Articles | Volume 7, issue 2
https://doi.org/10.5194/soil-7-347-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-347-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Fabian Kalks
CORRESPONDING AUTHOR
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Gabriel Noren
Institute of Geology and Mineralogy, University of Cologne,
Institute of Geology and Mineralogy, Zülpicher Str. 49b, 50674 Cologne, Germany
Carsten W. Mueller
Chair of Soil Science, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 2, 85354 Freising-Weihenstephan, Germany
Department of Geosciences and Natural
Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
Mirjam Helfrich
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Janet Rethemeyer
Institute of Geology and Mineralogy, University of Cologne,
Institute of Geology and Mineralogy, Zülpicher Str. 49b, 50674 Cologne, Germany
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Related authors
No articles found.
Victoria Nasser, René Dechow, Mirjam Helfrich, Ana Meijide, Pauline Sophie Rummel, Heinz-Josef Koch, Reiner Ruser, Lisa Essich, and Klaus Dittert
SOIL, 11, 489–506, https://doi.org/10.5194/soil-11-489-2025, https://doi.org/10.5194/soil-11-489-2025, 2025
Short summary
Short summary
This study evaluated the impact of contrasting cover crops on topsoil mineral nitrogen (SMN), N2O emissions, and carbon (C) sequestration. Non-legume cover crops reduced SMN levels, showed potential for mitigating indirect N2O emissions, and increased C sequestration but did not reduce cumulative N2O emissions compared to fallow. The results highlight the need for tailored cover crop strategies to balance SMN capture, N2O emissions, and C sequestration effectively.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022, https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
Short summary
As soil carbon has become a key component of climate-smart agriculture, the demand for high-resolution maps has increased drastically. Meanwhile, machine learning algorithms are becoming more widely used and are opening up new solutions in soil mapping. This paper shows which algorithms perform best, how soil inventory data can be most efficiently used for digital soil mapping, and the different available options and methods to derive high-resolution soil carbon data at the large regional scale.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Cited articles
Amiotte Suchet, P., Probst, J. L., and Ludwig, W.: Worldwide distribution of
continental rock lithology: Implications for the atmospheric/soil CO2 uptake
by continental weathering and alkalinity river transport to the oceans,
Global Biogeochem. Cy., 17, 1038, https://doi.org/10.1029/2002GB001891, 2003.
Angst, G., John, S., Mueller, C. W., Kogel-Knabner, I., and Rethemeyer, J.:
Tracing the sources and spatial distribution of organic carbon in subsoils
using a multi-biomarker approach, Sci. Rep., 6, 1–12, 2016.
Artinger, R., Buckau, G., Kim, J., Geyer, S., and Wolf, M.: Influence of
sedimentary organic matter on dissolved fulvic acids in groundwater,
Significance for groundwater dating with 14C in dissolved organic matter, International Atomic Energy Agency (IAEA), 57–72, 1996.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 65, 10–21, 2014.
Bertrand, I., Delfosse, O., and Mary, B.: Carbon and nitrogen mineralization
in acidic, limed and calcareous agricultural soils: Apparent and actual
effects, Soil Biol. Biochem., 39, 276–288, 2007.
Bomberg, M., Raulio, M., Jylha, S., Mueller, C. W., Hoschen, C., Rajala, P., Purkamo, L., Kietavainen, R., Ahonen, L., and Itavaara, M.: CO2 and carbonate
as substrate for the activation of the microbial community in 180 m deep
bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland, AIMS
Microbiol., 3, 846–871, 2017.
Cerri, C., Feller, C., Balesdent, J., Victoria, R., and Plenecassagne, A.:
Particle-size fractionation and stable carbon isotope distribution applied
to the study of soil organic-matter dynamics, Comptes Rendus De L Academie
Des Sciences Serie Ii, 300, 423–428, 1985.
Chaopricha, N. T. and Marin-Spiotta, E.: Soil burial contributes to deep
soil organic carbon storage, Soil Biol. Biochem., 69, 251–264, 2014.
Colman, B. P. and Schimel, J. P.: Drivers of microbial respiration and net N
mineralization at the continental scale, Soil Biol. Biochem., 60,
65–76, 2013.
Copard, Y., Amiotte-Suchet, P., and Di-Giovanni, C.: Storage and release of
fossil organic carbon related to weathering of sedimentary rocks, Earth
Planet. Sc. Lett., 258, 345–357, 2007.
