Articles | Volume 6, issue 1
https://doi.org/10.5194/soil-6-195-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-6-195-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Benjamin Andrieux
CORRESPONDING AUTHOR
NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management,
Forest Research Institute, Université du Québec en
Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X5E4, Canada
David Paré
Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, G1V4C7, Canada
Julien Beguin
Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, G1V4C7, Canada
Pierre Grondin
Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, Quebec, QC, G1P3W8, Canada
Yves Bergeron
NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management,
Forest Research Institute, Université du Québec en
Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X5E4, Canada
Related authors
No articles found.
David Paré, Jérôme Laganière, Guy R. Larocque, and Robert Boutin
SOIL, 8, 673–686, https://doi.org/10.5194/soil-8-673-2022, https://doi.org/10.5194/soil-8-673-2022, 2022
Short summary
Short summary
Major soil carbon pools and fluxes were assessed along a climatic gradient expanding 4 °C in mean annual temperature for two important boreal conifer forest stand types. Species and a warmer climate affected soil organic matter (SOM) cycling but not stocks. Contrarily to common hypotheses, SOM lability was not reduced by warmer climatic conditions and perhaps increased. Results apply to cold and wet conditions and a stable vegetation composition along the climate gradient.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Emeline Chaste, Martin P. Girardin, Jed O. Kaplan, Jeanne Portier, Yves Bergeron, and Christelle Hély
Biogeosciences, 15, 1273–1292, https://doi.org/10.5194/bg-15-1273-2018, https://doi.org/10.5194/bg-15-1273-2018, 2018
Short summary
Short summary
A vegetation model was used to reconstruct fire activity from 1901 to 2012 in relation to changes in lightning ignition, climate, and vegetation in eastern Canada's boreal forest. The model correctly simulated the history of fire activity. The results showed that fire activity is ignition limited but is also greatly affected by both climate and vegetation. This research aims to develop a vegetation model that could be used to predict the future impacts of climate changes on fire activity.
Carole Bastianelli, Adam A. Ali, Julien Beguin, Yves Bergeron, Pierre Grondin, Christelle Hély, and David Paré
Biogeosciences, 14, 3445–3459, https://doi.org/10.5194/bg-14-3445-2017, https://doi.org/10.5194/bg-14-3445-2017, 2017
Short summary
Short summary
Our analyses showed that soil biogeochemistry could distinguish two forest ecosystems that coexist in Quebec: open lichen woodlands and closed-canopy black spruce–moss forests. Variations in carbon stocks, base cation concentrations and crystallinity of aluminium and iron were related to the different vegetation covers. This research was carried out as a first step to identify geochemical indicators of canopy cover types that could be useful in further palaeoecological studies.
Related subject area
Soils and biogeochemical cycling
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations
Lithology- and climate-controlled soil aggregate-size distribution and organic carbon stability in the Peruvian Andes
Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: the case of a coffee agroforestry plantation on Andosols in Costa Rica
A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways
Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model – soil chemistry of three Swedish conifer sites from 1880 to 2080
Dynamic modelling of weathering rates – the benefit over steady-state modelling
Aluminium and base cation chemistry in dynamic acidification models – need for a reappraisal?
Challenges of soil carbon sequestration in the NENA region
Continental soil drivers of ammonium and nitrate in Australia
Comment on “Soil organic stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content” by Poeplau et al. (2017)
Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors
Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils
A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool
Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils
Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes
Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Timescales of carbon turnover in soils with mixed crystalline mineralogies
Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity
Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Tatjana Carina Speckert, Jeannine Suremann, Konstantin Gavazov, Maria Joao Santos, Frank Hagedorn, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-645, https://doi.org/10.5194/egusphere-2023-645, 2023
Short summary
Short summary
Afforestation on former pastures affects soil organic carbon (SOC) by alteration of quality and quantity of root and aboveground biomass litter input. Compared with pasture organic matter (OM), forest OM is less decomposable and characterized by increased C:N ratios. It could be expected that long-term afforestation on a centennial scale may have a severe impact on SOC dynamics, an aspect that remains so far unknown as most of the earlier studies focused on successions between 30 and 50 years.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023, https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Short summary
Across northern Europe, millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH, and initial soil SOC stocks (before liming).
