník, and Jakub Elbl
SOIL, 8, 349–372, https://doi.org/10.5194/soil-8-349-2022, https://doi.org/10.5194/soil-8-349-2022, 2022
Short summary
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
Wenwen Zhou, Haoran Jia, Lang Liu, Baotong Li, Yuqi Li, and Meizhu Gao
SOIL, 8, 237–252, https://doi.org/10.5194/soil-8-237-2022, https://doi.org/10.5194/soil-8-237-2022, 2022
Short summary
Short summary
Our study focuses on (E) pyriminobac-methyl (EPM), a weedicide commonly applied to agricultural soils in China, which can potentially pose serious risks to groundwater quality once it percolates through the soil. We tested the adsorption–desorption, degradation, and leaching of this compound in five agricultural soils sampled from different provinces in China.
Mario Kirchhoff, Tobias Romes, Irene Marzolff, Manuel Seeger, Ali Aït Hssaine, and Johannes B. Ries
SOIL, 7, 511–524, https://doi.org/10.5194/soil-7-511-2021, https://doi.org/10.5194/soil-7-511-2021, 2021
Short summary
Short summary
This study found that the influence of argan trees on soil properties in southern Morocco is mostly limited to the area covered by the tree crown. However, the tree influences the bare soil outside the crown positively in specific directions because wind and water can move litter and soil particles from under the tree to the areas between the trees. These findings, based on soil samples around argan trees, could help structure reforestation measures.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Ming Lu, David S. Powlson, Yi Liang, Dave R. Chadwick, Shengbi Long, Dunyi Liu, and Xinping Chen
SOIL, 7, 333–346, https://doi.org/10.5194/soil-7-333-2021, https://doi.org/10.5194/soil-7-333-2021, 2021
Short summary
Short summary
Land use changes are an important anthropogenic perturbation that can cause soil degradation, but the impacts of land conversion from growing cereals to vegetables have received little attention. Using a combination of soil analyses from paired sites and data from farmer surveys, we found significant soil degradation in intensive vegetable cropping under paddy rice–oilseed rape rotation in southwestern China. This study may alert others to the potential land degradation in the subtropics.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Shixiu Zhang, Liang Chang, Neil B. McLaughlin, Shuyan Cui, Haitao Wu, Donghui Wu, Wenju Liang, and Aizhen Liang
SOIL, 7, 71–82, https://doi.org/10.5194/soil-7-71-2021, https://doi.org/10.5194/soil-7-71-2021, 2021
Short summary
Short summary
Long-term conservation tillage results in more complex and heterogeneous activities of soil organisms relative to conventional tillage. This study used an energetic food web modelling approach to calculate the mineralized N delivered by the whole soil community assemblages and highlighted the essential role of soil food web complexity in coupling N mineralization and soybean yield after a 14-year application of conservation tillage in a black soil of Northeast China.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
José A. Gómez, Gema Guzmán, Arsenio Toloza, Christian Resch, Roberto García-Ruíz, and Lionel Mabit
SOIL, 6, 179–194, https://doi.org/10.5194/soil-6-179-2020, https://doi.org/10.5194/soil-6-179-2020, 2020
Short summary
Short summary
The long-term evolution of soil organic carbon in an olive orchard (planted in 1856) was evaluated and compared to an adjacent undisturbed natural area. Total soil organic carbon in the top 40 cm of the soil in the orchard was reduced to 25 % of that in the undisturbed area. The deposition downslope in the orchard of sediment coming from the eroded upslope area did not increase the accumulation of organic carbon in soil, but it quadrupled available phosphorus and improved overall soil quality.
Donia Jendoubi, Hanspeter Liniger, and Chinwe Ifejika Speranza
SOIL, 5, 239–251, https://doi.org/10.5194/soil-5-239-2019, https://doi.org/10.5194/soil-5-239-2019, 2019
Short summary
Short summary
This paper is original research done in north-western Tunisia; it presents the impacts of the topography (slope and aspect) and the land use systems in the SOC storage in a Mediterranean area. It provides a soil spectral library, describes the variation of SOC under different conditions, and highlights the positive impact of agroforestry as good management in improving the SOC. Therefore this finding is very important to support decision making and inform sustainable land management in Tunisia.
