Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transformation of n-alkanes from plant to soil: a review
Carrie L. Thomas
CORRESPONDING AUTHOR
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, 1098XH, the Netherlands
Boris Jansen
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, 1098XH, the Netherlands
E. Emiel van Loon
Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, 1098XH, the Netherlands
Guido L. B. Wiesenberg
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
Related authors
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Dario Püntener, Tatjana Carina Speckert, Yves-Alain Brügger, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1546, https://doi.org/10.5194/egusphere-2025-1546, 2025
Short summary
Short summary
Alpine soils store much carbon but warming and changes in vegetation could reverse this by turning them into carbon sources. In a one-year laboratory study, we examined alpine forest and pasture soils and added fresh grass litter marked with a carbon tracer to track decomposition under different temperatures. Our findings reveal that fresh plant material drives soil breakdown more than temperature alone, offering new insights into how climate change may affect carbon storage in mountain regions.
Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, and Michael W. I. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-299, https://doi.org/10.5194/egusphere-2025-299, 2025
Short summary
Short summary
To understand how warming will change the dynamics of roots across soil profile, we took usage of a long-term field warming experiment and incubated 13C-labelled roots at three different depths. After 3 years of incubation, warming only accelerate the decomposition of root in topsoil (< 20 cm) but not in subsoil (> 20 cm). Hydrolysable lipids derived from root, which are considered as recalcitrant compounds and could be preserved for long time in the soil, are also decomposed faster in topsoil.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025, https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Short summary
We developed a machine-learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables, including metrics on terrain, geomorphology, vegetation height, and lithology, and used data from two Swiss field inventories to calibrate and test the models. The best-performing machine learning model consistently reduced the mean average error by at least 20 % compared to previous models.
Tatjana Carina Speckert, Arnaud Huguet, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-870, https://doi.org/10.5194/egusphere-2024-870, 2024
Preprint archived
Short summary
Short summary
Afforestation on former pasture and its potential implication on the soil microbial community structure remains still an open question, particularly in mountainous regions. We investigate the effect of afforestation on a subalpine pasture on the soil microbial community structure by combining the analysis of PLFA and GDGTs. We found differences in the microbial community structure with evidence of increasing decomposition of soil organic matter due to the alteration in substrate quality.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021, https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Short summary
How subsoil microorganisms respond to warming is largely unknown, despite their crucial role in the soil organic carbon cycle. We observed that the subsoil microbial community composition was more responsive to warming compared to the topsoil community composition. Decreased microbial abundance in subsoils, as observed in this study, might reduce the magnitude of the respiration response over time, and a shift in the microbial community will likely affect the cycling of soil organic carbon.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Cited articles
Almendros, G. and González-Vila, F. J.: Degradative studies on a soil
humin fraction – Sequential degradation of inherited humin, Soil Biol.
Biochem., 19, 513–520, https://doi.org/10.1016/0038-0717(87)90093-9, 1987.
Almendros, G., Martin, F., and González-Vila, F. J.: Effects of fire and
humic lipid fractions in a Dystric Xerochrept in Spain, Geoderma, 42,
115–127, 1988.
Almendros, G., Sanz, J., and Velasco, F.: Signatures of lipid assemblages in
soils under continental Mediterranean forests, Eur. J. Soil Sci., 47,
183–196, https://doi.org/10.1111/j.1365-2389.1996.tb01389.x, 1996.
Amblès, A., Jambu, P., Jacquesy, J.-C., Parlanti, E., and Secouet, B.:
Changes in the ketone portion of lipidic components during the decomposition
of plant debris in a hydromorphic forest-Podzol, Soil Sci., 156, 49–56,
https://doi.org/10.1097/00010694-199307000-00007, 1993.
Andersson, R. A. and Meyers, P. A.: Effect of climate change on delivery and
degradation of lipid biomarkers in a Holocene peat sequence in the Eastern
European Russian Arctic, Org. Geochem., 53, 63–72,
https://doi.org/10.1016/j.orggeochem.2012.05.002, 2012.