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020, https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary
Short summary
Soils contain one of the largest and most dynamic pools of carbon on Earth, yet scientists still struggle to understand the reactivity and fate of soil organic matter upon disturbance. In this study, we found that with increasing thermal stability, the turnover time of organic matter increased from decades to centuries with a concurrent shift in chemical composition. In this proof-of-concept study, we found that ramped thermal analyses can provide new insights for understanding soil carbon.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Songyu Yang, Boris Jansen, Samira Absalah, Rutger L. van Hall, Karsten Kalbitz, and Erik L. H. Cammeraat
SOIL, 6, 1–15, https://doi.org/10.5194/soil-6-1-2020, https://doi.org/10.5194/soil-6-1-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes or how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall is dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when we study soil carbon storage in the Andes.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Katelyn A. Congreves, Trang Phan, and Richard E. Farrell
SOIL, 5, 265–274, https://doi.org/10.5194/soil-5-265-2019, https://doi.org/10.5194/soil-5-265-2019, 2019
Short summary
Short summary
There are surprising grey areas in the precise quantification of pathways that produce nitrous oxide, a potent greenhouse gas, as influenced by soil moisture. Here, we take a new look at a classic study but use isotopomers as a powerful tool to determine the source pathways of nitrous oxide as regulated by soil moisture. Our results support earlier research, but we contribute scientific advancements by providing models that enable quantifying source partitioning rather than just inferencing.
Eric McGivney, Jon Petter Gustafsson, Salim Belyazid, Therese Zetterberg, and Stefan Löfgren
SOIL, 5, 63–77, https://doi.org/10.5194/soil-5-63-2019, https://doi.org/10.5194/soil-5-63-2019, 2019
Short summary
Short summary
Forest management may lead to long-term soil acidification due to the removal of base cations during harvest. By means of the HD-MINTEQ model, we compared the acidification effects of harvesting with the effects of historical acid rain at three forested sites in Sweden. The effects of harvesting on pH were predicted to be much smaller than those resulting from acid deposition during the 20th century. There were only very small changes in predicted weathering rates due to acid rain or harvest.
Veronika Kronnäs, Cecilia Akselsson, and Salim Belyazid
SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, https://doi.org/10.5194/soil-5-33-2019, 2019
Short summary
Short summary
Weathering rates in forest soils are important for sustainable forestry but cannot be measured. In this paper, we have modelled weathering with the commonly used PROFILE model as well as with the dynamic model ForSAFE, better suited to a changing climate with changing human activities but never before tested for weathering calculations. We show that ForSAFE gives comparable weathering rates to PROFILE and that it shows the variation in weathering with time and works well for scenario modelling.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Talal Darwish, Thérèse Atallah, and Ali Fadel
SOIL, 4, 225–235, https://doi.org/10.5194/soil-4-225-2018, https://doi.org/10.5194/soil-4-225-2018, 2018
Short summary
Short summary
This paper is part of the GSP-ITPS effort to produce a global SOC map and update information on C stocks using old and new soil information to assess the potential for enhanced C sequestration in dry land areas of the NENA region. We used the DSMW from FAO-UNESCO (2007), focusing on organic and inorganic content in 0.3 m of topsoil and 0.7 m of subsoil, to discuss the human factors affecting the accumulation of organic C and the fate of inorganic C.
Juhwan Lee, Gina M. Garland, and Raphael A. Viscarra Rossel
SOIL, 4, 213–224, https://doi.org/10.5194/soil-4-213-2018, https://doi.org/10.5194/soil-4-213-2018, 2018
Short summary
Short summary
Soil nitrogen (N) is an essential element for plant growth, but its plant-available forms are subject to loss from the environment by leaching and gaseous emissions. Still, factors controlling soil mineral N concentrations at large spatial scales are not well understood. We determined and discussed primary soil controls over the concentrations of NH4+ and NO3− at the continental scale of Australia while considering specific dominant land use patterns on a regional basis.
Eleanor Ursula Hobley, Brian Murphy, and Aaron Simmons
SOIL, 4, 169–171, https://doi.org/10.5194/soil-4-169-2018, https://doi.org/10.5194/soil-4-169-2018, 2018
Short summary
Short summary
This research evaluates equations to calculate soil organic carbon (SOC) stocks. Although various equations exist for SOC stock calculations, we recommend using the simplest equation with THE lowest associated errors. Adjusting SOC stock calculations for rock content is essential. Using the mass proportion of rocks to do so minimizes error.
Cora Vos, Angélica Jaconi, Anna Jacobs, and Axel Don
SOIL, 4, 153–167, https://doi.org/10.5194/soil-4-153-2018, https://doi.org/10.5194/soil-4-153-2018, 2018
Short summary
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.
Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel
SOIL, 3, 161–176, https://doi.org/10.5194/soil-3-161-2017, https://doi.org/10.5194/soil-3-161-2017, 2017
Short summary
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.
Ranae Dietzel, Matt Liebman, and Sotirios Archontoulis
SOIL, 3, 139–152, https://doi.org/10.5194/soil-3-139-2017, https://doi.org/10.5194/soil-3-139-2017, 2017
Short summary
Short summary
Roots deeper in the soil are made up of more carbon and less nitrogen compared to roots at shallower depths, which may help explain deep-carbon origin. A comparison of prairie and maize rooting systems showed that in moving from prairie to maize, a large, structural-tissue-dominated root carbon pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root carbon pool with fast turnover evenly distributed in the soil profile.
Julie N. Weitzman and Jason P. Kaye
SOIL, 3, 95–112, https://doi.org/10.5194/soil-3-95-2017, https://doi.org/10.5194/soil-3-95-2017, 2017
Short summary
Short summary
Prior research found nitrate losses in mid-Atlantic streams following drought but no mechanistic explanation. We aim to understand how legacy sediments influence soil–stream nitrate transfer. We found that surface legacy sediments do not retain excess nitrate inputs well; once exposed, previously buried soils experience the largest drought-induced nitrate losses; and, restoration that reconnects stream and floodplain via legacy sediment removal may initially cause high losses of nitrate.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017, https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Jonathan Sanderman, Courtney Creamer, W. Troy Baisden, Mark Farrell, and Stewart Fallon
SOIL, 3, 1–16, https://doi.org/10.5194/soil-3-1-2017, https://doi.org/10.5194/soil-3-1-2017, 2017
Short summary
Short summary
Knowledge of how soil carbon stocks and flows change in response to agronomic management decisions is a critical step in devising management strategies that best promote food security while mitigating greenhouse gas emissions. Here, we present 40 years of data demonstrating that increasing productivity both leads to greater carbon stocks and accelerates the decomposition of soil organic matter, thus providing more nutrients back to the crop.
Barry G. Rawlins, Joanna Wragg, Christina Reinhard, Robert C. Atwood, Alasdair Houston, R. Murray Lark, and Sebastian Rudolph
SOIL, 2, 659–671, https://doi.org/10.5194/soil-2-659-2016, https://doi.org/10.5194/soil-2-659-2016, 2016
Short summary
Short summary
We do not understand processes by which soil bacteria and fungi feed on soil organic matter (SOM). Previous research suggests the location of SOM in aggregates may influence whether bacteria can feed on it more easily. We did an experiment to identify the distribution of SOM on very small scales within nine soil aggregates. There was no clear evidence that the distribution of organic matter influenced how easily the organic matter was fed upon by bacteria.
Cited articles
Amundson, R. and Jenny, H.: On a state factor model of ecosystems,
BioScience, 47, 536–543, https://doi.org/10.2307/1313122, 1997.
Andrieux, B., Beguin, J., Bergeron, Y., Grondin, P., and Paré, D.:
Drivers of post-fire organic carbon accumulation in the boreal forest,
Global Change Biol., 24, 4797–4815, https://doi.org/10.1111/gcb.14365, 2018.
Andrieux, B., Paré, D., Beguin, J., Grondin, P., and Bergeron, Y.: Soil organic carbon bioreactivity in the spruce feathermoss forests of Quebec (Canada), https://doi.org/10.23687/611911cf-e58a-4efa-9acf-c19bd0767e10, last access: 12 May 2020.
Andrus, R. E.: Some aspects of Sphagnum ecology, Can. J. Botany,
64, 416–426, https://doi.org/10.1139/b86-057, 1986.
Bååth, E. and Anderson, T. H.: Comparison of soil fungal/bacterial
ratios in a pH gradient using physiological and PLFA-based techniques, Soil
Biol. Biochem., 35, 955–963, https://doi.org/10.1016/s0038-0717(03)00154-8, 2003.
Belisle, A. C., Gauthier, S., Cyr, D., Bergeron, Y., and Morin, H.: Fire
regime and old-growth boreal forests in central Quebec, Canada: An ecosystem
management perspective, Silva Fenn, 45, 889–908, 2011.
Bisbee, K., Gower, S., Norman, J., and Nordheim, E.: Environmental controls
on ground cover species composition and productivity in a boreal black
spruce forest, Oecologia, 129, 261–270, https://doi.org/10.1007/s004420100719, 2001.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, https://doi.org/10.1038/nature06272, 2007.
