Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-597-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-597-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
National Agriculture and Food Research Organization, Institute for
Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, 305-8604,
Japan
Masako Kajiura
National Agriculture and Food Research Organization, Institute for
Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, 305-8604,
Japan
Maki Asano
Faculty of Life and Environmental Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
Related authors
Kaori Matsuoka, Jo Jinno, Hiroaki Shimada, Emi Matsumura, Ryo Shingubara, and Rota Wagai
EGUsphere, https://doi.org/10.5194/egusphere-2025-2840, https://doi.org/10.5194/egusphere-2025-2840, 2025
Short summary
Short summary
The organo-mineral assemblage formation from the mixture of crushed rocks and leaf compost was promoted by (i) microbial re-working of OM (indicated by lower C:N and higher δ13C and δ15N compared to the original leaf compost) and (ii) the supply of extractable metals (esp. oxalate-extractable Fe phase) from the rock weathering. These findings supported the organo-metallic glue hypothesis (Wagai et al., 2020) and suggest that C accretion during early pedogenesis.
Kaori Matsuoka, Jo Jinno, Hiroaki Shimada, Emi Matsumura, Ryo Shingubara, and Rota Wagai
EGUsphere, https://doi.org/10.5194/egusphere-2025-2840, https://doi.org/10.5194/egusphere-2025-2840, 2025
Short summary
Short summary
The organo-mineral assemblage formation from the mixture of crushed rocks and leaf compost was promoted by (i) microbial re-working of OM (indicated by lower C:N and higher δ13C and δ15N compared to the original leaf compost) and (ii) the supply of extractable metals (esp. oxalate-extractable Fe phase) from the rock weathering. These findings supported the organo-metallic glue hypothesis (Wagai et al., 2020) and suggest that C accretion during early pedogenesis.
Yike Wang, Asano Maki, Qi Jiang, and Kenji Tamura
EGUsphere, https://doi.org/10.5194/egusphere-2022-728, https://doi.org/10.5194/egusphere-2022-728, 2022
Preprint archived
Short summary
Short summary
The feasibility of REOs as effective tracers for Andisols aggregate dynamics was estimated from (1) the impact of the labeling processes on soil organic matters, and (2) the ability of REOs to track Andisol aggregates turnover. In this study, REOs were also applied to quantify the relationship between aggregates and soil organic carbon dynamics. Overall, this approach provides considerable opportunity for further studies to explore the interaction between C and aggregate dynamics in Andisols.
Cited articles
Adhikari, D., Sowers, T., Stuckey, J. W., Wang, X., Sparks, D. L., and Yang,
Y.: Formation and redox reactivity of ferrihydrite-organic carbon-calcium
co-precipitates, Geochim. Cosmochim. Ac., 244, 86–98,
https://doi.org/10.1016/j.gca.2018.09.026, 2019.
Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C.: Volume
III. Halides, Hydroxides, Oxides, Handbook of Mineralogy, Mineralogical
Society of America, Chantilly, VA 20151-1110, USA, 1997.
Asano, M. and Wagai, R.: Evidence of aggregate hierarchy at micro- to
submicron scales in an allophanic Andisol, Geoderma, 216, 62–74,
https://doi.org/10.1016/j.geoderma.2013.10.005, 2014.
Asano, M., Tamura, K., Kawada, K., and Higashi, T.: Morphological and physico-chemical characteristics of soils in a steppe region of the Kherlen River basin, Mongolia, J. Hydrol., 333, 100–108, https://doi.org/10.1016/j.jhydrol.2006.07.024, 2006.
Asano, M., Wagai, R., Yamaguchi, N., Takeichi, Y., Maeda, M., Suga, H., and
Takahashi, Y.: In Search of a Binding Agent: Nano-Scale Evidence of
Preferential Carbon Associations with Poorly-Crystalline Mineral Phases in
Physically-Stable, Clay-Sized Aggregates, Soil Systems, 2, 32, https://doi.org/10.3390/soilsystems2020032, 2018.
