Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-307-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-307-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
Sam J. Leuthold
CORRESPONDING AUTHOR
Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO 80523, USA
Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
Jocelyn M. Lavallee
Environmental Defense Fund, New York City, NY 10010, USA
Bruno Basso
Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48824, USA
William F. Brinton
Woods End Laboratories, Augusta, ME 04330, USA
M. Francesca Cotrufo
Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO 80523, USA
Related authors
No articles found.
Alejandro Carrascosa, Gerardo Moreno, M. Francesca Cotrufo, Cristina Frade, Sara Rodrigo, and Víctor Rolo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1711, https://doi.org/10.5194/egusphere-2025-1711, 2025
Short summary
Short summary
Improved management practices such as rotational grazing, grazing exclusion, and legume enrichment can boost climate change mitigation and adaptation in grasslands. We studied the effects of these practices on soil organic carbon (SOC) stocks and fractions in semi-arid grasslands. Rotational grazing increased SOC, especially mineral-protected fraction, while exclusion reduced particulate organic carbon stocks. These outcomes were linked to changes in plant traits, soil microbes, and nutrients.
Rebecca J. Even, Megan B. Machmuller, Jocelyn M. Lavallee, Tamara J. Zelikova, and M. Francesca Cotrufo
SOIL, 11, 17–34, https://doi.org/10.5194/soil-11-17-2025, https://doi.org/10.5194/soil-11-17-2025, 2025
Short summary
Short summary
We conducted a service soil laboratory comparison study and tested the individual effect of common sieving, grinding, drying, and quantification methods on total, inorganic, and organic soil carbon (C) measurements. We found that inter-lab variability is large and each soil processing step impacts C measurement accuracy and/or precision. Standardizing soil processing methods is needed to ensure C measurements are accurate and precise, especially for C credit allocation and model calibration.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Jennifer M. Rhymes, Irene Cordero, Mathilde Chomel, Jocelyn M. Lavallee, Angela L. Straathof, Deborah Ashworth, Holly Langridge, Marina Semchenko, Franciska T. de Vries, David Johnson, and Richard D. Bardgett
SOIL, 7, 95–106, https://doi.org/10.5194/soil-7-95-2021, https://doi.org/10.5194/soil-7-95-2021, 2021
Cited articles
Aksoy, E., Yigini, Y., and Montanarella, L.: Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe, PLoS ONE, 11, e0152098, https://doi.org/10.1371/journal.pone.0152098, 2016.
Al-Kaisi, M. M., Archontoulis, S., and Kwaw-Mensah, D.: Soybean Spatiotemporal Yield and Economic Variability as Affected by Tillage and Crop Rotation, Agron. J., 108, 1267–1280, https://doi.org/10.2134/agronj2015.0363, 2016.
Basso, B. and Antle, J.: Digital agriculture to design sustainable agricultural systems, Nat. Sustain., 3, 254–256, https://doi.org/10.1038/s41893-020-0510-0, 2020.
Basso, B., Shuai, G., Zhang, J., and Robertson, G. P.: Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest, Sci. Rep.-UK, 9, 5774, https://doi.org/10.1038/s41598-019-42271-1, 2019.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Bauer, A. and Black, A. L.: Quantification of the Effect of Soil Organic Matter Content on Soil Productivity, Soil Sci. Soc. Am. J., 58, 185–193, https://doi.org/10.2136/sssaj1994.03615995005800010027x, 1994.
Bowles, T. M., Atallah, S. S., Campbell, E. E., Gaudin, A. C. M., Wieder, W. R., and Grandy, A. S.: Addressing agricultural nitrogen losses in a changing climate, Nat. Sustain., 1, 399–408, https://doi.org/10.1038/s41893-018-0106-0, 2018.
Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.: Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept, Global Change Biol., 21, 3200–3209, https://doi.org/10.1111/gcb.12982, 2015.
Cates, A. M., Jilling, A., Tfaily, M. M., and Jackson, R. D.: Temperature and moisture alter organic matter composition across soil fractions, Geoderma, 409, 115628, https://doi.org/10.1016/j.geoderma.2021.115628, 2022.
