Articles | Volume 5, issue 1
SOIL, 5, 63–77, 2019
https://doi.org/10.5194/soil-5-63-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Quantifying weathering rates for sustainable forestry (BG/SOIL...
Original research article
05 Feb 2019
Original research article
| 05 Feb 2019
Assessing the impact of acid rain and forest harvest intensity with the HD-MINTEQ model – soil chemistry of three Swedish conifer sites from 1880 to 2080
Eric McGivney et al.
Related authors
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Veronika Kronnäs, Klas Lucander, Giuliana Zanchi, Nadja Stadlinger, Salim Belyazid, and Cecilia Akselsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-78, https://doi.org/10.5194/bg-2022-78, 2022
Preprint under review for BG
Short summary
Short summary
In a future climate, extreme droughts might become more common. Climate change and droughts can have negative effects on soil weathering and plant health. In this study, climate change effects on weathering were studied on sites in Sweden, using the model ForSAFE, a climate change scenario and an extreme drought scenario. The modelling shows that weathering is higher during summer, increases with global warming, but that weathering during drought summers can become as low as winter weathering.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Harald Ulrik Sverdrup, Eric H. Oelkers, Martin Erlandsson Lampa, Salim Belyazid, Daniel Kurz, and Cecilia Akselsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-464, https://doi.org/10.5194/bg-2019-464, 2020
Manuscript not accepted for further review
Short summary
Short summary
Equations, parameters and constants describing mineral dissolution kinetics have now been obtained for 113 minerals from 12 major structural groups, comprising all types of minerals encountered in most soils. The PROFILE and ForSAFE weathering sub-model was extended to cover two-dimensional catchments, both in the vertical and the horizontal direction, including the hydrology.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019, https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Short summary
The release of elements from soil through weathering is an important process, controlling nutrient availability for plants and recovery from acidification. However, direct measurements cannot be done, and present estimates are burdened with high uncertainties. In this paper we use different approaches to quantify weathering rates in different scales in Sweden and discuss the pros and cons. The study contributes to more robust assessments of sustainable harvesting of forest biomass.
Salim Belyazid, Cecilia Akselsson, and Giuliana Zanchi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-44, https://doi.org/10.5194/bg-2019-44, 2019
Revised manuscript not accepted
Short summary
Short summary
The release of base cations from mineral weathering is expected to increase in response to higher temperatures associated with climate change. By considering the effect of changes in moisture, this study shows that climate change will lead to an increase in weathering rates, but to lower extent than expected due to water limitation. The study uses an integrated forest ecosystem model that simultaneously simulates changes in soil and vegetation and the feedbacks between them.
Harald Ulrik Sverdrup, Eric Oelkers, Martin Erlandsson Lampa, Salim Belyazid, Daniel Kurz, and Cecilia Akselsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38, https://doi.org/10.5194/bg-2019-38, 2019
Revised manuscript not accepted
Short summary
Short summary
The present publication documents the kinetic parameterisation of the related PROFILE (steady state) and ForSAFE (integrated dynamics) models. It gives the full coefficient database for about 100 minerals occurring in most soils. The text outlines the principles and methods used in setting the coefficient values. It outlines how the models with the parameterisation based on laboratory kinetics, is successful in estimating field weathering rates similar to what is being observed.
Veronika Kronnäs, Cecilia Akselsson, and Salim Belyazid
SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, https://doi.org/10.5194/soil-5-33-2019, 2019
Short summary
Short summary
Weathering rates in forest soils are important for sustainable forestry but cannot be measured. In this paper, we have modelled weathering with the commonly used PROFILE model as well as with the dynamic model ForSAFE, better suited to a changing climate with changing human activities but never before tested for weathering calculations. We show that ForSAFE gives comparable weathering rates to PROFILE and that it shows the variation in weathering with time and works well for scenario modelling.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Hannes Keck, Bjarne W. Strobel, Jon Petter Gustafsson, and John Koestel
SOIL, 3, 177–189, https://doi.org/10.5194/soil-3-177-2017, https://doi.org/10.5194/soil-3-177-2017, 2017
Short summary
Short summary
Several studies have shown that the cation adsorption sites in soils are heterogeneously distributed in space. In many soil system models this knowledge is not included yet. In our study we proposed a new method to map the 3-D distribution of cation adsorption sites in undisturbed soils. The method is based on three-dimensional X-ray scanning with a contrast agent and image analysis. We are convinced that this approach will strongly aid the development of more realistic soil system models.