Corti, G., Ugolini, F. C., Agnelli, A., Certini, G., Cuniglio, R., Berna, F.,
and Sanjurjo, M. J. F.: The soil skeleton, a forgotten pool of carbon and
nitrogen in soil, Eur. J. Soil Sci., 53, 283–298, 2002.
Crow, S. E., Lajtha, K., Filley, T. R., Swanston, C. W., Bowden, R. D., and
Caldwell, B. A.: Sources of plant-derived carbon and stability of organic
matter in soil: implications for global change, Global Change Biol., 15,
2003–2019, 2009.
Eckelmann, W., Sponagel, H., Grottenthaler, W., Hartmann, K.-J., Hartwich,
R., Janetzko, P., Joisten, H., Kühn, D., Sabel, K.-J., and Traidl, R.:
Bodenkundliche Kartieranleitung, KA5, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany, 438 pp., 2006.
Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, 2007.
Frouz, J., Cajthaml, T., Kribek, B., Schaeffer, P., Bartuska, M., Galertova,
R., Rojik, P., and Kristufek, V.: Deep, subsurface microflora after
excavation respiration and biomass and its potential role in degradation of
fossil organic matter, Folia Microbiol., 56, 389–396, 2011.
Graz, Y., Di-Giovanni, C., Copard, Y., Laggoun-Defarge, F., Boussafir, M., Lallier-Verges, E., Baillif, P., Perdereau, L., and Simonneau, A.:
Quantitative palynofacies analysis as a new tool to study transfers of
fossil organic matter in recent terrestrial environments, Int. J. Coal. Geol.,
84, 49–62, 2010.
Hatté, C., Fontugne, M., Rousseau, D.-D., Antoine, P., Zoller, L., Laborde, N. T. R., and Bentaleb, I.: δ13C variations of loess organic
matter as a record of the vegetation response to climatic changes during the
Weichselian, Geology, 26, 583–586, 1998.
Hamdi, S., Moyano, F., Sall, S., Bernoux, M., and Chevallier, T.: Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions, Soil Biol. Biochem., 58, 115–126, 2013.
Head, M., Zhou, W., and Zhou, M.: Evaluation of 14C ages of organic
fractions of paleosols from loess-paleosol sequences near Xian, China,
Radiocarbon, 31, 680–695, 1989.
Hemingway, J. D., Hilton, R. G., Hovius, N., Eglinton, T. I., Haghipour, N., Wacker, L., Chen, M.-C. and Galy, V. V.: Microbial oxidation of lithospheric
organic carbon in rapidly eroding tropical mountain soils, Science, 360,
209–212, 2018.
Horan, K., Hilton, R. G., Selby, D., Ottley, C. J., Gröcke, D. R., Hicks, M., and Burton, K. W.: Mountain glaciation drives rapid oxidation of
rock-bound organic carbon, Sci. Adv., 3, e1701107, https://doi.org/10.1126/sciadv.1701107, 2017.
Jia, J., Feng, X., Pannatier, E. G., Wacker, L., McIntyre, C., van der
Voort, T., Montlucon, D., and Eglinton, T.: 14C characteristics of dissolved
lignin along a forest soil profile, Soil Biol. Biochem., 135, 407–410, 2019.
Joergensen, R. G. and Wichern, F.: Alive and kicking: Why dormant soil
microorganisms matter, Soil Biol. Biochem., 116, 419–430, 2018.
John, S., Angst, G., Kirfel, K., Preusser, S., Mueller, C. W., Leuschner, C., Kandeler, E., and Rethemeyer, J.: Which are important soil parameters influencing the spatial heterogeneity of 14C in soil organic matter?, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2016-11, 2016.
Jordan, H. and Schwartau, W.: Das Lößprofil von Ahlshausen und
weitere tiefe Quartäraufschlüsse entlang der
Bundesbahn-Neubaustrecke bei Northeim, Südniedersachsen, Quat. Sci. J., 43, 110–122, 1993.
Kieft, T. L. and Rosacker, L. L.: Application of respiration-and
adenylate-based soil microbiological assays to deep subsurface terrestrial
sediments, Soil Biol. Biochem., 23, 563–568, 1991.
Kirfel, K., Leuschner, C., Hertel, D., and Schuldt, B.: Influence of Root
Diameter and Soil Depth on the Xylem Anatomy of Fineto Medium-Sized Roots of
Mature Beech Trees in the Top- and Subsoil, Front Plant. Sci., 8, 1194, https://doi.org/10.3389/fpls.2017.01194, 2017.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz,
K., Scheu, S., Eusterhues, K., and Leinweber, P.: Organo-mineral associations
in temperate soils: Integrating biology, mineralogy, and organic matter
chemistry, J. Plant Nutr. Soil Sc., 171, 61–82, 2008.