Christensen, B. T.: Physical fractionation of soil and structural and functional complexity in organic matter turnover: Turnover of soil organic matter, Eur. J. Soil Sci., 52, 345–353, https://doi.org/10.1046/j.1365-2389.2001.00417.x, 2001.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776–779, https://doi.org/10.1038/ngeo2520, 2015.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Daly, A. B., Jilling, A., Bowles, T. M., Buchkowski, R. W., Frey, S. D., Kallenbach, C. M., Keiluweit, M., Mooshammer, M., Schimel, J. P., and Grandy, A. S.: A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen, Biogeochemistry, 154, 211–229, https://doi.org/10.1007/s10533-021-00793-9, 2021.
Driscoll, A. W., Leuthold, S. J., Choi, E., Clark, S. M., Cleveland, D. M., Dixon, M., Hsieh, M., Sitterson, J., and Mueller, N. D.: Divergent impacts of crop diversity on caloric and economic yield stability, Environ. Res. Lett., 17, 124015, https://doi.org/10.1088/1748-9326/aca2be, 2022.
Fowler, A., Basso, B., Maureira, F., Millar, N., Ulbrich, R., and Brinton, W. F.: Spatial patterns of historical crop yields reveal soil health attributes in US Midwest fields, Sci. Rep.-UK, 14, 465, https://doi.org/10.1038/s41598-024-51155-y, 2024.
Gosling, P., Parsons, N., and Bending, G. D.: What are the primary factors controlling the light fraction and particulate soil organic matter content of agricultural soils?, Biol. Fert. Soils, 49, 1001–1014, https://doi.org/10.1007/s00374-013-0791-9, 2013.
Grandy, A. S., Daly, A. B., Bowles, T. M., Gaudin, A. C. M., Jilling, A., Leptin, A., McDaniel, M. D., Wade, J., and Waterhouse, H.: The nitrogen gap in soil health concepts and fertility measurements, Soil Biol. Biochem., 175, 108856, https://doi.org/10.1016/j.soilbio.2022.108856, 2022.
Hansen, P. M., Even, R., King, A. E., Lavallee, J., Schipanski, M., and Cotrufo, M. F.: Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage, Global Change Biol., 30, e17080, https://doi.org/10.1111/gcb.17080, 2024.
Hassink, J.: Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils, Biol. Fert. Soils, 14, 126–134, https://doi.org/10.1007/BF00336262, 1992.
Hijmans, R. J.: terra: Spatial Data Analysis, 2022.
Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richardson, A. D.: An integrated phenology modelling framework in R: modelling vegetation phenology with phenor, Methods Ecol. Evol., 9, 1–10, https://doi.org/10.1111/2041-210X.12970, 2018.
Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L., and Grandy, A. S.: Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes, Biogeochemistry, 139, 103–122, https://doi.org/10.1007/s10533-018-0459-5, 2018.
Just, C., Armbruster, M., Barkusky, D., Baumecker, M., Diepolder, M., Döring, T. F., Heigl, L., Honermeier, B., Jate, M., Merbach, I., Rusch, C., Schubert, D., Schulz, F., Schweitzer, K., Seidel, S., Sommer, M., Spiegel, H., Thumm, U., Urbatzka, P., Zimmer, J., Kögel-Knabner, I., and Wiesmeier, M.: Soil organic carbon sequestration in agricultural long-term field experiments as derived from particulate and mineral-associated organic matter, Geoderma, 434, 116472, https://doi.org/10.1016/j.geoderma.2023.116472, 2023.
Kaleita, A. L., Schott, L. R., Hargreaves, S. K., and Hofmockel, K. S.: Differences in soil biological activity by terrain types at the sub-field scale in central Iowa US, PLoS ONE, 12, e0180596, https://doi.org/10.1371/journal.pone.0180596, 2017.
Kane, D. A., Bradford, M. A., Fuller, E., Oldfield, E. E., and Wood, S. A.: Soil organic matter protects US maize yields and lowers crop insurance payouts under drought, Environ. Res. Lett., 16, 044018, https://doi.org/10.1088/1748-9326/abe492, 2021.