Baisden, W. T., Amundson, R., Cook, A. C., and Brenner, D. L.: Turnover and
storage of C and N in five density fractions from California annual
grassland surface soils, Global Biogeochem. Cy., 16, 1117,
https://doi.org/10.1029/2001GB001822, 2002.
Balesdent, J., Chenu, C., and Balabane, M.: Relationship of soil organic
matter dynamics to physical protection and tillage, Soil Till.
Res., 53, 215–230, https://doi.org/10.1016/S0167-1987(99)00107-5, 2000.
Barnhisel, R. and Bertsch, P.: Chlorites and hydroxy-interlayered
vermiculite and smectite, in: Minerals in Soil Environments, 2nd Edn., edited
by: Dixon, J. B. and Weed, S. B., Soil Science Society of America Book Series,
Soil Science Society of America, Madison, WI, USA, 729–788, 1989.
Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B., and Chenu, C.:
Impact of phyllosilicate mineralogy on organic carbon stabilization in
soils: incomplete knowledge and exciting prospects, Geoderma, 235–236,
382–395, https://doi.org/10.1016/j.geoderma.2014.07.029, 2014.
Bascomb, C. L.: Distribution of pyrophosphate-extractable iron and organic
carbon in soils of various groups, J. Soil Sci., 19, 251–268,
https://doi.org/10.1111/j.1365-2389.1968.tb01538.x, 1968.
Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Borschneck, D., Bottero,
J. Y., Moustier, S., Masin, F., and Colin, F.: Mineral control of carbon
pools in a volcanic soil horizon, Geoderma, 137, 477–489,
https://doi.org/10.1016/j.geoderma.2006.10.006, 2007.
Basile-Doelsch, I., Brun, T., Borschneck, D., Masion, A., Marol, C., and
Balesdent, J.: Effect of landuse on organic matter stabilized in
organomineral complexes: A study combining density fractionation, mineralogy
and δ13C, Geoderma, 151, 77–86,
https://doi.org/10.1016/j.geoderma.2009.03.008, 2009.
Basile-Doelsch, I., Balesdent, J., and Rose, J.: Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils?, Environ. Sci. Technol., 49, 3997–3998, https://doi.org/10.1021/acs.est.5b00650, 2015.
Blankinship, J. C., Berhe, A. A., Crow, S. E., Druhan, J. L., Heckman, K.
A., Keiluweit, M., Lawrence, C. R., Marín-Spiotta, E., Plante, A. F.,
Rasmussen, C., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A.,
Wagai, R., and Wieder, W. R.: Improving understanding of soil organic matter
dynamics by triangulating theories, measurements, and models,
Biogeochemistry, 140, 1–13, https://doi.org/10.1007/s10533-018-0478-2, 2018.
Chen, C., Dynes, J. J., Wang, J., and Sparks, D. L.: Properties of
Fe-Organic Matter Associations via Coprecipitation versus Adsorption,
Environ. Sci. Technol. 48, 13751–13759, https://doi.org/10.1021/es503669u,
2014.
Chen, C., Hall, S. J., Coward, E., and Thompson, A.: Iron-mediated organic
matter decomposition in humid soils can counteract protection, Nat.
Commun., 11, 2255, https://doi.org/10.1038/s41467-020-16071-5, 2020.
Christensen, B. T.: Physical fractionation of soil and structural and
functional complexity in organic matter turnover, Eur. J. Soil Sci., 52,
345–353, https://doi.org/10.1046/j.1365-2389.2001.00417.x, 2001.
Churchman, G. J. and Tate, K. R.: Aggregation of clay in six New Zealand
soil types as measured by disaggregation procedures, Geoderma, 37, 207–220,
https://doi.org/10.1016/0016-7061(86)90049-2, 1986.
Coleman, K. and Jenkinson, D. S.: RothC-26.3 – A Model for the turnover of
carbon in soil, in: Evaluation of Soil Organic Matter Models, edited by:
Powlson, D. S., Smith, P., and Smith, J. U., Springer, Berlin, Heidelberg, 1996.