Angst, G., John, S., Mueller, C. W., Kögel-Knabner, I., and Rethemeyer,
J.: Tracing the sources and spatial distribution of organic carbon in
subsoils using a multi-biomarker approach, Sci. Rep., 6, 1–12,
https://doi.org/10.1038/srep29478, 2016.
Anokhina, N. A., Demin, V. V., and Zavgorodnyaya, Yu. A.: Compositions of
n-alkanes and n-methyl ketones in soils of the forest-park zone of Moscow,
Eurasian Soil Sc., 51, 637–646, https://doi.org/10.1134/S1064229318060030,
2018.
Bivand, R. S., Pebesma, E. J., and Gomez-Rubio, V.: Applied spatial data
analysis with R, Second edition, Springer, NY, https://doi.org/10.1007/978-1-4614-7618-4, 2013.
Bliedtner, M., Schäfer, I. K., Zech, R., and von Suchodoletz, H.: Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) – implications for reconstructing regional paleovegetation, Biogeosciences, 15, 3927–3936, https://doi.org/10.5194/bg-15-3927-2018, 2018.
Bourbonniere, R. A. and Meyers, P. A.: Sedimentary geolipid records of
historical changes in the watersheds and productivities of Lakes Ontario and
Erie, Limnol. Oceanogr., 41, 352–359,
https://doi.org/10.4319/lo.1996.41.2.0352, 1996.
Bradford, M. A., Tordoff, G. M., Eggers, T., Jones, T. H., and Newington, J.
E.: Microbiota, fauna, and mesh size interactions in litter decomposition,
Oikos, 99, 317–323, https://doi.org/10.1034/j.1600-0706.2002.990212.x,
2002.
Bray, E. E. and Evans, E. D.: Distribution of n-paraffins as a clue to
recognition of source beds, Geochim. Cosmochim. Ac., 22, 2–15,
https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Brittingham, A., Hren, M. T., and Hartman, G.: Microbial alteration of the
hydrogen and carbon isotopic composition of n- alkanes in sediments, Org.
Geochem., 107, 1–8, https://doi.org/10.1016/j.orggeochem.2017.01.010, 2017.
Buggle, B., Wiesenberg, G. L. B., and Glaser, B.: Is there a possibility to
correct fossil n-alkane data for postsedimentary alteration effects?, Appl.
Geochem., 25, 947–957, https://doi.org/10.1016/j.apgeochem.2010.04.003,
2010.
Bull, I. D., Bergen, P. F. van, Nott, C. J., Poulton, P. R., and Evershed, R.
P.: Organic geochemical studies of soils from the Rothamsted classical
experiments—V. The fate of lipids in different long-term experiments, Org.
Geochem., 31, 389–408, https://doi.org/10.1016/S0146-6380(00)00008-5, 2000.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179,
https://doi.org/10.1016/j.gca.2013.04.016, 2013.
Bush, R. T. and McInerney, F. A.: Influence of temperature and C4 abundance
on n-alkane chain length distributions across the central USA, Org. Geochem.,
79, 65–73, https://doi.org/10.1016/j.orggeochem.2014.12.003, 2015.
Celerier, J., Rodier, C., Favetta, P., Lemee, L., and Ambles, A.:
Depth-related variations in organic matter at the molecular level in a loamy
soil: reference data for a long-term experiment devoted to the carbon
sequestration research field, Eur. J. Soil Sci., 60, 33–43,
https://doi.org/10.1111/j.1365-2389.2008.01085.x, 2009.
Chikaraishi, Y. and Naraoka, H.: Carbon and hydrogen isotope variation of
plant biomarkers in a plant–soil system, Chemical Geol., 231, 190–202,
https://doi.org/10.1016/j.chemgeo.2006.01.026, 2006.
Chikaraishi, Y., Kaneko, M., and Ohkouchi, N.: Stable hydrogen and carbon
isotopic compositions of long-chain (C21–C33)n-alkanes and
n-alkenes in insects, Geochim. Cosmochim. Ac., 95, 53–62,
https://doi.org/10.1016/j.gca.2012.07.036, 2012.