Related subject area
Soils and biogeochemical cycling
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Forest liming in the face of climate change: the implications of restorative liming on soil organic carbon in mature German forests
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times
Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations
Lithology- and climate-controlled soil aggregate-size distribution and organic carbon stability in the Peruvian Andes
Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a model-based approach
Base cations in the soil bank: non-exchangeable pools may sustain centuries of net loss to forestry and leaching
Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: the case of a coffee agroforestry plantation on Andosols in Costa Rica
A new look at an old concept: using 15N2O isotopomers to understand the relationship between soil moisture and N2O production pathways
Dynamic modelling of weathering rates – the benefit over steady-state modelling
Aluminium and base cation chemistry in dynamic acidification models – need for a reappraisal?
Challenges of soil carbon sequestration in the NENA region
Continental soil drivers of ammonium and nitrate in Australia
Comment on “Soil organic stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content” by Poeplau et al. (2017)
Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors
Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils
A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool
Nitrate retention capacity of milldam-impacted legacy sediments and relict A horizon soils
Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes
Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Timescales of carbon turnover in soils with mixed crystalline mineralogies
Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity
Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography
Long-term elevation of temperature affects organic N turnover and associated N2O emissions in a permanent grassland soil
Soil fauna: key to new carbon models
Tillage-induced short-term soil organic matter turnover and respiration
Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model
Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis) – magnitude, components and controls
Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan P. Zederer, and Ulrike Talkner
EGUsphere, https://doi.org/10.5194/egusphere-2022-306, https://doi.org/10.5194/egusphere-2022-306, 2022
Short summary
Short summary
Across northern Europe millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH and initial soil SOC stocks (before liming).
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020, https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020, https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Jonathan Sanderman and A. Stuart Grandy
SOIL, 6, 131–144, https://doi.org/10.5194/soil-6-131-2020, https://doi.org/10.5194/soil-6-131-2020, 2020
Short summary
Short summary
Soils contain one of the largest and most dynamic pools of carbon on Earth, yet scientists still struggle to understand the reactivity and fate of soil organic matter upon disturbance. In this study, we found that with increasing thermal stability, the turnover time of organic matter increased from decades to centuries with a concurrent shift in chemical composition. In this proof-of-concept study, we found that ramped thermal analyses can provide new insights for understanding soil carbon.
Carlos Alberto Quesada, Claudia Paz, Erick Oblitas Mendoza, Oliver Lawrence Phillips, Gustavo Saiz, and Jon Lloyd
SOIL, 6, 53–88, https://doi.org/10.5194/soil-6-53-2020, https://doi.org/10.5194/soil-6-53-2020, 2020
Short summary
Short summary
Amazon soils hold as much carbon (C) as is contained in the vegetation. In this work we sampled soils across 8 different Amazonian countries to try to understand which soil properties control current Amazonian soil C concentrations. We confirm previous knowledge that highly developed soils hold C through clay content interactions but also show a previously unreported mechanism of soil C stabilization in the younger Amazonian soil types which hold C through aluminium organic matter interactions.
Songyu Yang, Boris Jansen, Samira Absalah, Rutger L. van Hall, Karsten Kalbitz, and Erik L. H. Cammeraat
SOIL, 6, 1–15, https://doi.org/10.5194/soil-6-1-2020, https://doi.org/10.5194/soil-6-1-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes or how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall is dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when we study soil carbon storage in the Andes.