Bouchard, M., Pothier, D., and Gauthier, S.: Fire return intervals and tree
species succession in the North Shore region of eastern Quebec, Can. J. Forest Res., 38, 1621–1633, https://doi.org/10.1139/x07-201, 2008.
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A.,
and Crowther, T. W.: Managing uncertainty in soil carbon feedbacks to
climate change, Nat. Clim. Change, 6, 751–758, https://doi.org/10.1038/nclimate3071,
2016.
Buurman, P. and Jongmans, A. G.: Podzolisation and soil organic matter
dynamics, Geoderma, 125, 71–83, https://doi.org/10.1016/j.geoderma.2004.07.006, 2005.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang,
L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., de
Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson,
A., Johnson, B. R., Larsen, K. S., Luo, Y., Marhan, S., Melillo, J. M.,
Penuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA, 113, 13797–13802, https://doi.org/10.1073/pnas.1605365113,
2016.
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.:
Integrating plant litter quality, soil organic matter stabilization, and the
carbon saturation concept, Global Change Biol., 21, 3200–3209,
https://doi.org/10.1111/gcb.12982, 2015.
Certini, G.: Effects of fire on properties of forest soils: a review,
Oecologia, 143, 1–10, https://doi.org/10.1007/s00442-004-1788-8, 2005.
Chaste, E., Girardin, M. P., Kaplan, J. O., Portier, J., Bergeron, Y., and Hély, C.: The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model, Biogeosciences, 15, 1273–1292, https://doi.org/10.5194/bg-15-1273-2018, 2018.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A.,
Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B.
D.: Roots and associated fungi drive long-term carbon sequestration in
boreal forest, Science, 339, 1615–1618, 10.1126/science.1231923, 2013.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.:
The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates
plant litter decomposition with soil organic matter stabilization: do labile
plant inputs form stable soil organic matter?, Global Change Biol., 19,
988–995, https://doi.org/10.1111/gcb.12113, 2013.
Courchesne, F. and Turmel, M.-C.: Extractable Al, Fe, Mn, and Si, in: Soil
Sampling and Methods of Analysis, Second Edition, edited by: Carter M. R.,
and Gregorich, E. G., CRC Press, Boca Raton, FL, 1262 pp., 2007.
Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D., Distel, D. L.,
Dupree, P., Etxabe, A. G., Goodell, B. S., Jellison, J., McGeehan, J. E.,
McQueen-Mason, S. J., Schnorr, K., Walton, P. H., Watts, J. E., and Zimmer,
M.: Lignocellulose degradation mechanisms across the Tree of Life, Curr. Opin. Chem. Biol., 29, 108–119, https://doi.org/10.1016/j.cbpa.2015.10.018, 2015.
Craine, J. M., Fierer, N., and McLauchlan, K. K.: Widespread coupling
between the rate and temperature sensitivity of organic matter decay, Nat. Geosci., 3, 854–857, https://doi.org/10.1038/ngeo1009, 2010.
Cyr, D., Gauthier, S., and Bergeron, Y.: The influence of landscape-level
heterogeneity in fire frequency on canopy composition in the boreal forest
of eastern Canada, J. Veg. Sci., 23, 140–150, https://doi.org/10.1111/j.1654-1103.2011.01338.x, 2012.
Davidson, E. A.: Soil carbon in a beer can, Nat. Geosci., 8, 748–749,
https://doi.org/10.1038/ngeo2522, 2015.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
De Bano, L. F.: The effect of fire on soil properties, Management and
Productivity of Western-Montane Forest Soils, Boise, 151–155, 1990.
Deluca, T. H. and Boisvenue, C.: Boreal forest soil carbon: distribution,
function and modelling, Forestry, 85, 161–184, https://doi.org/10.1093/forestry/cps003,
2012.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova
Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E.,
and Boeckx, P.: Soil carbon storage controlled by interactions between
geochemistry and climate, Nat. Geosci., 8, 780–783, https://doi.org/10.1038/ngeo2516,
2015.
Driscoll, C. T. and Likens, G. E.: Hydrogen ion budget of an aggrading
forested ecosystem, Tellus, 34, 283–292, https://doi.org/10.1111/j.2153-3490.1982.tb01817.x,
1982.
Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M.,
Gleixner, G., Hartmann, A., Kästner, M., Marhan, S., Miltner, A., Scheu,
S., and Wolters, V.: Soil-carbon preservation through habitat constraints
and biological limitations on decomposer activity, J. Plant.