Tor-Gunnar Vågen, Leigh Ann Winowiecki, Constance Neely, Sabrina Chesterman, and Mieke Bourne
SOIL, 4, 259–266, https://doi.org/10.5194/soil-4-259-2018, https://doi.org/10.5194/soil-4-259-2018, 2018
Short summary
Short summary
Land degradation impacts the health and livelihoods of about 1.5 billion people worldwide. The state of the environment and food security are strongly interlinked in tropical landscapes. This paper demonstrates the integration of soil organic carbon (SOC) and land health maps with socioeconomic datasets into an online, open-access platform called the Resilience Diagnostic and Decision Support Tool for Turkana County in Kenya.
Dick J. Brus and Jan J. H. van den Akker
SOIL, 4, 37–45, https://doi.org/10.5194/soil-4-37-2018, https://doi.org/10.5194/soil-4-37-2018, 2018
Short summary
Short summary
Subsoil compaction is an important soil threat. It is caused by heavy machines used in agriculture. The aim of this study was to estimate how large the area with overcompacted subsoils is in the Netherlands. This was done by selecting locations randomly and determining the porosity and bulk density of the soil at these locations. It appeared that 43 % of the soils in the Netherlands is overcompacted, and so we conclude that subsoil compaction is indeed a serious problem in the Netherlands.
Frederick Büks and Martin Kaupenjohann
SOIL, 2, 499–509, https://doi.org/10.5194/soil-2-499-2016, https://doi.org/10.5194/soil-2-499-2016, 2016
Short summary
Short summary
Soil aggregate stability and POM occlusion are integral markers for soil quality. Besides physico-chemical interactions, biofilms are considered to aggregate primary particles, but experimental proof is still missing. In our experiment, soil aggregate samples were treated with biofilm degrading enzymes and showed a reduced POM occlusion and an increased bacteria DNA release compared with untreated samples. Thus, biofilms are assumed to be an important factor of POM occlusion in soil aggregates.
E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden, and J. A. Gómez
SOIL, 1, 651–664, https://doi.org/10.5194/soil-1-651-2015, https://doi.org/10.5194/soil-1-651-2015, 2015
Short summary
Short summary
Biodiversity indices for spontaneous grass cover were measured in two olive orchards in southern Spain with contrasting site conditions and management to evaluate their potential for biodiversity metrics of soil degradation. Biodiversity indices were relatively high for agricultural areas. No correlation between the biodiversity indicators and soil quality features were observed. The mere use of vegetation presence as a proxy might mask relative intense soil degradation processes.
A. Kaiser, F. Neugirg, F. Haas, J. Schmidt, M. Becht, and M. Schindewolf
SOIL, 1, 613–620, https://doi.org/10.5194/soil-1-613-2015, https://doi.org/10.5194/soil-1-613-2015, 2015
A. Ola, I. C. Dodd, and J. N. Quinton
SOIL, 1, 603–612, https://doi.org/10.5194/soil-1-603-2015, https://doi.org/10.5194/soil-1-603-2015, 2015
Short summary
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
C. Castillo, M. R. James, M. D. Redel-Macías, R. Pérez, and J. A. Gómez
SOIL, 1, 583–594, https://doi.org/10.5194/soil-1-583-2015, https://doi.org/10.5194/soil-1-583-2015, 2015
Short summary
Short summary
- We present SF3M, a new graphical user interface for implementing a complete 3-D photo-reconstruction workflow based on freely available software, in combination with a low-cost survey design for the reconstruction of a several-hundred-metres-long gully network.
- This methodology implied using inexpensive means, little manpower, in a short time span, being a promising tool for gully erosion evaluation in scenarios with demanding budget and time constraints and reduced operator expertise.
J. Casalí, R. Giménez, and M. A. Campo-Bescós
SOIL, 1, 509–513, https://doi.org/10.5194/soil-1-509-2015, https://doi.org/10.5194/soil-1-509-2015, 2015
Short summary
Short summary
Despite gullies having been intensively studied in the past decades, there is no general consensus on such basic aspects as the correct determination of the geometry (width and depth) of these erosion features. Therefore, a measurement protocol is proposed to characterize the geometry of a gully by its effective width and effective depth, which, together with its length, would permit the definition of the equivalent prismatic gully (EPG); this would facilitate the comparison between gullies.