Cornell, R. M. and Schwertmann, U.: The Iron Oxides: Structure, Properties,
Reactions, Occurences and Uses, 2nd Edn., Wiley-VCH, Weinheim, Germany 664 pp., 2003.
Coward, E. K., Thompson, A. T., and Plante, A. F.: Iron-mediated
mineralogical control of organic matter accumulation in tropical soils,
Geoderma, 306, 206–216, https://doi.org/10.1016/j.geoderma.2017.07.026,
2017.
Coward, E. K., Thompson, A., and Plante, A. F.: Contrasting Fe speciation in
two humid forest soils: Insight into organomineral associations in
redox-active environments, Geochim. Cosmochim. Ac., 238, 68–84,
https://doi.org/10.1016/j.gca.2018.07.007, 2018.
Crow, S., Reeves, M., Schubert, O., and Sierra, C.: Optimization of method
to quantify soil organic matter dynamics and carbon sequestration potential
in volcanic ash soils, Biogeochemistry, 123, 27–47, https://doi.org/10.1007/s10533-014-0051-6,
2014.
Dahlgren, R., Shoji, S., and Nanzyo, M.: Mineralogical characteristics of
volcanic ash soils, in: Volcanic Ash Soils: genesis, properties, and
utilization, edited by: Shoji, S., Nanzyo, M., and Dahlgren, R., Elsevier, Amsterdam, The Netherlands,
101–143, 1993.
Dai, Q.-X., Ae, N., Suzuki, T., Rajkumar, M., Fukunaga, S., and Fujitake,
N.: Assessment of potentially reactive pools of aluminum in Andisols using a
five-step sequential extraction procedure, Soil Sci. Plant Nutr., 57, 500–507,
https://doi.org/10.1080/00380768.2011.598445, 2011.
Drees, R. L., Wilding, L., Smeck, N., and Senkayi, A.: Silica in soils:
quartz and disordered silica polymorphs, in: Minerals in Soil Environments,
2nd Edn., edited by: Dixon, J. B. and Weed, S. B., Soil Science Society of
America Book Series, Soil Science Society of America, Madison, WI, USA, 913–974, 1989.
Dultz, S., Woche, S. K., Mikutta, R., Schrapel, M., and Guggenberger, G.:
Size and charge constraints in microaggregation: Model experiments with
mineral particle size fractions, Appl. Clay Sci., 170, 29–40,
https://doi.org/10.1016/j.clay.2019.01.002, 2019.
Eusterhues, K., Rumpel, C., Kleber, M., and Kögel-Knabner, I.:
Stabilisation of soil organic matter by interactions with minerals as
revealed by mineral dissolution and oxidative degradation, Org.
Geochem., 34, 1591–1600,
https://doi.org/10.1016/j.orggeochem.2003.08.007, 2003.
Ferris, F. G., Tazaki, K., and Fyfe, W. S.: Iron oxides in acid mine
drainage environments and their association with bacteria, Chem. Geol., 74,
321–330, https://doi.org/10.1016/0009-2541(89)90041-7, 1989.
Filimonova, S., Kaufhold, S., Wagner, F. E., Häusler, W., and
Kögel-Knabner, I.: The role of allophane nano-structure and Fe oxide
speciation for hosting soil organic matter in an allophanic Andosol,
Geochim. Cosmochim. Ac., 180, 284–302,
https://doi.org/10.1016/j.gca.2016.02.033, 2016.
Fujii, K., Hayakawa, C., Inagaki, Y., and Ono, K.: Sorption reduces the
biodegradation rates of multivalent organic acids in volcanic soils rich in
short-range order minerals, Geoderma, 333, 188–199, 2019.
Garcia Arredondo, M., Lawrence, C. R., Schulz, M. S., Tfaily, M. M.,
Kukkadapu, R., Jones, M. E., Boye, K., and Keiluweit, M.: Root-driven
weathering impacts on mineral-organic associations in deep soils over
pedogenic time scales, Geochim. Cosmochim. Ac., 263, 68–84,
https://doi.org/10.1016/j.gca.2019.07.030, 2019.