Nutr. Soil. Sc., 171, 27–35, https://doi.org/10.1002/jpln.200700051, 2008.
Fenton, N. J., Bergeron, Y., and Paré, D.: Decomposition rates of
bryophytes in managed boreal forests: influence of bryophyte species and
forest harvesting, Plant Soil, 336, 499–508, https://doi.org/10.1007/s11104-010-0506-z,
2010.
Fierer, N., Allen, A. S., Schimel, J. P., and Holden, P. A.: Controls on
microbial CO2 production: a comparison of surface and subsurface soil
horizons, Global Change Biol., 9, 1322–1332,
https://doi.org/10.1046/j.1365-2486.2003.00663.x, 2003.
Fierer, N., Craine, J. M., McLauchlan, K., and Schimel, J. P.: Litter
Quality and the Temperature Sensitivity of Decomposition, Ecology, 86,
320–326, https://doi.org/10.1890/04-1254, 2005.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil
bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–631, https://doi.org/10.1073/pnas.0507535103, 2006.
Frégeau, M., Payette, S., and Grondin, P.: Fire history of the central
boreal forest in eastern North America reveals stability since the
mid-Holocene, The Holocene, 25, 1912–1922, https://doi.org/10.1177/0959683615591361, 2015.
Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G., and Knicker, H.:
The effect of fire on soil organic matter – a review, Environ. Int., 30, 855–870, https://doi.org/10.1016/j.envint.2004.02.003, 2004.
Hassink, J.: Preservation of Plant Residues in Soils Differing in
Unsaturated Protective Capacity, Soil Sci. Soc. Am. J.,
60, 487–491, https://doi.org/10.2136/sssaj1996.03615995006000020021x, 1996.
Hendershot, W. H. and Lalande, H.: Soil Reaction and Exchangeable Acidity,
in: Soil Sampling and Methods of Analysis, Second Edition, edited by: Carter
M. R. and Gregorich, E. G., CRC Press, Boca Raton, FL, 1262 pp., 2007.
Hynes, H. M. and Germida, J. J.: Impact of clear cutting on soil microbial
communities and bioavailable nutrients in the LFH and Ae horizons of Boreal
Plain forest soils, Forest Ecol. Manage., 306, 88–95,
https://doi.org/10.1016/j.foreco.2013.06.006, 2013.
IPCC: Climate change 2013: the physical science basis. Contribution of
working group I to the fifth assessment report of the intergovernmental
panel on climate change, Cambridge University Press, Cambridge, UK and New
York, NY, 1535 pp., 2013.
IUSS Working Group WRB: World reference base for soil ressources 2014,
update 2015, International soil classification system for naming soils and
creating legends for soil maps, World Soil Ressources Reports, FAO, Rome, 203 pp.,
2015.
Jenny, H.: Factors of soil formation: a system of quantitative pedology,
Dover Publications Inc., New York, NY, 191 pp., 1994.
Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil
organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, https://doi.org/10.2307/2641104, 2000.
Johnson, D. W. and Curtis, P. S.: Effects of forest management on soil C
and N storage: meta analysis, Forest Ecol. Manage., 140, 227–238,
https://doi.org/10.1016/S0378-1127(00)00282-6, 2001.
Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., and
Kögel-Knabner, I.: Stabilization of organic matter by soil minerals –
investigations of density and particle-size fractions from two acid forest
soils, J. Plant. Nutr. Soil. Sc., 165, 451,
https://doi.org/10.1002/1522-2624(200208)165:4<451::aid-jpln451>3.0.co;2-b, 2002.
Kane, E. S., Valentine, D. W., Schuur, E. A., and Dutta, K.: Soil carbon
stabilization along climate and stand productivity gradients in black spruce
forests of interior Alaska, Can. J. Forest Res., 35,
2118–2129, https://doi.org/10.1139/x05-093, 2005.
Kenkel, N. C., Walker, D. J., Watson, P. R., Caners, R. T., and Lastra, R.
A.: Vegetation dynamics in boreal forest ecosystems, Coenoses, 12, 97–108,
1997.
Knicker, H.: How does fire affect the nature and stability of soil organic
nitrogen and carbon? A review, Biogeochemistry, 85, 91–118,
https://doi.org/10.1007/s10533-007-9104-4, 2007.
Kranabetter, J. M.: Increasing soil carbon content with declining soil
manganese in temperate rainforests: is there a link to fungal Mn?, Soil
Biol. Biochem., 128, 179–181, https://doi.org/10.1016/j.soilbio.2018.11.001, 2019.