Cranwell, P. A.: Diagenesis of free and bound lipids in terrestrial detritus
deposited in a lacustrine sediment, Org. Geochem., 3, 79–89,
https://doi.org/10.1016/0146-6380(81)90002-4, 1981.
Crausbay, S., Genderjahn, S., Hotchkiss, S., Sachse, D., Kahmen, A., and
Arndt, S. K.: Vegetation dynamics at the upper reaches of a tropical montane
forest are driven by disturbance over the past 7300 years, Arct. Antarct.
Alp. Res., 46, 787–799, https://doi.org/10.1657/1938-4246-46.4.787, 2014.
Cui, J., Huang, J., Meyers, P. A., Huang, X., Li, J., and Liu, W.: Variation
in solvent-extractable lipids and n-alkane compound- specific carbon isotopic
compositions with depth in a southern China karst area soil, J. Earth Sci.,
21, 382–391, https://doi.org/10.1007/s12583-010-0101-5, 2010.
Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial
plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary
record: A review, Org. Geochem., 103, 1–21,
https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017.
Eglinton, G., Hamilton, R. J., and Raphael, R. A.: Hydrocarbon constituents
of the wax coatings of plant leaves: A taxonomic survey, Nature, 193,
739-742, https://doi.org/10.1038/193739a0, 1962a.
Eglinton, G., Gonzalez, A. G., Hamilton, R. J., and Raphael, R. A.:
Hydrocarbon constituents of the wax coatings of plant leaves: A taxonomic
survey, Phytochem., 1, 89–102,
https://doi.org/10.1016/S0031-9422(00)88006-1, 1962b.
Eglinton, T. I. and Eglinton, G.: Molecular proxies for paleoclimatology,
Earth Planet Sci. Lett., 275, 1–16,
https://doi.org/10.1016/j.epsl.2008.07.012, 2008.
Feng, X. and Simpson, M. J.: The distribution and degradation of biomarkers
in Alberta grassland soil profiles, Org. Geochem., 38, 1558–1570,
https://doi.org/10.1016/j.orggeochem.2007.05.001, 2007.
Ficken, K. J., Barber, K. E., and Eglinton, G.: Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog
over the last two millennia, Org. Geochem., 28, 217–237,
https://doi.org/10.1016/S0146- 6380(97)00126-5, 1998.
Gamarra, B. and Kahmen, A.: Concentrations and δ2H values of
cuticular n-alkanes vary significantly among plant organs, species and
habitats in grasses from an alpine and a temperate European grassland,
Oecologia, 178, 981–998, https://doi.org/10.1007/s00442-015-3278-6, 2015.
Gocke, M., Kuzyakov, Y., and Wiesenberg, G. L. B.: Rhizoliths in loess –
evidence for post-sedimentary incorporation of root- derived organic matter
in terrestrial sediments as assessed from molecular proxies, Org. Geochem.,
41, 1198– 1206, https://doi.org/10.1016/j.orggeochem.2010.08.001, 2010.
González-Pérez, J. A., González-Vila, F. J.,
González-Vázquez, R., Arias, M. E., Rodríguez, J., and Knicker,
H.: Use of multiple biogeochemical parameters to monitor the recovery of
soils after forest fires, Org. Geochem., 39, 940–944,
https://doi.org/10.1016/j.orggeochem.2008.03.014, 2008.
Grimalt, J. O., Torras, E., and Albaigés, J.: Bacterial reworking of
sedimentary lipids during sample storage, Org. Geochem., 13, 741–746,
https://doi.org/10.1016/0146-6380(88)90096-4, 1988.
Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G.: Meta-analysis
and the science of research synthesis, Nature, 555, 175–182,
https://doi.org/10.1038/nature25753, 2018.
Hagenberg, S., Wehling, K., and Wiermann, R.: n-Alkanes - common surface
constituents of pollen from gymno-and angiosperms, Z. Naturforsch. C., 45,
1090–1092, https://doi.org/10.1515/znc-1990-11-1203, 1990.