Samuel Bouchoms, Zhengang Wang, Veerle Vanacker, and Kristof Van Oost
SOIL, 5, 367–382, https://doi.org/10.5194/soil-5-367-2019, https://doi.org/10.5194/soil-5-367-2019, 2019
Short summary
Short summary
Soil erosion has detrimental effects on soil fertility which can reduce carbon inputs coming from crops to soils. Our study integrated this effect into a model linking soil organic carbon (SOC) dynamics to erosion and crop productivity. When compared to observations, the inclusion of productivity improved SOC loss predictions. Over centuries, ignoring crop productivity evolution in models could result in underestimating SOC loss and overestimating C exchanged with the atmosphere.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Katelyn A. Congreves, Trang Phan, and Richard E. Farrell
SOIL, 5, 265–274, https://doi.org/10.5194/soil-5-265-2019, https://doi.org/10.5194/soil-5-265-2019, 2019
Short summary
Short summary
There are surprising grey areas in the precise quantification of pathways that produce nitrous oxide, a potent greenhouse gas, as influenced by soil moisture. Here, we take a new look at a classic study but use isotopomers as a powerful tool to determine the source pathways of nitrous oxide as regulated by soil moisture. Our results support earlier research, but we contribute scientific advancements by providing models that enable quantifying source partitioning rather than just inferencing.
Veronika Kronnäs, Cecilia Akselsson, and Salim Belyazid
SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, https://doi.org/10.5194/soil-5-33-2019, 2019
Short summary
Short summary
Weathering rates in forest soils are important for sustainable forestry but cannot be measured. In this paper, we have modelled weathering with the commonly used PROFILE model as well as with the dynamic model ForSAFE, better suited to a changing climate with changing human activities but never before tested for weathering calculations. We show that ForSAFE gives comparable weathering rates to PROFILE and that it shows the variation in weathering with time and works well for scenario modelling.
Jon Petter Gustafsson, Salim Belyazid, Eric McGivney, and Stefan Löfgren
SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, https://doi.org/10.5194/soil-4-237-2018, 2018
Short summary
Short summary
This paper investigates how different dynamic soil chemistry models describe the processes governing aluminium and base cations in acid soil waters. We find that traditional cation-exchange equations, which are still used in many models, diverge from state-of-the-art complexation submodels such as WHAM, SHM, and NICA-Donnan when large fluctuations in pH or ionic strength occur. In conclusion, the complexation models provide a better basis for the modelling of chemical dynamics in acid soils.
Talal Darwish, Thérèse Atallah, and Ali Fadel
SOIL, 4, 225–235, https://doi.org/10.5194/soil-4-225-2018, https://doi.org/10.5194/soil-4-225-2018, 2018
Short summary
Short summary
This paper is part of the GSP-ITPS effort to produce a global SOC map and update information on C stocks using old and new soil information to assess the potential for enhanced C sequestration in dry land areas of the NENA region. We used the DSMW from FAO-UNESCO (2007), focusing on organic and inorganic content in 0.3 m of topsoil and 0.7 m of subsoil, to discuss the human factors affecting the accumulation of organic C and the fate of inorganic C.
Juhwan Lee, Gina M. Garland, and Raphael A. Viscarra Rossel
SOIL, 4, 213–224, https://doi.org/10.5194/soil-4-213-2018, https://doi.org/10.5194/soil-4-213-2018, 2018
Short summary
Short summary
Soil nitrogen (N) is an essential element for plant growth, but its plant-available forms are subject to loss from the environment by leaching and gaseous emissions. Still, factors controlling soil mineral N concentrations at large spatial scales are not well understood. We determined and discussed primary soil controls over the concentrations of NH4+ and NO3− at the continental scale of Australia while considering specific dominant land use patterns on a regional basis.
Eleanor Ursula Hobley, Brian Murphy, and Aaron Simmons
SOIL, 4, 169–171, https://doi.org/10.5194/soil-4-169-2018, https://doi.org/10.5194/soil-4-169-2018, 2018
Short summary
Short summary
This research evaluates equations to calculate soil organic carbon (SOC) stocks. Although various equations exist for SOC stock calculations, we recommend using the simplest equation with THE lowest associated errors. Adjusting SOC stock calculations for rock content is essential. Using the mass proportion of rocks to do so minimizes error.
Cora Vos, Angélica Jaconi, Anna Jacobs, and Axel Don
SOIL, 4, 153–167, https://doi.org/10.5194/soil-4-153-2018, https://doi.org/10.5194/soil-4-153-2018, 2018
Short summary
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.
Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel
SOIL, 3, 161–176, https://doi.org/10.5194/soil-3-161-2017, https://doi.org/10.5194/soil-3-161-2017, 2017
Short summary
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.
Ranae Dietzel, Matt Liebman, and Sotirios Archontoulis
SOIL, 3, 139–152, https://doi.org/10.5194/soil-3-139-2017, https://doi.org/10.5194/soil-3-139-2017, 2017
Short summary
Short summary
Roots deeper in the soil are made up of more carbon and less nitrogen compared to roots at shallower depths, which may help explain deep-carbon origin. A comparison of prairie and maize rooting systems showed that in moving from prairie to maize, a large, structural-tissue-dominated root carbon pool with slow turnover concentrated at shallow depths was replaced by a small, nonstructural-tissue-dominated root carbon pool with fast turnover evenly distributed in the soil profile.
Julie N. Weitzman and Jason P. Kaye
SOIL, 3, 95–112, https://doi.org/10.5194/soil-3-95-2017, https://doi.org/10.5194/soil-3-95-2017, 2017
Short summary
Short summary
Prior research found nitrate losses in mid-Atlantic streams following drought but no mechanistic explanation. We aim to understand how legacy sediments influence soil–stream nitrate transfer. We found that surface legacy sediments do not retain excess nitrate inputs well; once exposed, previously buried soils experience the largest drought-induced nitrate losses; and, restoration that reconnects stream and floodplain via legacy sediment removal may initially cause high losses of nitrate.
Florian Wilken, Michael Sommer, Kristof Van Oost, Oliver Bens, and Peter Fiener
SOIL, 3, 83–94, https://doi.org/10.5194/soil-3-83-2017, https://doi.org/10.5194/soil-3-83-2017, 2017
Short summary
Short summary
Model-based analyses of the effect of soil erosion on carbon (C) dynamics are associated with large uncertainties partly resulting from oversimplifications of erosion processes. This study evaluates the need for process-oriented modelling to analyse erosion-induced C fluxes in different catchments. The results underline the importance of a detailed representation of tillage and water erosion processes. For water erosion, grain-size-specific transport is essential to simulate lateral C fluxes.
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017, https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Jonathan Sanderman, Courtney Creamer, W. Troy Baisden, Mark Farrell, and Stewart Fallon
SOIL, 3, 1–16, https://doi.org/10.5194/soil-3-1-2017, https://doi.org/10.5194/soil-3-1-2017, 2017
Short summary
Short summary
Knowledge of how soil carbon stocks and flows change in response to agronomic management decisions is a critical step in devising management strategies that best promote food security while mitigating greenhouse gas emissions. Here, we present 40 years of data demonstrating that increasing productivity both leads to greater carbon stocks and accelerates the decomposition of soil organic matter, thus providing more nutrients back to the crop.
Barry G. Rawlins, Joanna Wragg, Christina Reinhard, Robert C. Atwood, Alasdair Houston, R. Murray Lark, and Sebastian Rudolph
SOIL, 2, 659–671, https://doi.org/10.5194/soil-2-659-2016, https://doi.org/10.5194/soil-2-659-2016, 2016
Short summary
Short summary
We do not understand processes by which soil bacteria and fungi feed on soil organic matter (SOM). Previous research suggests the location of SOM in aggregates may influence whether bacteria can feed on it more easily. We did an experiment to identify the distribution of SOM on very small scales within nine soil aggregates. There was no clear evidence that the distribution of organic matter influenced how easily the organic matter was fed upon by bacteria.
Anne B. Jansen-Willems, Gary J. Lanigan, Timothy J. Clough, Louise C. Andresen, and Christoph Müller
SOIL, 2, 601–614, https://doi.org/10.5194/soil-2-601-2016, https://doi.org/10.5194/soil-2-601-2016, 2016
Short summary
Short summary
Legacy effects of increased temperature on both nitrogen (N) transformation rates and nitrous oxide (N2O) emissions from permanent temperate grassland soil were evaluated. A new source-partitioning model showed the importance of oxidation of organic N as a source of N2O. Gross organic (and not inorganic) N transformation rates decreased in response to the prior soil warming treatment. This was also reflected in reduced N2O emissions associated with organic N oxidation and denitrification.