Krumholz, L. R., McKinley, J. P., Ulrich, G. A., and Suflita, J. M.: Confined subsurface microbial communities in Cretaceous rock, Nature, 386, 64–66, 1997.
Libby, W. F.: Radiocarbon Dating, Soc. Am. Archaeol., 132, 621–629,
1952.
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., and Wansa, S.:
Stratigraphische Begriffe für das Quartär des norddeutschen
Vereisungsgebietes, Quat. Sci. J., 56, 7–65, 2007.
Magnabosco, C., Lin, L.-H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter,
H., Pedersen, K., Kieft, T., Van Heerden, E., and Onstott, T. C.: The biomass
and biodiversity of the continental subsurface, Nat. Geosci., 11,
707–717, 2018.
Marin-Spiotta, E., Chaopricha, N. T., Plante, A. F., Diefendorf, A. F., Mueller, C. W., Grandy, A. S., and Mason, J. A.: Long-term stabilization of
deep soil carbon by fire and burial during early Holocene climate change,
Nat. Geosci., 7, 428–432, 2014.
Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.: Deep soil
carbon dynamics are driven more by soil type than by climate: a worldwide
meta-analysis of radiocarbon profiles, Glob. Change Biol., 21, 4278–4292,
2015.
Murton, J. B., Goslar, T., Edwards, M. E., Bateman, M. D., Danilov, P. P., Savvinov, G. N., Gubin, S. V., Ghaleb, B., Haile, J., and Kanevskiy, M.:
Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition
as Cold-Climate Loess, Duvanny Yar, Northeast Siberia, Permafrost
Periglac., 26, 208–288, 2015,
Nelson, D. W. and Sommers, L.: Methods of soil analysis: Part 2 chemical and
microbiological properties, Wiley Online Library, 9, 539–579, 1983
Paul, E., Collins, H., and Leavitt, S.: Dynamics of resistant soil carbon of
Midwestern agricultural soils measured by naturally occurring 14C abundance,
Geoderma, 104, 239–256, 2001.
Petsch, S., Berner, R., and Eglinton, T.: A field study of the chemical
weathering of ancient sedimentary organic matter, Org. Geochem., 31, 475–487,
2000.
Purkamo, L., Kietäväinen, R., Nuppunen-Puputti, M., Bomberg, M., and Cousins, C.: Ultradeep microbial communities at 4.4 km within crystalline bedrock: implications for habitability in a planetary context, Life, 10, 2, https://doi.org/10.3390/life10010002, 2020.
R Core Team: R: A language and environment for statistical computing, Vienna, Austria, 2018.
Rethemeyer, J., Gierga, M., Heinze, S., Stolz, A., Wotte, A., Wischhöfer, P., Berg, S., Melchert, J., and Dewald, A.: Current sample
preparation and analytical capabilities of the radiocarbon laboratory at
CologneAMS, Radiocarbon, 61, 1449–1460, 2019.
Richter, D. and Markewith, D.: How deep is soil?, BioScience, 45, 600–609, 1995.
Rumpel, C. and Kögel-Knabner, I.: The role of lignite in the carbon
cycle of lignite-containing mine soils: evidence from carbon mineralisation
and humic acid extractions, Org. Geochem., 33, 393–399, 2002.
Rumpel, C., Kögel-Knabner, I., and Bruhn, F.: Vertical distribution, age,
and chemical composition of organic carbon in two forest soils of different
pedogenesis, Org. Geochem., 33, 1131–1142, 2002.
Schenk, J. and Jackson, R.: Mapping the global distribution of deep roots in relation to climate and soil characteristics, Geoderma, 126, 129–140, 2005.
Schiff, S., Aravena, R., Trumbore, S. E., Hinton, M., Elgood, R., and Dillon,
P.: Export of DOC from forested catchments on the Precambrian Shield of
Central Ontario: clues from 13C and 14C, Biogeochemistry, 36, 43–65, 1997.
Schneider, F. and Don, A.: Root-restricting layers in German agricultural
soils, Part I: extent and cause, Plant Soil, 442, 433–451, 2019.
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, 2013.
Schwab, V. F., Nowak, M. E., Elder, C. D., Trumbore, S. E., Xu, X., Gleixner, G., Lehmann, R., Pohnert, G., Muhr, J., and Küsel, K.: 14C-free carbon is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers, Water Resour. Res., 55, 2104–2121, 2019.