Heinrich, S., Dippold, M. A., Werner, C., Wiesenberg, G. L. B., Kuzyakov, Y.,
and Glaser, B.: Allocation of freshly assimilated carbon into primary and
secondary metabolites after in situ 13C pulse labelling of Norway
spruce (Picea abies), Tree Physiol., 35, 1176–1191,
https://doi.org/10.1093/treephys/tpv083, 2015.
Hirave, P., Wiesenberg, G. L. B., Birkholz, A., and Alewell, C.: Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA), Biogeosciences, 17, 2169–2180, https://doi.org/10.5194/bg-17-2169-2020, 2020.
Hoefs, M. J. L., Rijpstra, W. I. C., and Sinninghe Damsté, J. S.: The
influence of oxic degradation on the sedimentary biomarker record I:
evidence from Madeira Abyssal Plain turbidites, Geochim. Cosmochim. Ac., 66,
2719–2735, https://doi.org/10.1016/S0016-7037(02)00864-5, 2002.
Hoffmann, C., Schulz, S., Eberhardt, E., Grosse, M., Stein, S., Specka, X.,
Svoboda, N., and Heinrich, U.: Data standards for soil- and agricultural
research, BonaRes Series, https://doi.org/10.20387/BonaRes-ARM4-66M2, 2020.
Howard, S., McInerney, F. A., Caddy-Retalic, S., Hall, P. A., and Andrae, J.
W.: Modelling leaf wax n-alkane inputs to soils along a latitudinal transect
across Australia, Org. Geochem., 121, 126–137,
https://doi.org/10.1016/j.orggeochem.2018.03.013, 2018.
Huang, X., Wang, C., Zhang, J., Wiesenberg, G. L. B., Zhang, Z., and Xie, S.:
Comparison of free lipid compositions between roots and leaves of plants in
the Dajiuhu Peatland, central China, Geochem. J., 45, 365–373,
https://doi.org/10.2343/geochemj.1.0129, 2011.
Huang, Y., Bol, R., Harkness, D. D., Ineson, P., and Eglinton, G.:
Post-glacial variations in distributions, 13C and 14C contents of
aliphatic hydrocarbons and bulk organic matter in three types of British
acid upland soils, Org. Geochem., 24, 273–287,
https://doi.org/10.1016/0146-6380(96)00039-3, 1996.
Huang, Y., Eglinton, G., Ineson, P., Latter, P. M., Bol, R., and Harkness, D.
D.: Absence of carbon isotope fractionation of individual n-alkanes in a
23-year field decomposition experiment with Calluna vulgaris, Org. Geochem., 26, 497–501,
https://doi.org/10.1016/S0146-6380(97)00027-2, 1997.
IUSS Working Group: World Reference Base for Soil Resources 2014,
International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports No. 106. FAO, Rome,
2014.
Jansen, B. and Nierop, K. G. J.: Methyl ketones in high altitude Ecuadorian
Andosols confirm excellent conservation of plant- specific n-alkane patterns,
Org. Geochem., 40, 61–69, https://doi.org/10.1016/j.orggeochem.2008.09.006,
2009.
Jansen, B. and Wiesenberg, G. L. B.: Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science, SOIL, 3, 211–234, https://doi.org/10.5194/soil-3-211-2017, 2017.
Jansen, B., Nierop, K. G. J., Hageman, J. A., Cleef, A. M., and Verstraten,
J. M.: The straight-chain lipid biomarker composition of plant species
responsible for the dominant biomass production along two altitudinal
transects in the Ecuadorian Andes, Org. Geochem., 37, 1514–1536,
https://doi.org/10.1016/j.orggeochem.2006.06.018, 2006.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, R package
version 0.4.0., available at: https://CRAN.R-project.org/package=ggpubr (last access: 24 September 2021), 2020.
Keiluweit, M., Wanzek, T., Kleber, M., Nico, P., and Fendorf, S.: Anaerobic
microsites have an unaccounted role in soil carbon stabilization, Nat. Comm., 8, 1771, https://doi.org/10.1038/s41467-017-01406-6,
2017.