E. A. C. Costantini, A. E. Agnelli, A. Fabiani, E. Gagnarli, S. Mocali, S. Priori, S. Simoni, and G. Valboa
SOIL, 1, 443–457, https://doi.org/10.5194/soil-1-443-2015, https://doi.org/10.5194/soil-1-443-2015, 2015
Short summary
Short summary
Earthworks carried out before planting a new vineyard caused, in the surface soil layer, an increase in lime and a decline in soil OC and N contents, along with a reduction in the abundance and diversity of microbial and mesofauna communities. Five years after the new vineyard establishment, soil was still far from its original quality and this limited vine development. The reduced OM input resulting from the management and the poor residue biomass was a major factor in delaying soil resilience.
J. P. van Leeuwen, D. Moraetis, G. J. Lair, J. Bloem, N. P. Nikolaidis, L. Hemerik, and P. C. de Ruiter
SOIL Discuss., https://doi.org/10.5194/soild-2-187-2015, https://doi.org/10.5194/soild-2-187-2015, 2015
Manuscript not accepted for further review
R. Zornoza, J. A. Acosta, F. Bastida, S. G. Domínguez, D. M. Toledo, and A. Faz
SOIL, 1, 173–185, https://doi.org/10.5194/soil-1-173-2015, https://doi.org/10.5194/soil-1-173-2015, 2015
Cited articles
Aguilar, G., Cabré, A., Fredes, V., and Villela, B.: Erosion after an extreme storm event in an arid fluvial system of the southern Atacama Desert: an assessment of the magnitude, return time, and conditioning factors of erosion and debris flow generation, Nat. Hazards Earth Syst. Sci., 20, 1247–1265, https://doi.org/10.5194/nhess-20-1247-2020, 2020.
Balthazar, V., Vanacker, V., Molina, A., and Lambin, E. F.: Impacts of
forest cover change on ecosystem services in high Andean mountains,
Ecol. Indic., 48, 63–75,
https://doi.org/10.1016/j.ecolind.2014.07.043, 2015.
Bathurst, J. C., Iroumé, A., Cisneros, F., Fallas, J., Iturraspe, R.,
Gaviño Novillo, M., Urciuolo, A., de Bievre, B., Guerrero Borges, V.,
Coello, C., Cisneros, P., Gayoso, J., Miranda, M., and Ramirez, M.: Forest
Impact on Floods Due to Extreme Rainfall and Snowmelt in Four Latin American
Environments 1: Field Data Analysis, J. Hydrol., 400,
281–291, https://doi.org/10.1016/j.jhydrol.2010.11.044, 2011.
Bathurst, J. C., Fahey, B., Iroumé, A., and Jones, J.: Forests and
Floods: Using Field Evidence to Reconcile Analysis Methods, Hydrol. Process., 34, 3295–3310, https://doi.org/10.1002/hyp.13802, 2020.
Bilsborrow, R. E.: Population Growth, Internal Migration, and Environmental
Degradation in Rural Areas of Developing Countries, Eur. J. Popul., 8, 125–148, https://doi.org/10.1007/BF01797549, 1992.
Blodgett, T. A. and Isacks, B. L.: Landslide Erosion Rate in the Eastern
Cordillera of Northern Bolivia, Earth Interact., 11, 1–30,
https://doi.org/10.1175/2007EI222.1, 2007.
Bonnesoeur, V., Locatelli, B., Guariguata, M. R., Ochoa-Tocachi, B. F.,
Vanacker, V., Mao, Z., Stokes, A., and Mathez-Stiefel, S. L.: Impacts of
Forests and Forestation on Hydrological Services in the Andes: A Systematic
Review, Forest Ecol. Manag., 433, 569–584,
https://doi.org/10.1016/j.foreco.2018.11.033, 2019.
Borja, P., Molina, A., Govers, G., and Vanacker, V.: Check dams and
afforestation reducing sediment mobilization in active gully systems in the
Andean mountains, Catena, 165, 42–53, https://doi.org/10.1016/j.catena.2018.01.013, 2018.