Kroetsch, D. and Wang, C.: Particle Size Distribution, in: Soil Sampling
and Methods of Analysis, Second Edition, edited by: Carter M. R. and
Gregorich, E. G., CRC Press, Boca Raton, FL, 1262 pp., 2007.
Kunito, T., Isomura, I., Sumi, H., Park, H.-D., Toda, H., Otsuka, S.,
Nagaoka, K., Saeki, K., and Senoo, K.: Aluminum and acidity suppress
microbial activity and biomass in acidic forest soils, Soil Biol. Biochem., 97, 23–30, https://doi.org/10.1016/j.soilbio.2016.02.019, 2016.
Kurz, W. A., Shaw, C. H., Boisvenue, C., Stinson, G., Metsaranta, J.,
Leckie, D., Dyk, A., Smyth, C., and Neilson, E. T.: Carbon in Canada's
boreal forest – A synthesis, Environ. Rev., 21, 260–292,
https://doi.org/10.1139/er-2013-0041, 2013.
Laganière, J., Podrebarac, F., Billings, S. A., Edwards, K. A., and
Ziegler, S. E.: A warmer climate reduces the bioreactivity of isolated
boreal forest soil horizons without increasing the temperature sensitivity
of respiratory CO2 loss, Soil Biol. Biochem., 84, 177–188,
https://doi.org/10.1016/j.soilbio.2015.02.025, 2015.
Laganière, J., Boèa, A., Van Miegroet, H., and Paré, D.: A tree
species effect on soil that is consistent across the species' range: The
case of aspen and soil carbon in North America, Forests, 8, 113,
https://doi.org/10.3390/f8040113, 2017.
Lang, S. I., Cornelissen, J. H. C., Klahn, T., van Logtestijn, R. S. P.,
Broekman, R., Schweikert, W., and Aerts, R.: An experimental comparison of
chemical traits and litter decomposition rates in a diverse range of
subarctic bryophyte, lichen and vascular plant species, J. Ecol.,
97, 886–900, https://doi.org/10.1111/j.1365-2745.2009.01538.x, 2009.
Le Goff, H., Flannigan, M. D., Bergeron, Y., and Girardin, M. P.: Historical
fire regime shifts related to climate teleconnections in the Waswanipi area,
central Quebec, Canada, Int. J. Wildland Fire, 16, 607–618,
https://doi.org/10.1071/Wf06151, 2007.
Le Goff, H., Girardin, M. P., Flannigan, M., and Bergeron, Y.:
Dendroclimatic inference of wildfire activity in Quebec over the 20th
century and implication for natural disturbance-based forest management at
the northern limit of the commercial forest, Int. J. Wildland Fire, 17, 348–362, 2008.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A.,
Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F.,
Jiang, L., Koven, C., Jackson, R. B., Jones, C. D., Lara, M. J., Liang, J.,
McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra,
C. A., Smith, M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van
Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R., Xia, J.,
Xu, X., Xu, X., and Zhou, T.: Toward more realistic projections of soil
carbon dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015gb005239, 2016.
Nalder, I. A. and Wein, R. W.: Long-term forest floor carbon dynamics after
fire in upland boreal forests of western Canada, Global Biogeochem. Cy., 13, 951–968, https://doi.org/10.1029/1999gb900056, 1999.
Canadian Forest Service: Canada's National Forest Inventory ground sampling guidelines: specifications for ongoing measurement. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Colmbia, 271 pp., available at: https://nfi.nfis.org/en/ (last access: 12 May 2020) 2008.
Paré, D., Boutin, R., Larocque, G. R., and Raulier, F.: Effect of
temperature on soil organic matter decomposition in three forest biomes of
eastern Canada, Can. J. Soil Sci., 86, 247–256,
https://doi.org/10.4141/s05-084, 2006.
Paré, D., Banville, J. L., Garneau, M., and Bergeron, Y.: Soil Carbon
Stocks and Soil Carbon Quality in the Upland Portion of a Boreal Landscape,
James Bay, Quebec, Ecosystems, 14, 533–546, https://doi.org/10.1007/s10021-011-9429-7, 2011.
Paul, E. A., Morris, S. J., Conant, R. T., and Plante, A. F.: Does the Acid
Hydrolysis – Incubation Method Measure Meaningful Soil Organic Carbon Pools?,
Soil Sci. Soc. Am. J., 70, 1023, https://doi.org/10.2136/sssaj2005.0103,
2006.