Klein, D. A., Davis, J. A., and Casida, L. E.: Oxidation of n-alkanes to
ketones by an Arthrobacter species, A. van Leeuw. J. Microb., 34, 495–503,
https://doi.org/10.1007/BF02046471, 1968.
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol. Biochem.,
34, 139–162, https://doi.org/10.1016/S0038-0717(01)00158-4, 2002.
Kolattukudy, P. E. (Ed.): Chemistry and Biochemistry of Natural Waxes,
Elsevier, 459 pp., 1976.
Kuhn, T. K., Krull, E. S., Bowater, A., Grice, K., and Gleixner, G.: The
occurrence of short chain n-alkanes with an even over odd predominance in
higher plants and soils, Org. Geochem., 41, 88–95,
https://doi.org/10.1016/j.orggeochem.2009.08.003, 2010.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S.,
Nunan, N., Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., and
Kögel-Knabner, I.: Persistence of soil organic carbon caused by
functional complexity, Nat. Geosci., 13, 529–534,
https://doi.org/10.1038/s41561-020-0612-3, 2020.
Lehtonen, K. and Ketola, M.: Solvent-extractable lipids of Sphagnum, Carex,
Bryales and Carex-Bryales peats: content and compositional features vs peat
humification, Org. Geochem., 20, 363–380, https://doi.org/10.1016/0146-6380(93)90126-V, 1993.
Lei, G., Zhang, H., Chang, F., Pu, Y., Zhu, Y., Yang, M., and Zhang, W.:
Biomarkers of modern plants and soils from Xinglong Mountain in the
transitional area between the Tibetan and Loess Plateaus, Quat. Internat.,
218, 143–150, https://doi.org/10.1016/j.quaint.2009.12.009, 2010.
Lemma, B., Mekonnen, B., Glaser, B., Zech, W., Nemomissa, S., Bekele, T., Bittner, L., and Zech, M.: Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part II: lignin-derived phenols and leaf-wax-derived n-alkanes, E&G Quaternary Sci. J., 68, 189–200, https://doi.org/10.5194/egqsj-68-189-2019, 2019.
Li, R., Fan, J., Xue, J., and Meyers, P. A.: Effects of early diagenesis on
molecular distributions and carbon isotopic compositions of leaf wax long
chain biomarker n-alkanes: Comparison of two one-year-long burial
experiments, Org. Geochem., 104, 8–18,
https://doi.org/10.1016/j.orggeochem.2016.11.006, 2017.
Li, X., Anderson, B. J., Vogeler, I., and Schwendenmann, L.: Long-chain
n-alkane and n-fatty acid characteristics in plants and soil - potential to
separate plant growth forms, primary and secondary grasslands?, Sci. Tot.
Environ, 645, 1567–1578, https://doi.org/10.1016/j.scitotenv.2018.07.105, 2018.
Lichtfouse, É., Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Behar,
F., Derenne, S., Largeau, C., Wehrung, P., and Albrecht, P.: A novel pathway
of soil organic matter formation by selective preservation of resistant
straight-chain biopolymers: chemical and isotope evidence, Org. Geochem.,
28, 411–415, https://doi.org/10.1016/S0146- 6380(98)00005-9, 1998.
Marseille, F., Disnar, J. R., Guillet, B., and Noack, Y.: n-Alkanes and free
fatty acids in humus and A1 horizons of soils under beech, spruce and grass
in the Massif-Central (Mont-Lozère), France, Eur. J. Soil Sci., 50,
433–441, https://doi.org/10.1046/j.1365-2389.1999.00243.x, 1999.
Marzi, R., Torkelson, B. E., and Olson, R. K.: A revised carbon preference
index, Org. Geochem., 20, 1303–1306,
https://doi.org/10.1016/0146-6380(93)90016-5, 1993.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry—an
overview of indicators of organic matter sources and diagenesis in lake
sediments, Org. Geochem., 20, 867–900,
https://doi.org/10.1016/0146-6380(93)90100-P,1993.
Moucawi, J., Fustec, E., Jambu, P., Amblès, A., and Jacquesy, R.:
Biooxidation of added and natural hydrocarbons in soils: Effect of iron,
Soil Biol. Biochem., 13, 335–342,
https://doi.org/10.1016/0038-0717(81)90073-0, 1981.