Juliane Filser, Jack H. Faber, Alexei V. Tiunov, Lijbert Brussaard, Jan Frouz, Gerlinde De Deyn, Alexei V. Uvarov, Matty P. Berg, Patrick Lavelle, Michel Loreau, Diana H. Wall, Pascal Querner, Herman Eijsackers, and Juan José Jiménez
SOIL, 2, 565–582, https://doi.org/10.5194/soil-2-565-2016, https://doi.org/10.5194/soil-2-565-2016, 2016
Short summary
Short summary
Soils store more than 3 times as much carbon than the atmosphere, but global carbon models still suffer from large uncertainty. We argue that this may be due to the fact that soil animals are not taken into account in such models. They dig, eat and distribute dead organic matter and microorganisms, and the quantity of their activity is often huge. Soil animals affect microbial activity, soil water content, soil structure, erosion and plant growth – and all of this affects carbon cycling.
Sebastian Rainer Fiedler, Peter Leinweber, Gerald Jurasinski, Kai-Uwe Eckhardt, and Stephan Glatzel
SOIL, 2, 475–486, https://doi.org/10.5194/soil-2-475-2016, https://doi.org/10.5194/soil-2-475-2016, 2016
Short summary
Short summary
We applied Py-FIMS, CO2 measurements and hot-water extraction on farmland to investigate short-term effects of tillage on soil organic matter (SOM) turnover. SOM composition changed on the temporal scale of days and the changes varied significantly under different types of amendment. Particularly obvious were the turnover of lignin-derived substances and depletion of carbohydrates due to soil respiration. The long-term impact of biogas digestates on SOM stocks should be examined more closely.
Louise C. Andresen, Anna-Karin Björsne, Samuel Bodé, Leif Klemedtsson, Pascal Boeckx, and Tobias Rütting
SOIL, 2, 433–442, https://doi.org/10.5194/soil-2-433-2016, https://doi.org/10.5194/soil-2-433-2016, 2016
Short summary
Short summary
In soil the constant transport of nitrogen (N) containing compounds from soil organic matter and debris out into the soil water, is controlled by soil microbes and enzymes that literally cut down polymers (such as proteins) into single amino acids (AA), hereafter microbes consume AAs and excrete ammonium back to the soil. We developed a method for analysing N turnover and flow of organic N, based on parallel 15N tracing experiments. The numerical model gives robust and simultaneous quantification.
Luitgard Schwendenmann and Cate Macinnis-Ng
SOIL, 2, 403–419, https://doi.org/10.5194/soil-2-403-2016, https://doi.org/10.5194/soil-2-403-2016, 2016
Short summary
Short summary
This is the first study quantifying total soil CO2 efflux, heterotrophic and autotrophic respiration in an old-growth kauri forest. Root biomass explained a high proportion of the spatial variation suggesting that soil CO2 efflux in this forest is not only directly affected by the amount of autotrophic respiration but also by the supply of C through roots and mycorrhiza. Our findings also suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.
Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe
SOIL, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016, https://doi.org/10.5194/soil-2-351-2016, 2016
Short summary
Short summary
Using laboratory heating, we studied effects of fire intensity on important topsoil characteristics. This study identifies critical temperature thresholds for significant physical and chemical changes in soils that developed under different climate regimes. Findings from this study will contribute towards estimating the amount and rate of change in essential soil properties that can be expected from topsoil exposure to different intensity fires under anticipated climate change scenarios.
Cited articles
Akselsson, C., Westling, O., Sverdrup, H., Holmqvist, J., Thelin, G., Uggla,
E., and Malm, G.: Impact of harvest intensity on long-term base cation
budgets in Swedish forest soils, Water Air Soil Pollut. Focus, 7, 201–210,
https://doi.org/10.1007/978-1-4020-5885-1_22, 2007.