Carretier, S., Tolorza, V., Regard, V., Aguilar, G., Bermúdez, M. A.,
Martinod, J., Guyot, J. L., Hérail, G., and Riquelme, R.: Review of
Erosion Dynamics along the Major N-S Climatic Gradient in Chile and
Perspectives, Geomorphology, 300, 45–68,
https://doi.org/10.1016/j.geomorph.2017.10.016, 2018.
Ceccherini, G., Ameztoy, I., Hernández, C. P. R., and Moreno, C. C.:
High-Resolution Precipitation Datasets in South America and West Africa
based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital
Elevation Model, Remote Sens., 7, 6454–6488, https://doi.org/10.3390/rs70506454, 2015.
Cohen-Shacham, E., Walters, G., Janzen, C., and Maginnis, S.: Nature-based
Solutions to address global societal challenges, Gland, Switzerland: IUCN,
97 pp., 2016.
Coppus, R. and Imeson, A. C.: Extreme Events Controlling Erosion and
Sediment Transport in a Semi-Arid Sub-Andean Valley, Earth Surf. Proc. Land., 27, 1365–1375, https://doi.org/10.1002/esp.435, 2002.
De Noni, G., Viennot, M., Asseline, J., and Trujillo, G.: Terre d'altitude,
terres de risque. La lutte contre l'érosion dans les Andes
équatoriennes, IRD éditions, Collection Latitudes 23, Paris, France, ISBN 2-7099-1469-7, 2001.
Devenish, C. and Gianella, C.: 20 years of sustainable mountain development in the Andes – from Rio 1992 to 2012 and beyond, Consorcio para el Desarollo Sostenible de la Ecoregion Andina, Lima, Peru, 66pp., 2012.
Farley, K. A. and Bremer, L. L.: “Water Is Life”: Local Perceptions of
Páramo Grasslands and Land Management Strategies Associated with Payment
for Ecosystem Services, Ann. Am. Assoc. Geogr.,
107, 371–381, https://doi.org/10.1080/24694452.2016.1254020, 2017.
Franzluebbers, A. J.: Soil Organic Matter Stratification Ratio as an
Indicator of Soil Quality, Soil Till. Res., 66, 95–106,
https://doi.org/10.1016/S0167-1987(02)00018-1, 2002.
Guns, M. and Vanacker, V.: Shifts in Landslide Frequency-Area Distribution
after Forest Conversion in the Tropical Andes, Anthropocene, 6, 75–85,
https://doi.org/10.1016/j.ancene.2014.08.001, 2014.
Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G.: Meta-Analysis
and the Science of Research Synthesis, Nature, 555, 175–182,
https://doi.org/10.1038/nature25753, 2018.
Guzman, C. D., Hoyos-Villada, F., Da Silva, M., Zimale, F. A., Chiranda, N.,
Botero, C., Morales Vargas, A., Rivera, B., Moreno, P., and Steenhuis, T. S.:
Variability of soil surface characteristics in a mountainous watershed in
Valle del Cauca, Colombia: Implications for runoff, erosion, and
conservation, J. Hydrol., 576, 273–286, https://doi.org/10.1016/j.jhydrol.2019.06.002, 2019.
Harden, C. P.: Interrelationship between land abandonment and land
degradation: a case from the Ecuadorian Andes, Mt. Res. Dev., 16, 274–280, https://doi.org/10.2307/3673950,
1996.
Harden, C. P.: Soil Erosion and Sustainable Mountain Development, Mt. Res. Dev., 21, 77–83,
https://doi.org/10.1659/0276-4741(2001)021[0077:SEASMD]2.0.CO;2, 2001.
Henry, A., Mabit, L., Jaramillo, R. E., Cartagena, Y., and Lynch, J. P.:
Land Use Effects on Erosion and Carbon Storage of the Río Chimbo
Watershed, Ecuador, Plant Soil, 367, 477–491,
https://doi.org/10.1007/s11104-012-1478-y, 2013.
Horn, R., Domzzał, H., Słowińska-Jurkiewicz, A., and van Ouwerkerk,
C.: Soil Compaction Processes and Their Effects on the Structure of Arable
Soils and the Environment, Soil Till. Res., 35, 23–36,
https://doi.org/10.1016/0167-1987(95)00479-C, 1995.