Seifert, A.-G., Trumbore, S., Xu, X., Zhang, D., Kothe, E., and Gleixner, G.: Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation, Geochim. Cosmochim. Ac., 75, 2557–2570, 2011.
Soucemarianadin, L. N., Cecillon, L., Guenet, B., Chenu, C., Baudin, F., Nicolas, M., Girardin, C., and Barre, P.: Environmental factors controlling
soil organic carbon stability in French forest soils, Plant Soil, 426,
267–286, 2018.
Soulet, G., Hilton, R. G., Garnett, M. H., Dellinger, M., Croissant, T., Ogrič, M., and Klotz, S.: Technical note: In situ measurement of flux and isotopic composition of CO2 released during oxidative weathering of sedimentary rocks, Biogeosciences, 15, 4087–4102, https://doi.org/10.5194/bg-15-4087-2018, 2018.
Strauss, J., Schirrmeister, L., Wetterich, S., Borchers, A., and Davydov, S.:
Grain-size properties and organic-carbon stock of Yedoma Ice Complex
permafrost from the Kolyma lowland, northeastern Siberia, Global Biogeochem. Cy., 26, GB3003, https://doi.org/10.1029/2011GB004104, 2012.
Stuiver, M. and Polach, H. A.: Reporting of C-14 data-Discussion,
Radiocarbon, 19, 355–363, 1977.
Swanson, S. K., Bahr, J. M., Bradbury, K. R., and Anderson, K. M. J. S. G.:
Evidence for preferential flow through sandstone aquifers in Southern
Wisconsin, Sediment. Geol., 184, 331–342, 2006.
Torn, M., Swanston, C., Castanha, C., and Trumbore: Storage and turnover of
organic matter in soil, Biophysico-Chemical Processes Involving Natural
Nonliving Organic Matter in Environmental Systems, John Wiley & Sons Inc, Hoboken, USA, 219–272, 2009.
Trumbore, S.: Radiocarbon and soil carbon dynamics, Annu. Rev. Earth
Planet. Sc., 37, 47–66, 2009.
Tückmantel, T., Leuschner, C., Preusser, S., Kandeler, E., Angst, G., Mueller, C. W., and Meier, I. C.: Root exudation patterns in a beech forest:
dependence on soil depth, root morphology, and environment, Soil Biol. Biochem., 107, 188–197, 2017.
van der Voort, T. S., Mannu, U., Hagedorn, F., McIntyre, C., Walthert, L., Schleppi, P., Haghipour, N., and Eglinton, T. I.: Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient, Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, 2019.
Vindušková, O., Sebag, D., Cailleau, G., Brus, J.. and Frouz, J.:
Methodological comparison for quantitative analysis of fossil and recently
derived carbon in mine soils with high content of aliphatic kerogen, Org.
Geochem., 89, 14–22, 2015.
Wagner, B.: Spatial analysis of loess and loess-like sediments in the Weser-Aller catchment (Lower Saxony and Northern Hesse, NW Germany), E&G Quaternary Sci. J., 60, 3, https://doi.org/10.3285/eg.60.1.02, 2011.
Wang, X., Cammeraat, L. H., Wang, Z., Zhou, J., Govers, G. and Kalbitz, K.:
Stability of organic matter in soils of the Belgian Loess Belt upon erosion
and deposition, Eur. J. Soil Sci., 64, 219–228, 2013.
Wang, Y., Amundson, R., and Trumbore, S.: Radiocarbon dating of soil organic
matter, Quat. Res., 45, 282–288, 1996.
Waschkies, C. and Huttl, R. F.: Microbial degradation of geogenic organic C
and N in mine spoils, Plant Soil, 213, 221–230, 1999.
Wordell-Dietrich, P., Don, A., and Helfrich, M.: Controlling factors for the
stability of subsoil carbon in a Dystric Cambisol, Geoderma, 304, 40–48,
2017.
Wordell-Dietrich, P., Wotte, A., Rethemeyer, J., Bachmann, J., Helfrich, M., Kirfel, K., Leuschner, C., and Don, A.: Vertical partitioning of CO2 production in a forest soil, Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, 2020.
WRB, I. W. G.: Food and Agriculture Organization of the United Nations,
Rome, Italy, 145 pp., 2006.
Zethof, J. H. T., Leue, M., Vogel, C., Stoner, S. W., and Kalbitz, K.: Identifying and quantifying geogenic organic carbon in soils – the case of graphite, SOIL, 5, 383–398, https://doi.org/10.5194/soil-5-383-2019, 2019.
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of...