Belyazid, S. and Moldan, F.: Using ForSAFE-Veg to investigate the
feasibility and requirements of setting critical loads for N based on
vegetation change – pilot study at Gårdsjön. IVL report B1875,
Gothenburg, Sweden, 2009.
Belyazid, S., Westling, O., and Sverdrup, H.: Modelling changes in forest
soil chemistry at 16 Swedish coniferous forest sites following deposition
reduction, Environ. Pollut., 144, 596–609,
https://doi.org/10.1016/j.envpol.2006.01.018, 2006.
Bertills, U., Fölster, J., and Lager, H.: Natural acidification
only – report on in-depth evaluation of the environmental quality objective
work, Report 5766, Swedish Environmental Protection Agency, Stockholm,
Sweden, 2007.
Casetou-Gustafson, S., Hillier, S., Akselsson, C., Simonsson, M., Stendahl,
J., and Olsson, B. A.: Comparison of measured (XRPD) and modeled (A2M) soil
mineralogies: a study of some Swedish forest soils in the context of
weathering rate predictions, Geoderma, 310, 77–88, https://doi.org/10.1016/j.geoderma.2017.09.004, 2018.
Cosby, B. J., Hornberger, G. M., Galloway, J. N., and Wright, R. E.: Time
scales of catchment acidification. A quantitative model for estimating
freshwater acidification, Environ. Sci. Technol., 19, 1144–1149,
https://doi.org/10.1021/es00142a001, 1985.
Cosby, B. J., Hornberger, G. M., Wright, R. F., and Galloway, J. N.: Modeling
the effects of acid deposition: control of long-term sulfate dynamics by
soil sulfate adsorption, Water Resour. Res., 22, 1283–1291,
https://doi.org/10.1111/j.1600-0536.2012.02097.x, 1986.
Cosby, B. J., Ferrier, R. C., Jenkins, A., and Wright, R. F.: Modelling the effects
of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics
in the MAGIC model, Hydrol. Earth Syst. Sci., 5, 499–518, https://doi.org/10.5194/hess-5-499-2001, 2001.
de Jong, J., Akselsson, C., Egnell, G., Löfgren, S., and Olsson, B. A.:
Realizing the energy potential of forest biomass in Sweden – How much is
environmentally sustainable?, For. Ecol. Manage., 383, 3–16,
https://doi.org/10.1016/j.foreco.2016.06.028, 2017.
Ekö, P. M.: A growth simulator for Swedish forests, based on data from
the national forest survey. Report 16, Department of Silviculture, Swedish
University of Agricultural Sciences, Umeå, Sweden, 1985.
Engardt, M., Simpson, D., Schwikowski, M., and Granat, L.: Deposition of
sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison
to historical observations, Tellus B, 69, 1328945,
https://doi.org/10.1080/16000889.2017.1328945, 2017.
Ferm, M. and Hultberg, H.: Method to estimate atmospheric deposition of base
cations in coniferous throughfall, Water. Air. Soil Pollut., 85, 2229–2234,
https://doi.org/10.1007/BF01186165, 1995.
Ferm, M. and Hultberg, H.: Dry deposition and internal circulation of
nitrogen, sulphur and base cations to a coniferous forest, Atmos. Environ.,
33, 4421–4430, https://doi.org/10.1016/S1352-2310(99)00211-3, 1999.
Futter, M. N., Ring, E., Högbom, L., Entenmann, S., and Bishop, K. H.:
Consequences of nitrate leaching following stem-only harvesting of Swedish
forests are dependent on spatial scale, Environ. Pollut., 158, 3552–3559,
https://doi.org/10.1016/j.envpol.2010.08.016, 2010.
Gustafsson, J. P.: Modeling the Acid–Base Properties and Metal Complexation
of Humic Substances with the Stockholm Humic Model, J. Colloid Interface
Sci., 244, 102–112, https://doi.org/10.1006/jcis.2001.7871, 2001.
Gustafsson, J. P.: Visual MINTEQ, version 3.1, available at:
https://vminteq.lwr.kth.se (last access: 1 February 2019), 2018.