Gunina, A. and Kuzyakov, Y.: Pathways of litter C by formation of
aggregates and SOM density fractions: Implications from 13C natural
abundance, Soil Biol. Biochem., 71, 95–104,
https://doi.org/10.1016/j.soilbio.2014.01.011, 2014.
Hatton, P.-J., Kleber, M., Zeller, B., Moni, C., Plante, A. F., Townsend,
K., Gelhaye, L., Lajtha, K., and Derrien, D.: Transfer of litter-derived N
to soil mineral–organic associations: Evidence from decadal 15N tracer
experiments, Org. Geochem., 42, 1489–1501,
https://doi.org/10.1016/j.orggeochem.2011.05.002, 2012.
Heckman, K., Grandy, A. S., Gao, X., Keiluweit, M., Wickings, K., Carpenter,
K., Chorover, J., and Rasmussen, C.: Sorptive fractionation of organic
matter and formation of organo-hydroxy-aluminum complexes during litter
biodegradation in the presence of gibbsite, Geochim. Cosmochim. Ac.,
121, 667–683, https://doi.org/10.1016/j.gca.2013.07.043, 2013.
Heckman, K., Lawrence, C. R., and Harden, J. W.: A sequential selective
dissolution method to quantify storage and stability of organic carbon
associated with Al and Fe hydroxide phases, Geoderma, 312, 24–35,
https://doi.org/10.1016/j.geoderma.2017.09.043, 2018.
Inagaki, T. M., Possinger, A. R., Grant, K. E., Schweizer, S. A., Mueller,
C. W., Derry, L. A., Lehmann, J., and Kögel-Knabner, I.: Subsoil
organo-mineral associations under contrasting climate conditions, Geochim. Cosmochim. Ac., 270, 244–263,
https://doi.org/10.1016/j.gca.2019.11.030, 2020.
Jones, E. and Singh, B.: Organo-mineral interactions in contrasting soils
under natural vegetation, Front. Environ. Sci., 2, https://doi:10.3389/fenvs.2014.00002, 2014.
Kaiser, K.: Sorption of natural organic matter fractions to goethite
(α-FeOOH): effect of chemical composition as revealed by
liquid-state 13C NMR and wet-chemical analysis, Org. Geochem., 34,
1569–1579, https://doi.org/10.1016/S0146-6380(03)00120-7, 2003.
Kaiser, K. and Guggenberger, G.: Mineral surfaces and soil organic matter,
Eur. J. Soil Sci., 54, 219–236, https://doi.org/10.1046/j.1365-2389.2003.00544.x, 2003.
Kaiser, K. and Guggenberger, G.: Distribution of hydrous aluminium and iron
over density fractions depends on organic matter load and ultrasonic
dispersion, Geoderma, 140, 140–146, https://doi.org/10.1016/j.geoderma.2007.03.018, 2007.
Kaiser, K. and Zech, W.: Defects in Estimation of Aluminum in Humus
Complexes of Podzolic Soils By Pyrophosphate Extraction, Soil Sci., 161,
452–458, 1996.
Keil, R. G. and Mayer, L. M.: 12.12 – Mineral Matrices and Organic Matter,
in: Treatise on Geochemistry, 2nd Edn., edited by: Holland, H. D.
and Turekian, K. K., Elsevier, Oxford, 337–359, 2014.
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K.,
and Kleber, M.: Mineral protection of soil carbon counteracted by root
exudates, Nat. Clim. Change, 5, 588–595, https://doi.org/10.1038/nclimate2580, 2015.