Petersen, L. W., Moldrup, P., Jacobsen, O. H., and Rolston, D. E.: Relations
between Specific Surface Area and Soil Physical and Chemical Properties,
Soil Sci., 161, 9–21, https://doi.org/10.1097/00010694-199601000-00003, 1996.
Plante, A. F., Conant, R. T., Paul, E. A., Paustian, K., and Six, J.: Acid
hydrolysis of easily dispersed and microaggregate-derived silt- and
clay-sized fractions to isolate resistant soil organic matter, Eur. J. Soil Sci., 57, 456–467, https://doi.org/10.1111/j.1365-2389.2006.00792.x,
2006.
Pollegioni, L., Tonin, F., and Rosini, E.: Lignin-degrading enzymes,
FEBS J., 282, 1190–1213, https://doi.org/10.1111/febs.13224, 2015.
Porras, R. C., Hicks Pries, C. E., McFarlane, K. J., Hanson, P. J., and
Torn, M. S.: Association with pedogenic iron and aluminum: effects on soil
organic carbon storage and stability in four temperate forest soils,
Biogeochemistry, 133, 333–345, https://doi.org/10.1007/s10533-017-0337-6, 2017.
Portier, J., Gauthier, S., Leduc, A., Arseneault, D., and Bergeron, Y.: Fire
regime along latitudinal gradients of continuous to discontinuous coniferous
boreal forests in eastern Canada, Forests, 7, 211, 10.3390/f7100211, 2016.
Prescott, C. E., Maynard, D. G., and Laiho, R.: Humus in northern forests:
friend or foe?, Forest Ecol. Manage., 133, 23–36,
https://doi.org/10.1016/s0378-1127(99)00295-9, 2000.
Preston, C. M., Bhatti, J. S., Flanagan, L. B., and Norris, C.: Stocks,
chemistry, and sensitivity to climate change of dead organic matter along
the Canadian boreal forest transect case study, Clim. Change, 74,
223–251, https://doi.org/10.1007/s10584-006-0466-8, 2006.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R.,
Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries,
C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P.,
Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved
set of variables for predicting soil organic matter content,
Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.
Régnière, J.: Generalized Approach to Landscape-Wide Seasonal
Forecasting with Temperature-Driven Simulation Models, Environ. Entomol., 25, 869–881, https://doi.org/10.1093/ee/25.5.869, 1996.
Régnière, J., Saint-Amant, R., and Béchard, A.: BioSIM 10 user's manual, Natural
Resources Canada, Québec, QC, 76 pp., 2013.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon
dynamics in topsoil and in subsoil may be controlled by different regulatory
mechanisms, Global Change Biol., 16, 416–426,
https://doi.org/10.1111/j.1365-2486.2009.01884.x, 2010.
Sanborn, P., Lamontagne, L., and Hendershot, W.: Podzolic soils of Canada:
Genesis, distribution, and classification, Can. J. Soil Sci.,
91, 843–880, https://doi.org/10.4141/Cjss10024, 2011.
Schaetzl, R. and Anderson, S.: Soils: genesis and geomorphology 2 Edn.,
Cambridge University Press, New York, 817 pp., 2005.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global
soil carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manage., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I. A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A.,
Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence
of soil organic matter as an ecosystem property, Nature, 478, 49–56,
https://doi.org/10.1038/nature10386, 2011.
Shaw, C. H., Hilger, A. B., Metsaranta, J., Kurz, W. A., Russo, G., Eichel,
F., Stinson, G., Smyth, C., and Filiatrault, M.: Evaluation of simulated
estimates of forest ecosystem carbon stocks using ground plot data from
Canada's National Forest Inventory, Ecol. Modell., 272, 323–347,
https://doi.org/10.1016/j.ecolmodel.2013.10.005, 2014.
Shaw, C. H., Bona, K. A., Kurz, W. A., and Fyles, J. W.: The importance of
tree species and soil taxonomy to modeling forest soil carbon stocks in
Canada, Geoderma, 4, 114–125,
doi10.1016/j.geodrs.2015.01.001, 2015.
doi10.1016/j.geodrs.2015.01.001, 2015.
Shipley, B.: Cause and correlation in biology: a user's guide to path
analysis, structural equations and causal inference, Cambridge University
Press, Cambridge, UK, 331 pp., 2000a.
