Articles | Volume 3, issue 1
https://doi.org/10.5194/soil-3-31-2017
https://doi.org/10.5194/soil-3-31-2017
Original research article
 | 
06 Feb 2017
Original research article |  | 06 Feb 2017

Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires

Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe

Related authors

Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022,https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Advances in soil moisture retrieval from multispectral remote sensing using unoccupied aircraft systems and machine learning techniques
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021,https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires
Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe
SOIL, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016,https://doi.org/10.5194/soil-2-351-2016, 2016
Short summary

Related subject area

Soils and biogeochemical cycling
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025,https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
SOIL, 11, 85–94, https://doi.org/10.5194/soil-11-85-2025,https://doi.org/10.5194/soil-11-85-2025, 2025
Short summary
Comprehensive increase in CO2 release by drying–rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
SOIL, 11, 35–49, https://doi.org/10.5194/soil-11-35-2025,https://doi.org/10.5194/soil-11-35-2025, 2025
Short summary
Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025,https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025,https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary

Cited articles

Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A.: Degradation of moist soil aggregates by rapid temperature rise under low intensity fire, Plant Soil, 362, 335–344, https://doi.org/10.1007/s11104-012-1408-z, 2013.
Almendros, G., Gonzalez-Vila, F. J., and Martin, F.: Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances, Soil Sci., 149, 158–168, https://doi.org/10.1097/00010694-199003000-00005, 1990.
Almendros, G., Knicker, H., and González-Vila, F. J.: Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy, Organic Geochem., 34, 1559–1568, 2003.
Araya, S. N., Meding, M., and Berhe, A. A.: Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires, Soil, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016, 2016.
Araya, S., Berhe, A. A., and Fogel, M. L.: Analysis data from soil heating experiment, figshare, https://doi.org/10.6084/m9.figshare.4614973.v1, 2017.
Download
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.