Kitayama, K. and Aiba, S. I.: Ecosystem structure and productivity of
tropical rain forests along altitudinal gradients with contrasting soil
phosphorus pools on Mount Kinabalu,Borneo, J. Ecol., 90, 37–51, 2002.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and
Nico, P. S.: Mineral–Organic Associations: Formation, Properties, and
Relevance in Soil Environments, in: Advances in Agronomy, edited by: Donald,
L. S., Advances in Agronomy, Academic Press, Cambridge, MA, USA, 1–140, 2015.
Kramer, M. G. and Chadwick, O. A.: Climate-driven thresholds in reactive
mineral retention of soil carbon at the global scale, Nat. Clim. Change,
8, 1104–1108, https://doi.org/10.1038/s41558-018-0341-4, 2018.
Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., and Vitousek,
P. M.: Long-term carbon storage through retention of dissolved aromatic
acids by reactive particles in soil, Glob. Change Biol., 18, 2594–2605,
https://doi.org/10.1111/j.1365-2486.2012.02681.x, 2012.
Lalonde, K., Mucci, A., Ouellet, A., and Gelinas, Y.: Preservation of
organic matter in sediments promoted by iron, Nature, 483, 198–200,
https://doi.org/10.1038/nature10855, 2012.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil
organic matter into particulate and mineral-associated forms to address
global change in the 21st century, Glob. Change Biol., 26, 261–273,
https://doi.org/10.1111/gcb.14859, 2020.
Lawrence, C. R., Harden, J. W., Xu, X., Schulz, M. S., and Trumbore, S. E.:
Long-term controls on soil organic carbon with depth and time: A case study
from the Cowlitz River Chronosequence, WA USA, Geoderma, 247–248, 73–87,
https://doi.org/10.1016/j.geoderma.2015.02.005, 2015.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, J., Kinyangi, J., and Solomon, D.: Organic matter stabilization in
soil microaggregates: implications from spatial heterogeneity of organic
carbon contents and carbon forms, Biogeochemistry, 85, 45–57,
https://doi.org/10.1007/s10533-007-9105-3, 2007.
Loeppert, R. H. and Inskeep, W. P.: Iron, in: Methods of Soil Analysis,
edited by: Sparks, D. L., Soil Sci. Soc. Am., Madison, WI, 639–664, 1996.
Lundström, U. S., van Breemen, N., and Bain, D.: The podzolization
process. A review, Geoderma, 94, 91–107,
https://doi.org/10.1016/S0016-7061(99)00036-1, 2000.
Masiello, C. A., Chadwick, O. A., Southon, J., Torn, M. S., and Harden, J.
W.: Weathering controls on mechanisms of carbon storage in grassland soils,
Global Biogeochem. Cy., 18, GB4023, https://doi.org/10.1029/2004gb002219, 2004.
Mayer, L. M. and Xing, B.: Organic Matter–Surface Area Relationships in
Acid Soils, Soil Sci. Soci. Am. J., 65, 250–258,
https://doi.org/10.2136/sssaj2001.651250x, 2001.
Mayer, L. M., Schick, L. L., Hardy, K. R., Wagai, R., and McCarthy, J.:
Organic matter in small mesopores in sediments and soils, Geochim.
Cosmochim. Ac., 68, 3863–3872, https://doi.org/10.1016/j.gca.2004.03.019, 2004.
Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R.: Stabilization of Soil
Organic Matter: Association with Minerals or Chemical Recalcitrance?,
Biogeochemistry, 77, 25–56, 2006.
Mikutta, R., Zang, U., Chorover, J., Haumaier, L., and Kalbitz, K.:
Stabilization of extracellular polymeric substances (Bacillus subtilis) by
adsorption to and coprecipitation with Al forms, Geochim. Cosmochim.
Ac., 75, 3135–3154, https://doi.org/10.1016/j.gca.2011.03.006, 2011.
Nierop, K. G. J. J., Jansen, B., and Verstraten, J. M.: Dissolved organic
matter, aluminium and iron interactions: precipitation induced by
metal/carbon ratio, pH and competition, Sci. Total Environ.,
300, 201–211, https://doi.org/10.1016/S0048-9697(02)00254-1, 2002.
Oades, J. M. and Waters, A. G.: Aggregate Hierarchy in Soils, Aust. J. Soil
Res., 29, 815–828, 1991.
