Articles | Volume 3, issue 1
https://doi.org/10.5194/soil-3-31-2017
https://doi.org/10.5194/soil-3-31-2017
Original research article
 | 
06 Feb 2017
Original research article |  | 06 Feb 2017

Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe

Related authors

Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022,https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021,https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe
SOIL, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016,https://doi.org/10.5194/soil-2-351-2016, 2016
Short summary

Related subject area

Soils and biogeochemical cycling
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025,https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Depth dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025,https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
SOIL, 11, 141–147, https://doi.org/10.5194/soil-11-141-2025,https://doi.org/10.5194/soil-11-141-2025, 2025
Short summary
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025,https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
SOIL, 11, 85–94, https://doi.org/10.5194/soil-11-85-2025,https://doi.org/10.5194/soil-11-85-2025, 2025
Short summary

Cited articles

Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A.: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire, Plant Soil, 362, 335–344, https://doi.org/10.1007/s11104-012-1408-z, 2013.
Almendros, G., Gonzalez-Vila, F. J., and Martin, F.: Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances, Soil Sci., 149, 158–168, https://doi.org/10.1097/00010694-199003000-00005, 1990.
Almendros, G., Knicker, H., and González-Vila, F. J.: Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy, Organic Geochem., 34, 1559–1568, 2003.
Araya, S. N., Meding, M., and Berhe, A. A.: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires, Soil, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016, 2016.
Araya, S., Berhe, A. A., and Fogel, M. L.: Analysis data from soil heating experiment, figshare, https://doi.org/10.6084/m9.figshare.4614973.v1, 2017.
Download
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.
Share