King, A. E., Amsili, J. P., Córdova, S. C., Culman, S., Fonte, S. J., Kotcon, J., Liebig, M., Masters, M. D., McVay, K., Olk, D. C., Schipanski, M., Schneider, S. K., Stewart, C. E., and Cotrufo, M. F.: A soil matrix capacity index to predict mineral-associated but not particulate organic carbon across a range of climate and soil pH, Biogeochemistry, 165, 1–14, https://doi.org/10.1007/s10533-023-01066-3, 2023.
Kögel-Knabner, I. and Amelung, W.: Soil organic matter in major pedogenic soil groups, Geoderma, 384, 114785, https://doi.org/10.1016/j.geoderma.2020.114785, 2021.
Kravchenko, A. and Bullock, D. G.: Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties, Agron. J., 92, 75–83, https://doi.org/10.2134/agronj2000.92175x, 2000.
Kravchenko, A. N., Robertson, G. P., Thelen, K. D., and Harwood, R. R.: Management, Topographical, and Weather Effects on Spatial Variability of Crop Grain Yields, Agron. J., 97, 514–523, https://doi.org/10.2134/agronj2005.0514, 2005.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Global Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Lenth, R. V.: emmeans: Estimated Marginal Means, aka Least-Squares Means, 2022.
Leuthold, S. J., Quinn, D., Miguez, F., Wendroth, O., Salmerón, M., and Poffenbarger, H.: Topographic effects on soil microclimate and surface cover crop residue decomposition in rolling cropland, Agr. Ecosyst. Environ., 320, 107609, https://doi.org/10.1016/j.agee.2021.107609, 2021.
Leuthold, S. J., Haddix, M. L., Lavallee, J., and Cotrufo, M. F.: Physical fractionation techniques, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, B9780128229743000677, https://doi.org/10.1016/B978-0-12-822974-3.00067-7, 2022a.
Leuthold, S. J., Wendroth, O., Salmerón, M., and Poffenbarger, H.: Weather-dependent relationships between topographic variables and yield of maize and soybean, Field Crop. Res., 276, 108368, https://doi.org/10.1016/j.fcr.2021.108368, 2022b.
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.: Different climate sensitivity of particulate and mineral-associated soil organic matter, Nat. Geosci., 14, 295–300, https://doi.org/10.1038/s41561-021-00744-x, 2021.
Ma, Y., Woolf, D., Fan, M., Qiao, L., Li, R., and Lehmann, J.: Global crop production increase by soil organic carbon, Nat. Geosci., 16, 1159–1165, https://doi.org/10.1038/s41561-023-01302-3, 2023.
Maestrini, B. and Basso, B.: Drivers of within-field spatial and temporal variability of crop yield across the US Midwest, Sci. Rep.-UK, 8, 14833, https://doi.org/10.1038/s41598-018-32779-3, 2018.
Martinez-Feria, R. A. and Basso, B.: Unstable crop yields reveal opportunities for site-specific adaptations to climate variability, Sci. Rep.-UK, 10, 2885, https://doi.org/10.1038/s41598-020-59494-2, 2020.
NCERA-13: Recommended chemical soil test procedures for the North Central Region, Missouri Agricultural Experiment Station, 2015.
Oldfield, E. E., Bradford, M. A., Augarten, A. J., Cooley, E. T., Radatz, A. M., Radatz, T., and Ruark, M. D.: Positive associations of soil organic matter and crop yields across a regional network of working farms, Soil Sci. Soc. Am. J., 86, 384–397, https://doi.org/10.1002/saj2.20349, 2022.
Pan, G., Smith, P., and Pan, W.: The role of soil organic matter in maintaining the productivity and yield stability of cereals in China, Agr. Ecosyst. Environ., 129, 344–348, https://doi.org/10.1016/j.agee.2008.10.008, 2009.
Prairie, A. M., King, A. E., and Cotrufo, M. F.: Restoring particulate and mineral-associated organic carbon through regenerative agriculture, P. Natl. Acad. Sci. USA, 120, e2217481120, https://doi.org/10.1073/pnas.2217481120, 2023.