Shipley, B.: A new inferential test for path models based on directed
acyclic graphs, Struct. Equ. Modeling, 7, 206–218,
https://doi.org/10.1207/s15328007sem0702_4, 2000b.
Shipley, B.: Confirmatory path analysis in a generalized multilevel context,
Ecology, 90, 363–368, https://doi.org/10.1890/08-1034.1, 2009.
Shipley, B.: The AIC model selection method applied to path analytic models
compared using a d-separation test, Ecology, 94, 560–564, https://doi.org/10.1890/12-0976.1,
2013.
Silveira, M. L., Comerford, N. B., Reddy, K. R., Cooper, W. T., and
El-Rifai, H.: Characterization of soil organic carbon pools by acid
hydrolysis, Geoderma, 144, 405–414, https://doi.org/10.1016/j.geoderma.2008.01.002, 2008.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization
mechanisms of soil organic matter: Implications for C-saturation of soils,
Plant Soil, 241, 155–176, https://doi.org/10.1023/a:1016125726789, 2002.
Skjemstad, J. O. and Baldock, J. A.: Total and Organic Carbon, in: Soil
Sampling and Methods of Analysis, Second Edition, edited by: Carter M. R.,
and Gregorich, E. G., CRC Press, Boca Raton, FL, 1262 pp., 2007.
Stendahl, J., Berg, B., and Lindahl, B. D.: Manganese availability is
negatively associated with carbon storage in northern coniferous forest
humus layers, Sci. Rep., 7, 15487, https://doi.org/10.1038/s41598-017-15801-y,
2017.
Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., and Six, J.:
Soil carbon saturation: concept, evidence and evaluation, Biogeochemistry,
86, 19–31, https://doi.org/10.1007/s10533-007-9140-0, 2007.
Symonds, M. R. E. and Moussalli, A.: A brief guide to model selection,
multimodel inference and model averaging in behavioural ecology using
Akaike's information criterion, Behav. Ecol. Sociobiol., 65,
13–21, https://doi.org/10.1007/s00265-010-1037-6, 2010.
Thornley, J. H. M. and Canell, M. G. R.: Soil carbon storage response to
temperature: an hypothseis, Ann. Bot-London, 87, 591–598,
https://doi.org/10.1006/anbo.2001.1372, 2001.
van Gestel, N., Shi, Z., van Groenigen, K. J., Osenberg, C. W., Andresen, L.
C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E.,
Reich, P. B., Schuur, E. A. G., and Hungate, B. A.: Predicting soil carbon
loss with warming, Nature, 554, 4–5, https://doi.org/10.1038/nature25745, 2018.
Walker, L. R., Wardle, D. A., Bardgett, R. D., and Clarkson, B. D.: The use
of chronosequences in studies of ecological succession and soil development,
J. Ecol., 98, 725–736, https://doi.org/10.1111/j.1365-2745.2010.01664.x, 2010.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils – A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wood, M.: A mechanism of aluminium toxicity to soil bacteria and possible
ecological implications, Plant Soil, 171, 63–69, https://doi.org/10.1007/bf00009566,
1995.
Xu, J. M., Cheng, H. H., Koskinen, W. C., and Molina, J. A. E.:
Characterization of potentially bioreactive soil organic carbon and nitrogen
by acid hydrolysis, Nutr. Cycl. Agroecosys., 49, 267–271,
https://doi.org/10.1023/a:1009763023828, 1997.
Yuan, Z. Y. and Chen, H. Y. H.: Fine Root Biomass, Production, Turnover
Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to
Species, Climate, Fertility, and Stand Age: Literature Review and
Meta-Analyses, Crc. Cr. Rev. Plant Sci., 29, 204–221,
https://doi.org/10.1080/07352689.2010.483579, 2010.
Zhang, D., Hui, D., Luo, Y., and Zhou, G.: Rates of litter decomposition in
terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 1, 85–93, https://doi.org/10.1093/jpe/rtn002, 2008.
Ziadi, N. and Sen Tran, T.: Mehlich 3-Extractable Elements, in: Soil
Sampling and Methods of Analysis, Second Edition, edited by: Carter M. R.,
and Gregorich, E. G., CRC Press, Boca Raton, FL, 1262 pp., 2007.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M.,
Zhu, X., and Laganière, J.: Climate warming can accelerate carbon fluxes
without changing soil carbon stocks, Front. Earth Sci., 5, 2,
https://doi.org/10.3389/feart.2017.00002, 2017.
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Our study aimed to disentangle the contribution of several drivers to explaining the proportion...