Ohno, T., Heckman, K. A., Plante, A. F., Fernandez, I. J., and Parr, T. B.:
14C mean residence time and its relationship with thermal stability and
molecular composition of soil organic matter: A case study of deciduous and
coniferous forest types, Geoderma, 308, 1–8,
https://doi.org/10.1016/j.geoderma.2017.08.023, 2017.
Parfitt, R. L.: Allophane and imogolite: role in soil biogeochemical
processes, Clay Miner., 44, 135–155, https://doi.org/10.1180/claymin.2009.044.1.135, 2009.
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of
Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands,
Soil Sci. Soc. Am. J., 51, 1173–1179,
https://doi.org/10.2136/sssaj1987.03615995005100050015x, 1987.
Parfitt, R. and Childs, C.: Estimation of forms of Fe and Al – a review, and analysis of contrasting soils by dissolution and Mossbauer methods, Soil Res., 26, 121–144, 1988.
Paustian, K., Ravindranath, N. H., and van Amstel, A. R.: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, (Volume 4: Agriculture, Forestry and Other Land Use; No. Part 2), available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (last access: 27 November 2020), 2016.
Percival, H. J., Parfitt, R. L., and Scott, N. A.: Factors Controlling Soil
Carbon Levels in New Zealand Grasslands Is Clay Content Important?, Soil
Sci. Soc. Am. J., 64, 1623–1630, https://doi.org/10.2136/sssaj2000.6451623x, 2000.
Porras, R. C., Hicks Pries, C. E., McFarlane, K. J., Hanson, P. J., and
Torn, M. S.: Association with pedogenic iron and aluminum: effects on soil
organic carbon storage and stability in four temperate forest soils,
Biogeochemistry, 133, 333–345, https://doi.org/10.1007/s10533-017-0337-6, 2017.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.
Rennert, T.: Wet-chemical extractions to characterise pedogenic Al and Fe
species – a critical review, Soil Res., 57, 1–16,
https://doi.org/10.1071/SR18299, 2019.
Schneider, M. P. W., Scheel, T., Mikutta, R., van Hees, P., Kaiser, K., and
Kalbitz, K.: Sorptive stabilization of organic matter by amorphous Al
hydroxide, Geochim. Cosmochim. Ac., 74, 1606–1619,
https://doi.org/10.1016/j.gca.2009.12.017, 2010.
Schuppli, P. A., Ross, G. J., and McKeague, J. A.: The effective removal of
suspended materials from pyrophosphate extracts of soils from tropical and
temperate regions, Soil Sci. Soc. Am. J., 47, 1026–1032,
https://doi.org/10.2136/sssaj1983.03615995004700050037x, 1983.
Shang, C. and Tiessen, H.: Organic matter stabilization in two semiarid
tropical soils: Size, density, and magnetic separations, Soil Sci.
Soc. Am. J., 62, 1247–1257, 1998.
Shoji, S., Nanzyo, M., and Dahlgren, R.: Volcanic Ash Soils: genesis,
properties, and utilization, Developments in Soil Science: 21, Elsevier,
Amsterdam, 288 pp., 1993.
Six, J., Merckx, R., Kimpe, K., Paustian, K., and Elliott, E. T.: A
re-evaluation of the enriched labile soil organic matter fraction, Eur. J.
Soil Sci., 51, 283–293, https://doi.org/10.1046/j.1365-2389.2000.00304.x, 2000.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization
mechanisms of soil organic matter: Implications for C-saturation of soils,
Plant Soil, 241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Smith, P.: Soil carbon sequestration and biochar as negative emission
technologies, Glob. Change Biol., 22, 1315–1324, https://doi.org/10.1111/gcb.13178, 2016.
Sollins, P., Homann, P., and Caldwell, B. A.: Stabilization and
destabilization of soil organic matter: mechanisms and controls, Geoderma,
74, 65–105, https://doi.org/10.1016/s0016-7061(96)00036-5, 1996.