Gustafsson, J. P. and Kleja, D. B.: Modeling salt-dependent proton binding
by organic soils with the NICA-Donnan and Stockholm Humic models, Environ.
Sci. Technol., 39, 5372–5377, https://doi.org/10.1021/es0503332, 2005.
Gustafsson, J. P., Bhattacharya, P., Bain, D. C., Fraser, A. R., and McHardy,
W. J.: Podzolisation mechanisms and the synthesis of imogolite in northern
Scandinavia, Geoderma, 66, 167–184, https://doi.org/10.1016/0016-7061(95)00005-9, 1995.
Gustafsson, J. P., Akram, M., and Tiberg, C.: Predicting sulphate
adsorption/desorption in forest soils: Evaluation of an extended Freundlich
equation, Chemosphere, 119, 83–89, https://doi.org/10.1016/j.chemosphere.2014.05.067,
2015.
Gustafsson, J. P., Belyazid, S., McGivney, E., and Löfgren, S.: Aluminium and base cation
chemistry in dynamic acidification models – need for a reappraisal?, SOIL, 4, 237–250, https://doi.org/10.5194/soil-4-237-2018, 2018.
Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.: Tamm
Review: On the nature of the nitrogen limitation to plant growth in
Fennoscandian boreal forests, For. Ecol. Manage., 403, 161–185,
https://doi.org/10.1016/j.foreco.2017.04.045, 2017.
Iwald, J., Löfgren, S., Stendahl, J., and Karltun, E.: Acidifying effect
of removal of tree stumps and logging residues as compared to atmospheric
deposition, For. Ecol. Manage., 290, 49–58,
https://doi.org/10.1016/j.foreco.2012.06.022, 2013.
Karltun, E.: Acidification of forest soils on glacial till in Sweden. Soil
chemical status and acidification processes in relation to environmental
conditions, Report 4427, Swedish Environmental Protection Agency, Stockholm,
Sweden, 1995.
Karltun, E., Bain, D. C., Gustafsson, J. P., Mannerkoski, H., Murad, E.,
Wagner, U., Fraser, A. R., McHardy, W. J., and Starr, M.: Surface reactivity
of poorly-ordered minerals in podzol B horizons, Geoderma, 94, 265–288,
https://doi.org/10.1016/S0016-7061(98)00141-4, 2000.
Löfgren, S., Bringmark, L., Aastrup, M., Hultberg, H., Kindbom, K.,
and Kvarnäs, H.: Sulphur balances and dynamics in three forested catchments
in Sweden, Water Air Soil Pollut., 130, 631–636,
https://doi.org/10.1023/a:1013840309681, 2001.
Löfgren, S., Gustafsson, J. P., and Bringmark, L.: Decreasing DOC trends
in soil solution along the hillslopes at two IM sites in southern Sweden –
geochemical modeling of organic matter solubility during acidification
recovery, Sci. Total Environ., 409, 201–210,
https://doi.org/10.1016/j.scitotenv.2010.09.023, 2010.
Löfgren, S., Aastrup, M., Bringmark, L., Hultberg, H., Lewin-Pihlblad,
L., Lundin, L., Karlsson, G. P., and Thunholm, B.: Recovery of soil water,
groundwater, and streamwater from acidification at the swedish integrated
monitoring catchments, Ambio, 40, 836–856, https://doi.org/10.1007/s13280-011-0207-8,
2011.
Löfgren, S., Grandin, U., and Stendera, S.: Long-term effects on nitrogen
and benthic fauna of extreme weather events: Examples from two Swedish
headwater streams, Ambio, 43, 58–76, https://doi.org/10.1007/s13280-014-0562-3, 2014.
Löfgren, S., Ågren, A., Gustafsson, J. P., Olsson, B. A., and
Zetterberg, T.: Impact of whole-tree harvest on soil and stream water
acidity in southern Sweden based on HD-MINTEQ simulations and
pH-sensitivity, For. Ecol. Manage., 383, 49–60,
https://doi.org/10.1016/j.foreco.2016.07.018, 2017.