Jacobi, J., Schneider, M., Bottazzi, P., Pillco, M., Calizaya, P., and Rist,
S.: Agroecosystem resilience and farmers' perceptions of climate change
impacts on cocoa farms in Alto Beni, Bolivia, Renew. Agr. Food
Syst., 30, 170–183, https://doi.org/10.1017/S174217051300029X, 2015.
Janeau, J. L., Grellier, S., and Podwojewski, P.: Influence of rainfall
interception by endemic plants versus short cycle crops on water
infiltration in high altitude ecosystems of Ecuador, Hydrol. Res.,
46, 1008–1018, https://doi.org/10.2166/nh.2015.203, 2015.
Jantz, N. and Behling, H.: A Holocene Environmental Record Reflecting
Vegetation, Climate, and Fire Variability at the Páramo of Quimsacocha,
Southwestern Ecuadorian Andes, Veg. Hist. Archaeobot., 21,
169–185, https://doi.org/10.1007/s00334-011-0327-x, 2012.
Keating, P. L.: Fire Ecology and Conservation in the High Tropical Andes:
Observations from Northern Ecuador, Journal of Latin American Geography, 6, 43–62,
https://www.jstor.org/stable/25765157 (last access: 15 June 2021), 2007.
Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K. and
Spehn, E. M.: A global inventory of mountains for bio-geographical
applications, Alp Botany, 127, 1–15, https://doi.org/10.1007/s00035-016-0182-6, 2017.
Latrubesse, E. M. and Restrepo, J. D.: Sediment Yield along the Andes:
Continental Budget, Regional Variations, and Comparisons with Other Basins
from Orogenic Mountain Belts, Geomorphology, 216, 225–233,
https://doi.org/10.1016/j.geomorph.2014.04.007, 2014.
Little, M. A.: Human Populations in the Andes: The Human Science Basis for
Research Planning, Mt. Res. Dev., 1, 145–170,
https://doi.org/10.2307/3673120, 1981.
Locatelli, B., Homberger, J. M., Ochoa-Tocachi, B. F., Bonnesoeur, V., Román, F., Drenkhan, F., and Buytaert, W.: Impactos de Las Zanjas de Infiltración En El Agua y Los Suelos: ?`Qué Sabemos? Resumen de políticas, Proyecto “infraestructura natural para la Seguridad hídrica”, Forest Trends, Lima, Peru, http://hal.cirad.fr/cirad-02615502 (last access: 15 June 2021), 2020.
Moher, D., Stewart, L., and Shekelle, P.: All in the Family: Systematic
Reviews, Rapid Reviews, Scoping Reviews, Realist Reviews, and More,
Sys. Rev., 4, 1–2, https://doi.org/10.1186/s13643-015-0163-7,
2015.
Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E., and
Cisneros, F.: Runoff Generation in a Degraded Andean Ecosystem: Interaction
of Vegetation Cover and Land Use, Catena, 71, 357–370,
https://doi.org/10.1016/j.catena.2007.04.002, 2007.
Molina, A., Govers, G., Poesen, J., Van Hemelryck, H., De Bièvre, B. and
Vanacker, V.: Environmental factors controlling spatial variation in
sediment yield in a central Andean mountain area, Geomorphology, 98, 176–186,
https://doi.org/10.1016/j.geomorph.2006.12.025, 2008.
Molina, A., Govers, G., Van den Putte, A., Poesen, J., and Vanacker, V.: Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling, Hydrol. Earth Syst. Sci., 13, 1823–1836, https://doi.org/10.5194/hess-13-1823-2009, 2009.
Molina, A., Vanacker, V., Brisson, E., Mora, D., and Balthazar, V.: Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes, Hydrol. Earth Syst. Sci., 19, 4201–4213, https://doi.org/10.5194/hess-19-4201-2015, 2015.
Montgomery, D. R., Balco, G., and Willett, S. D.: Climate, Tectonics, and the
Morphology of the Andes, Geology, 29, 579–582,
https://doi.org/10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2, 2001.
Morera, S. B., Condom, T., Crave, A., Steer, A., and Guyot, J. L.: The
Impact of Extreme El Niño Events on Modern Sediment Transport along the
Western Peruvian Andes (1968–2012), Scientific Reports, 7, 1–14,
https://doi.org/10.1038/s41598-017-12220-x, 2017.