Naafs, D. F. W., van Bergen, P. F., Boogert, S. J., and de Leeuw, J. W.:
Solvent-extractable lipids in an acid andic forest soil; variations with
depth and season, Soil Biol. Biochem., 36, 297–308,
https://doi.org/10.1016/j.soilbio.2003.10.005, 2004.
Nelson, D. B., Ladd, S. N., Schubert, C. J., and Kahmen, A.: Rapid
atmospheric transport and large-scale deposition of recently synthesized
plant waxes, Geochim. Cosmochim. Ac., 222, 599–617,
https://doi.org/10.1016/j.gca.2017.11.018, 2018.
Nelson, D. B., Knohl, A., Sachse, D., Schefuß, E., and Kahmen, A.:
Sources and abundances of leaf waxes in aerosols in central Europe, Geochim.
Cosmochim. Ac., 198, 299–314, https://doi.org/10.1016/j.gca.2016.11.018,
2017.
Nguyen Tu, T. T., Derenne, S., Largeau, C., Mariotti, A., and Bocherens, H.:
Evolution of the chemical composition of Ginkgo biloba external and internal
leaf lipids through senescence and litter formation, Org. Geochem., 32,
45–55, https://doi.org/10.1016/S0146-6380(00)00152-2, 2001.
Nguyen Tu, T. T., Egasse, C., Anquetil, C., Zanetti, F., Zeller, B., Huon,
S., and Derenne, S.: Leaf lipid degradation in soils and surface sediments: A
litterbag experiment, Org. Geochem., 104, 35–41,
https://doi.org/10.1016/j.orggeochem.2016.12.001, 2017.
Oades, J. M.: The retention of organic matter in soils, Biogeochemistry, 5,
35–70, https://doi.org/10.1007/BF02180317, 1988.
Otto, A. and Simpson, M. J.: Degradation and preservation of vascular
plant-derived biomarkers in grassland and forest soils from western Canada,
Biogeochemistry, 74, 377–409, https://doi.org/10.1007/s10533-004-5834-8,
2005.
Otto, A., Shunthirasingham, C., and Simpson, M. J.: A comparison of plant and
microbial biomarkers in grassland soils from the Prairie Ecozone of Canada,
Org. Geochem., 36, 425–448,
https://doi.org/10.1016/j.orggeochem.2004.09.008, 2005.
Pebesma, E. J.: Simple Features for R: Standardized Support for Spatial
Vector Data, The R Journal, 10, 439–446,
https://doi.org/10.32614/RJ-2018-009, 2018.
Pebesma, E. J. and Bivand, R. S.: Classes and methods for spatial data in R,
R News, 5, available at: https://cran.r-project.org/doc/Rnews/ (last access: 24 September 2021), 2005.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide, Vol.
1, Cambridge University Press, 492 pp., https://doi.org/10.1017/CBO9780511524868,
2005.
Poynter, J., Farrimond, P., Robinson, N., and Eglinton, G.: Aeolian-derived
higher plant lipids in the marine sedimentary record: Links with
palaeoclimate, in: Paleoclimatology and Paleometeorology: Modern and Past
Patterns of Global Atmospheric Transport, Springer, 435–462,
https://doi.org/10.1007/978-94-009-0995-3, 1989.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 24 September 2021), 2019.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B.
R. T.: Sources of fine organic aerosol, 4. Particulate abrasion products
from leaf surfaces of urban plants, Environ. Sci. Technol., 27, 2700–2711,
https://doi.org/10.1021/es00049a008, 1993.
Rojo, F.: Degradation of alkanes by bacteria, Environ. Microbiol., 11,
2477–2490, https://doi.org/10.1111/j.1462- 2920.2009.01948.x, 2009.
Scalan, E. S. and Smith, J. E.: An improved measure of the odd-even
predominance in the normal alkanes of sediment extracts and petroleum,
Geochim. Cosmochim. Ac., 34, 611–620,
https://doi.org/10.1016/0016-7037(70)90019-0, 1970.
Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., and Sierra, C. A.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures, Earth Syst. Sci. Data, 12, 1511–1524, https://doi.org/10.5194/essd-12-1511-2020, 2020.
Schäfer, I. K., Lanny, V., Franke, J., Eglinton, T. I., Zech, M., Vysloužilová, B., and Zech, R.: Leaf waxes in litter and topsoils along a European transect, SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, 2016.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.
A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.:
Persistence of soil organic matter as an ecosystem property, Nature, 478,
49– 56, https://doi.org/10.1038/nature10386, 2011.
Schulz, S., Giebler, J., Chatzinotas, A., Wick, L. Y., Fetzer, I., Welzl,
G., Harms, H., and Schloter, M.: Plant litter and soil type drive abundance,
activity and community structure of alkB harbouring microbes in different
soil compartments, ISME J, 6, 1763–1774,
https://doi.org/10.1038/ismej.2012.17, 2012.
Schwark, L., Zink, K., and Lechterbeck, J.: Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via
cuticular lipid biomarkers and pollen records from lake sediments, Geology,
30, 463–466, https://doi.org/10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2, 2002.
Seca, A. M. L., Silva, A. M. S., Silvestre, A. J. D., Cavaleiro, J. A. S.,
Domingues, F. M. J., and Neto, C. P.: Chemical composition of the light
petroleum extract of Hibiscus cannabinus bark and core, Phytochemical Analysis, 11, 345–350,
https://doi.org/10.1002/1099-1565(200011/12)11:6<345::AID-PCA540>3.0.CO;2-T, 2000.
Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D.,
Overpeck, J. T., Taboada, M. A., Fischlin, A., Moreno, J. M., Root, T.,
Musche, M., and Winter, M.: Terrestrial and inland water systems, in: Climate
Change 2014 Impacts, Adaptation and Vulnerability, Cambridge
University Press, 271–360, https://doi.org/10.1017/CBO9781107415379.009, 2015.
Soil Survey Staff: Keys to Soil Taxonomy, 12th ed., USDA-Natural Resources
Conservation Service, Washington, DC, 1–342, 2014.
South, A.: rnaturalearth: World Map Data from Natural Earth, R package
version 0.1.0., available at: https://CRAN.R-project.org/package=rnaturalearth (last access: 24 September 2021), 2017.
Stout, S. A.: Leaf wax n-alkanes in leaves, litter, and surface soil in a low
diversity, temperate deciduous angiosperm forest, Central Missouri, USA,
Chem. Ecol., 36, 810–826, https://doi.org/10.1080/02757540.2020.1789118,
2020.
Struck, J., Bliedtner, M., Strobel, P., Schumacher, J., Bazarradnaa, E., and Zech, R.: Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia, Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, 2020.
Tennekes, M.: tmap: Thematic Maps in R, J. Stat. Softw., 84, 1–39,
https://doi.org/10.18637/jss.v084.i06, 2018.
Trigui, Y., Wolf, D., Sahakyan, L., Hovakimyan, H., Sahakyan, K., Zech, R.,
Fuchs, M., Wolpert, T., Zech, M., and Faust, D.: First calibration and
application of leaf wax n-alkane biomarkers in loess-paleosol sequences and
modern plants and soils in Armenia, Geosciences, 9, 263,
https://doi.org/10.3390/geosciences9060263, 2019.
Van der Voort, T. S., Zell, C. I., Hagedorn, F., Feng, X., McIntyre, C. P.,
Haghipour, N., Pannatier, E. G., and Eglinton, T. I.: Diverse soil carbon
dynamics expressed at the molecular level, Geophys. Res. Lett., 44,
11840–11850, https://doi.org/10.1002/2017GL076188, 2017.
Wang, G., Zhang, L., Zhang, X., Wang, Y., and Xu, Y.: Chemical and carbon
isotopic dynamics of grass organic matter during litter decompositions: A
litterbag experiment, Org. Geochem., 69, 106–113,
https://doi.org/10.1016/j.orggeochem.2014.02.012, 2014.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2016.