Sollins, P., Glassman, C., Paul, E. A., Swanston, C., Lajtha, K., Heil, W.,
and Elliott, E. T.: Soil carbon and nitrogen: pools and fractions, in:
Standard Soil Methods for Long-Term Ecological Research, edited by:
Robertson, P., Coleman, D. C., Bledsoe, C. S., and Sollins, P., Oxford
University Press, Oxford, 89–105, 1999.
Sollins, P., Kramer, M., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe,
A., Wagai, R., and Bowden, R.: Sequential density fractionation across soils
of contrasting mineralogy: evidence for both microbial- and
mineral-controlled soil organic matter stabilization, Biogeochemistry, 96,
209–231, https://doi.org/10.1007/s10533-009-9359-z, 2009.
Suda, A. and Makino, T.: Functional effects of manganese and iron oxides on
the dynamics of trace elements in soils with a special focus on arsenic and
cadmium: A review, Geoderma, 270, 68–75,
https://doi.org/10.1016/j.geoderma.2015.12.017, 2016.
Swoboda-Colberg, N. G. and Drever, J. I.: Mineral dissolution rates in
plot-scale field and laboratory experiments, Chem. Geol., 105, 51–69,
https://doi.org/10.1016/0009-2541(93)90118-3, 1993.
Takahashi, T. and Dahlgren, R. A.: Nature, properties and function of
aluminum–humus complexes in volcanic soils, Geoderma, 263, 110–121,
https://doi.org/10.1016/j.geoderma.2015.08.032, 2016.
Tamrat, W. Z., Rose, J., Grauby, O., Doelsch, E., Levard, C., Chaurand, P.,
and Basile-Doelsch, I.: Soil organo-mineral associations formed by
co-precipitation of Fe, Si and Al in presence of organic ligands, Geochim. Cosmochim. Ac., 260, 15–28, https://doi.org/10.1016/j.gca.2019.05.043,
2019.
Tashiro, Y., Nakao, A., Wagai, R., Yanai, J., and Kosaki, T.: Inhibition of
radiocesium adsorption on 2 : 1 clay minerals under acidic soil environment:
Effect of organic matter vs. hydroxy aluminum polymer, Geoderma, 319, 52–60,
https://doi.org/10.1016/j.geoderma.2017.12.039, 2018.
Tisdall, J. M. and Oades, J. M.: Organic-Matter and Water-Stable Aggregates in Soils, J. Soil Sci., 33, 141–163, 1982.
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., and
Hendricks, D. M.: Mineral control of soil organic carbon storage and
turnover, Nature, 389, 170–173, 1997.
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E.,
Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., and
Kögel-Knabner, I.: Microaggregates in soils, J. Plant Nutr. Soil Sc., 181, 104–136, https://doi.org/10.1002/jpln.201600451, 2018.
Turchenek, L. W. and Oades, J. M.: Fractionation of organo-mineral
complexes by sedimentation and density techniques, Geoderma, 21, 311–343,
1979.
Urrutia, M. M. and Beveridge, T. J.: Formation of fine-grained metal and
silicate precipitates on a bacterial surface (Bacillus subtilis), Chem. Geol.,
116, 261–280, https://doi.org/10.1016/0009-2541(94)90018-3, 1994.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H.,
Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods:
Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 39, 2183–2207, https://doi.org/10.1016/j.soilbio.2007.03.007, 2007.
Wada, K.: Allophane and Imogolite, in: Minerals in Soil Environments, 2nd
Edn., edited by: Dixon, J. B. and Weed, S. B., Soil Science Society of America Book Series, Soil Science Society of America, Madison, WI, USA,
1051–1087, 1989.
Wada, K. and Higashi, T.: The categories of aluminum- and iron-humus
complexes in ando soils determined by selective dissolution, J. Soil
Sci., 27, 357–368, https://doi.org/10.1111/j.1365-2389.1976.tb02007.x, 1976.