Martinson, L., Alveteg, M., Mörth, C.-M., and Warfvinge, P.: The effect of
changes in natural and anthropogenic deposition on modelling recovery from
acidification, Hydrol. Earth Syst. Sci., 7, 766–776, https://doi.org/10.5194/hess-7-766-2003, 2003.
Nilsson, B., Nilsson, D., and Thörnqvist, T.: Distributions and losses of
logging residues at clear-felled areas during extraction for bioenergy:
comparing dry- and fresh-stacked method, Forests, 6, 4212–4227,
https://doi.org/10.3390/f6114212, 2015.
Nilsson, S. I., Miller, H. G., and Miller, J. D.: Forest growth as a possible
cause of soil and water acidification: an examination of the concepts,
Oikos, 39, 40–49, https://doi.org/10.2307/3544529, 1982.
Nilsson, T. and Lundin, L.: Uppskattning av volymvikten i svenska
skogsjordar från halten organiskt kol och markdjup, Report
91, Department of Forest Soils, Swedish University of Agricultural Sciences,
Uppsala, Sweden, 2006 (in Swedish).
Posch, M. and Kurz, D.: A2M-A program to compute all possible mineral modes
from geochemical analyses, Comput. Geosci., 33, 563–572,
https://doi.org/10.1016/j.cageo.2006.08.007, 2007.
Sverdrup, H.: Geochemistry, the key to understanding environmental
chemistry, Sci. Total Environ., 183, 67–87,
https://doi.org/10.1016/0048-9697(95)04978-9, 1996.
Sverdrup, H. and De Vries, W.: Calculation critical loads for acidity with
the Simple Mass Balance method, Water Air Soil Pollut., 72, 143–162,
https://doi.org/10.1007/BF01257121, 1994.
Sverdrup, H. and Warfvinge, P.: Calculating field weathering rates using a
mechanistic geochemical model PROFILE, Appl. Geochem., 8, 273–283,
https://doi.org/10.1016/0883-2927(93)90042-F, 1993.
Vadeboncoeur, M. A., Hamburg, S. P., Yanai, R. D., and Blum, J. D.: Rates of
sustainable forest harvest depend on rotation length and weathering of soil
minerals, For. Ecol. Manage., 318, 194–205,
https://doi.org/10.1016/j.foreco.2014.01.012, 2014.
van Breemen, N., Driscoll, C. T., and Mulder, J.: Acidic deposition and
internal proton sources in acidification of soils and waters, Nature, 307,
599–604, https://doi.org/10.1038/307599a0, 1984.
Wallman, P., Svensson, M. G. E., Sverdrup, H., and Belyazid, S.: ForSAFE – An
integrated process-oriented forest model for long-term sustainability
assessments, For. Ecol. Manage., 207, 19–36,
https://doi.org/10.1016/j.foreco.2004.10.016, 2005.
Warfvinge, P., Falkengren-Grerup, U., Sverdrup, H., and Andersen, B.:
Modelling long-term cation supply in acidified forest stands, Environ.
Pollut., 80, 209–221, https://doi.org/10.1016/0269-7491(93)90041-L, 1993.
Zetterberg, T., Köhler, S. J., and Löfgren, S.: Sensitivity analyses
of MAGIC modelled predictions of future impacts of whole-tree harvest on
soil calcium supply and stream acid neutralizing capacity, Sci. Total
Environ., 494–495, 187–201, https://doi.org/10.1016/j.scitotenv.2014.06.114, 2014.
Zetterberg, T., Olsson, B. A., Löfgren, S., Hyvönen, R., and
Brandtberg, P. O.: Long-term soil calcium depletion after conventional and
whole-tree harvest, For. Ecol. Manage., 369, 102–115,
https://doi.org/10.1016/j.foreco.2016.03.027, 2016.
Short summary
Forest management may lead to long-term soil acidification due to the removal of base cations during harvest. By means of the HD-MINTEQ model, we compared the acidification effects of harvesting with the effects of historical acid rain at three forested sites in Sweden. The effects of harvesting on pH were predicted to be much smaller than those resulting from acid deposition during the 20th century. There were only very small changes in predicted weathering rates due to acid rain or harvest.
Forest management may lead to long-term soil acidification due to the removal of base cations...