Wiesenberg, G. L. B., Dorodnikov, M., and Kuzyakov, Y.: Source determination
of lipids in bulk soil and soil density fractions after four years of wheat
cropping, Geoderma, 156, 267–277,
https://doi.org/10.1016/j.geoderma.2010.02.026, 2010.
Wiesenberg, G. L. B., Schwarzbauer, J., Schmidt, M., and Schwark, L.: Source
and turnover of organic matter in agricultural soils derived from
n-alkane/n-carboxylic acid compositions and C-isotope signatures, Org.
Geochem., 35, 1371–1393,
https://doi.org/10.1016/S0146-6380(04)00122-6, 2004.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, M. S., West, A. J., and Feakins, S. J.: Tropical soil profiles reveal the
fate of plant wax biomarkers during soil storage, Org. Geochem., 128, 1–15,
https://doi.org/10.1016/j.orggeochem.2018.12.011, 2019.
Wüthrich, L., Bliedtner, M., Schäfer, I. K., Zech,
J., Shajari, F., Gaar, D., Preusser, F., Salazar, G., Szidat, S., and Zech,
R.: Late Quaternary climate and environmental reconstruction based on leaf
wax analyses in the loess sequence of Möhlin, Switzerland, E and G
Quatern. Sci. J., 66, 91–100, https://doi.org/10.5194/egqsj-66-91-2017,
2017.
Xie, S., Nott, C. J., Avsejs, L. A., Maddy, D., Chambers, F. M., and
Evershed, R. P.: Molecular and isotopic stratigraphy in an ombrotrophic mire
for paleoclimate reconstruction, Geochim. Cosmochim. Ac., 68, 2849–2862,
https://doi.org/10.1016/j.gca.2003.08.025, 2004.
Yao, L., Guo, N., He, Y., Xiao, Y., Li, Y., Gao, J., and Guo, Y.: Variations
of soil organic matters and plant cuticular waxes along an altitude gradient
in Qinghai-Tibet Plateau, Plant Soil,
https://doi.org/10.1007/s11104-019-04304-6, 2019.
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., and Zöller, L.: Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations, E&G Quaternary Sci. J., 58, 148–155, https://doi.org/10.3285/eg.58.2.03, 2009.
Zech, M., Krause, T., Meszner, S., and Faust, D.: Incorrect when uncorrected:
Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol
sequences – A case study from the Saxonian loess region, Germany, Quatern.
Int., 296, 108–116, https://doi.org/10.1016/j.quaint.2012.01.023, 2013.
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K.,
Marković, S. B., and Glaser, B.: Effect of leaf litter degradation and
seasonality on D/H isotope ratios of n-alkane biomarkers, Geochim Cosmochim
Ac., 75, 4917–4928, https://doi.org/10.1016/j.gca.2011.06.006, 2011.
Zech, M., Rass, S., Buggle, B., Löscher, M., and Zöller, L.:
Reconstruction of the late Quaternary paleoenvironments of the Nussloch
loess paleosol sequence, Germany, using n-alkane biomarkers, Quaternary Res.,
78, 226–235, https://doi.org/10.1016/j.yqres.2012.05.006, 2012.
Zhang, Y., Zheng, M., Meyers, P. A., and Huang, X.: Impact of early
diagenesis on distributions of Sphagnum n-alkanes in peatlands of the monsoon
region of China, Org. Geochem., 105, 13–19,
https://doi.org/10.1016/j.orggeochem.2016.12.007, 2017.
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., and Huang, C.: Leaf wax lipids as
paleovegetational and paleoenvironmental proxies for the Chinese Loess
Plateau over the last 170kyr, Quaternary Sci. Rev., 25, 575–594,
https://doi.org/10.1016/j.quascirev.2005.03.009, 2006.
Zhou, W., Zheng, Y., Meyers, P. A., Jull, A. J. T., and Xie, S.: Postglacial
climate-change record in biomarker lipid compositions of the Hani peat
sequence, Northeastern China, Earth Planet. Sc. Lett., 294, 37–46,
https://doi.org/10.1016/j.epsl.2010.02.035, 2010.
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into...