Qiao, L., Wang, X., Smith, P., Fan, J., Lu, Y., Emmett, B., Li, R., Dorling, S., Chen, H., Liu, S., Benton, T. G., Wang, Y., Ma, Y., Jiang, R., Zhang, F., Piao, S., Müller, C., Yang, H., Hao, Y., Li, W., and Fan, M.: Soil quality both increases crop production and improves resilience to climate change, Nat. Clim. Change, 12, 574–580, https://doi.org/10.1038/s41558-022-01376-8, 2022.
R Core Team: R: A Language and Environment for Statistical Computing, 2022.
Ray, D. K., Gerber, J. S., MacDonald, G. K., and West, P. C.: Climate variation explains a third of global crop yield variability, Nat. Commun., 6, 5989, https://doi.org/10.1038/ncomms6989, 2015.
Renard, D. and Tilman, D.: National food production stabilized by crop diversity, Nature, 571, 257–260, https://doi.org/10.1038/s41586-019-1316-y, 2019.
Renwick, L. L. R., Deen, W., Silva, L., Gilbert, M. E., Maxwell, T., Bowles, T. M., and Gaudin, A. C. M.: Long-term crop rotation diversification enhances maize drought resistance through soil organic matter, Environ. Res. Lett., 16, 084067, https://doi.org/10.1088/1748-9326/ac1468, 2021.
Schipanski, M. E., Drinkwater, L. E., and Russelle, M. P.: Understanding the variability in soybean nitrogen fixation across agroecosystems, Plant Soil, 329, 379–397, https://doi.org/10.1007/s11104-009-0165-0, 2010.
Shimadzu: Total Organic Carbon Analysis, #638-94605C, Shimadzu User Manual, Shimadzu Scientific Instruments, Columbia, MD, 2017.
Sokol, N. W., Sanderman, J., and Bradford, M. A.: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry, Global Change Biol., 25, 12–24, https://doi.org/10.1111/gcb.14482, 2019.
Sokol, N. W., Whalen, E. D., Jilling, A., Kallenbach, C., Pett-Ridge, J., and Georgiou, K.: Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective, Funct. Ecol., 36, 1411–1429, https://doi.org/10.1111/1365-2435.14040, 2022.
Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., and Six, J.: Soil carbon saturation: concept, evidence and evaluation, Biogeochemistry, 86, 19–31, https://doi.org/10.1007/s10533-007-9140-0, 2007.
Tajik, S., Ayoubi, S., and Nourbakhsh, F.: Prediction of Soil Enzymes Activity by Digital Terrain Analysis: Comparing Artificial Neural Network and Multiple Linear Regression Models, Environ. Eng. Sci., 29, 798–806, https://doi.org/10.1089/ees.2011.0313, 2012.
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and Wilson, B. E.: Daymet: Annual Climate Summaries on a 1 km Grid for North America, Version 4 R1, https://doi.org/10.3334/ORNLDAAC/2130, 2022.
Usowicz, B. and Lipiec, J.: Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil, Soil Till. Res., 174, 241–250, https://doi.org/10.1016/j.still.2017.07.015, 2017.
Van Oost, K. and Six, J.: Reconciling the paradox of soil organic carbon erosion by water, Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, 2023.
von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., Guggenberger, G., Marschner, B., and Kalbitz, K.: Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, Z. Pflanz. Bodenkunde, 171, 111–124, https://doi.org/10.1002/jpln.200700047, 2008.
Wenkert, W., Fausey, N. R., and Watters, H. D.: Flooding responses inZea mays L., Plant Soil, 62, 351–366, https://doi.org/10.1007/BF02374133, 1981.
Williams, A., Hunter, M. C., Kammerer, M., Kane, D. A., Jordan, N. R., Mortensen, D. A., Smith, R. G., Snapp, S., and Davis, A. S.: Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?, PLoS ONE, 11, e0160974, https://doi.org/10.1371/journal.pone.0160974, 2016.
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C., and Mueller, C. W.: Particulate organic matter as a functional soil component for persistent soil organic carbon, Nat. Commun., 12, 4115, https://doi.org/10.1038/s41467-021-24192-8, 2021.
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
We examined physical soil organic matter fractions to understand their relationship to temporal...