Wada, K. and Kakuto, Y.: Intergradient vermiculite-kaolin mineral in a
Korean Ultisol, Clays Clay Miner., 31, 183–190, 1983.
Wagai, R. and Mayer, L. M.: Sorptive stabilization of organic matter in
soils by hydrous iron oxides, Geochim. Cosmochim. Ac., 71, 25–35,
https://doi.org/10.1016/j.gca.2006.08.047, 2007.
Wagai, R., Mayer, L. M., Kitayarna, K., and Knicker, H.: Climate and parent
material controls on organic matter storage in surface soils: A three-pool,
density-separation approach, Geoderma, 147, 23–33,
https://doi.org/10.1016/j.geoderma.2008.07.010, 2008.
Wagai, R., Mayer, L. M., and Kitayama, K.: Extent and nature of organic
coverage of soil mineral surfaces assessed by a gas sorption approach,
Geoderma, 149, 152–160, https://doi.org/10.1016/j.geoderma.2008.11.032, 2009.
Wagai, R., Mayer, L. M., Kitayama, K., and Shirato, Y.: Association of
organic matter with iron and aluminum across a range of soils determined via
selective dissolution techniques coupled with dissolved nitrogen analysis,
Biogeochemistry, 112, 95–109, https://doi.org/10.1007/s10533-011-9652-5, 2013.
Wagai, R., Kajiura, M., Asano, M., and Hiradate, S.: Nature of soil
organo-mineral assemblage examined by sequential density fractionation with
and without sonication: Is allophanic soil different?, Geoderma, 241–242,
295–305, https://doi.org/10.1016/j.geoderma.2014.11.028, 2015.
Wagai, R., Kajiura, M., Uchida, M., and Asano, M.: Distinctive roles of two
aggregate binding agents in allophanic andisols: young carbon and
poorly-crystalline metal phases with old carbon, Soil Systems, 2, 29, https://doi:10.3390/soilsystems2020029, 2018.
Wan, J., Tyliszczak, T., and Tokunaga, T. K.: Organic carbon distribution,
speciation, and elemental correlations within soil microaggregates:
Applications of STXM and NEXAFS spectroscopy, Geochim. Cosmochim.
Ac., 71, 5439–5449, https://doi.org/10.1016/j.gca.2007.07.030, 2007.
Wen, Y., Li, H., Xiao, J., Wang, C., Shen, Q., Ran, W., He, X., Zhou, Q.,
and Yu, G.: Insights into complexation of dissolved organic matter and
Al(III) and nanominerals formation in soils under contrasting fertilizations
using two-dimensional correlation spectroscopy and high
resolution-transmission electron microscopy techniques, Chemosphere, 111,
441–449, https://doi.org/10.1016/j.chemosphere.2014.03.078, 2014.
Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and Bonan, G. B.: Representing life in the Earth system with soil microbial functional traits in the MIMICS model, Geosci. Model Dev., 8, 1789–1808, https://doi.org/10.5194/gmd-8-1789-2015, 2015.
Yang, J., Liu, J., Hu, Y., Rumpel, C., Bolan, N., and Sparks, D.:
Molecular-level understanding of malic acid retention mechanisms in ternary
kaolinite-Fe(III)-malic acid systems: The importance of Fe speciation, Chem.
Geol., 464, 69–75, https://doi.org/10.1016/j.chemgeo.2017.02.018, 2017.
Yu, G.: Root Exudates and Microbial Communities Drive Mineral Dissolution
and the Formation of Nano-size Minerals in Soils: Implications for Soil
Carbon Storage, in: Root Biology, edited by: Giri, B., Prasad, R., and
Varma, A., Springer International Publishing, Cham, 143–166, 2018.
Zhao, Q., Poulson, S. R., Obrist, D., Sumaila, S., Dynes, J. J., McBeth, J. M., and Yang, Y.: Iron-bound organic carbon in forest soils: quantification and characterization, Biogeosciences, 13, 4777–4788, https://doi.org/10.5194/bg-13-4777-2016, 2016.
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in...