Nichols, S., Webb, A., Norris, R., and Stewardson, M.: Eco Evidence analysis
methods manual: a systematic approach to evaluate causality in environmental
science, eWater Cooperative Research Centre, Canberra, ISBN 978-1-921543-43-2, 2011.
Patiño, S., Hernández, Y., Plata, C., Domínguez, I., Daza, M.,
Oviedo-Ocaña, R., Buytaert, W., and Ochoa-Tocachi, B. F.: Influence of
Land Use on Hydro-Physical Soil Properties of Andean Páramos and Its
Effect on Streamflow Buffering, Catena, 202, 105227,
https://doi.org/10.1016/j.catena.2021.105227, 2021.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith,
P.: Climate-Smart Soils, Nature, 532, 49–57,
https://doi.org/10.1038/nature17174, 2016.
Pesantez, P. G. and Seminario, M. O.: Identificación de zonas degradadas
y en proceso de erosión, Eng. Thesis, Faculty of Agronomy, Universidad
de Cuenca, Cuenca, Ecuador, 2010.
Podwojewski, P., Poulenard, J., Zambrana, T., and Hofstede, R.: Overgrazing
Effects on Vegetation Cover and Properties of Volcanic Ash Soil in the
Paramo of the Llangahua and Esperanza (Tungurahua, Ecuador), Soil Use Manage., 18, 45–55, https://doi.org/10.1111/j.1475-2743.2002.tb00049.x,
2002.
Pohlert, T.: PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, Retrieved from https://CRAN.R-project.org/package=PMCMRplus (last access: 24 December 2021), 2018.
Posthumus, H. and De Graaff, J.: Cost-benefit analysis of bench terraces, a case study in Peru, Land Degrad. Dev., 16, 1–11, https://doi.org/10.1002/ldr.637, 2005.
Poulenard, J., Podwojewski, P., Janeau, J. L., and Collinet, J.: Runoff and
soil erosion under rainfall simulation of Andisols from the Ecuadorian
paramo: effect of tillage and burning, Catena 45, 185–207, https://doi.org/10.1016/S0341-8162(01)00148-5, 2001.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 24 December 2021.
Restrepo, J. D., Kettner, A. J., and Syvitski, J. P. M.: Recent Deforestation
Causes Rapid Increase in River Sediment Load in the Colombian Andes,
Anthropocene, 10, 13–28, https://doi.org/10.1016/j.ancene.2015.09.001,
2015.
Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., and Walsh, J.
P.: Environmental Signal Propagation in Sedimentary Systems across
Timescales, Earth-Sci. Revi., 153, 7–29,
https://doi.org/10.1016/j.earscirev.2015.07.012, 2016.
Romero-Díaz, A., de Vente, J., and Díaz-Pereira, E.: Assessment of
the Ecosystem Services Provided by Agricultural Terraces, Pirineos., 174,
e043, https://doi.org/10.3989/pirineos.2019.174003, 2019.
Sandor, J. A. and Eash, N. S.: Ancient Agricultural Soils in the Andes
of Southern Peru, Soil Sci. Soc. Am. J., 59, 170–179,
https://doi.org/10.2136/sssaj1995.03615995005900010026x, 1995.
Suescún, D., Villegas, J. C. , León, J. D., Flórez, C. P.,
García-Leoz, V., and Correa-Londoño, G. A.: Vegetation Cover and
Rainfall Seasonality Impact Nutrient Loss via Runoff and Erosion in the
Colombian Andes, Reg. Environ. Change, 17, 827–839,
https://doi.org/10.1007/s10113-016-1071-7, 2017.
Tolorza, V., Carretier, S., Andermann, C., Ortega-Culaciati, F., Pinto, L.,
and Mardones, M.: Contrasting Mountain and Piedmont Dynamics of Sediment
Discharge Associated with Groundwater Storage Variation in the Biobío
River, J. Geophys. Res.-Earth, 119, 2730–2753,
https://doi.org/10.1002/2014JF003105, 2014.
Torero Zegarra, E., Pender, J., Maruyama, E., Keefe, M., and Stoorvogel,
J. M.: Socioeconomic and Technical Considerations to Mitigate Land and Water
Degradation in the Peruvian Andes, CPWF Project Report Series PN70, Colombo,
Sri Lanka, 2010.
USGS: Global Ecosystems Viewer, https://rmgsc.cr.usgs.gov/ArcGIS/rest/services/contSA/MapServer, last access: 27 April 2021.
Valentin, C., Agus, F., Alamban, R., Boosaner, A., Bricquet, J. P., Chaplot,
V., de Guzman, T. de Rouw, A., Janeau, J. L., Orange, D., Phachomphonh, K., Phai, D. D., Podwojewski, P., Ribolzi, O., Silvera, N., Subagyono, K.,
Thiébaux, J. P., Toan, T. D., and Vadari, T.: Runoff and Sediment
Losses from 27 Upland Catchments in Southeast Asia: Impact of Rapid Land Use
Changes and Conservation Practices, Agriculture, Ecosystems and Environment,
128, 225–238, https://doi.org/10.1016/j.agee.2008.06.004, 2008.
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J.,
Deckers, J., and Kubik, P.: Restoring Dense Vegetation Can Slow Mountain
Erosion to near Natural Benchmark Levels, Geology, 35, 303–306,
https://doi.org/10.1130/G23109A.1, 2007a.
Vanacker, V., Govers, G., Molina, A., Poesen, J., and Deckers, J.: Spatial
variation of suspended sediment concentration in a tropical Andean river
system: the Paute River, southern Ecuador, Geomorphology, 87, 53–67,
https://doi.org/10.1016/j.geomorph.2006.06.042, 2007b.
Vanacker, V., Bellin, N., Molina, A., and Kubik, P. W.: Erosion regulation as
a function of human disturbances to vegetation cover: A conceptual model,
Landscape Ecol., 29, 293–309,
https://doi.org/10.1007/s10980-013-9956-z, 2014.
Vanacker, V., Guns, M., Clapuyt, F. Balthazar, V., Tenorio, G., and Molina,
A.: Distribución Espacio-Temporal de Los Deslizamientos y Erosión
Hídrica En Una Cuenca Andina Tropical, Pirineos, 175, 051,
https://doi.org/10.3989/pirineos.2020.175001, 2020.
Vanacker, V., Molina, A., and Rosas-Barturen, M.: Data and ancillary data for publication: Natural infrastructure and water erosion mitigation in the Andes, Zenodo [data set], https://doi.org/10.5281/zenodo.6203174, 2022.
Vásquez, A. and Tapia, M.: Cuantificación de la erosión
hídrica superficial en las laderas semiáridas de la Sierra Peruana,
Revista Ingenieria UC, 18, 42–50, 2011.
Velez, M. I., Salgado, J., Brenner, M., Hooghiemstra, H., Escobar, J., Boom,
A., Bird, B., Curtis, J. H., Temoltzin-Loranca, Y., Patiño, L. F.,
Gonzalez-Arango, C., Metcalfe, S. E., Simpson, G. L., and Velasquez, C.: Novel
responses of diatoms in neotropical mountain lakes to indigenous and
post-European occupation, Anthropocene, 34, 100294,
https://doi.org/10.1016/j.ancene.2021.100294, 2021,
Verstraeten, G., Broothaerts, N., Van Loo, M., Notebaert, B., D'Haen, K.,
Dusar, B., and De Brue, H.: Variability in Fluvial Geomorphic Response to
Anthropogenic Disturbance, Geomorphology, 294, 20–39,
https://doi.org/10.1016/j.geomorph.2017.03.027, 2017.
Viechtbauer, W.: Conducting Meta-Analyses in R with the Metafor, J. Stat. Softw., 36, 1–48, 2010.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J., and Kögel-Knabner, I.: Soil
Organic Carbon Storage as a Key Function of Soils – A Review of Drivers and
Indicators at Various Scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wunder, S.: Deforestation and the Uses of Wood in the Ecuadorian Andes,
Mt. Res. Dev., 16, 367–381,
https://doi.org/10.2307/3673987, 1996.
Zimmerer, K. S.: Soil Erosion and Labor Shortages in the Andes with Special
Reference to Bolivia, 1953–1991: Implications for
“Conservation-with-Development”, World Dev., 21, 1659–1675,
https://doi.org/10.1016/0305-750X(93)90100-N, 1993.
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
The Andes region is prone to natural hazards due to its steep topography and climatic...