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Abstract. Spatiotemporal yield heterogeneity presents a significant challenge to agricultural sustainability ef-
forts and can strain the economic viability of farming operations. Increasing soil organic matter (SOM) has been
associated with increased crop productivity, as well as the mitigation of yield variability across time and space.
Observations at the regional scale have indicated decreases in yield variability with increasing SOM. However,
the mechanisms by which this variability is reduced remain poorly understood, especially at the farm scale. To
better understand the relationship between SOM and yield heterogeneity, we examined its distribution between
particulate organic matter (POM) and mineral-associated organic matter (MAOM) at the subfield scale within
nine farms located in the central United States. We expected that the highest SOM concentrations would be found
in stable, high-yielding zones and that the SOM pool in these areas would have a higher proportion of POM rel-
ative to other areas in the field. In contrast to our predictions, we found that unstable yield areas had significantly
higher SOM than stable yield areas and that there was no significant difference in the relative contribution of
POM to total SOM across different yield stability zones. Our results further indicate that MAOM abundance
was primarily explained by interactions between crop productivity and edaphic properties such as texture, which
varied amongst stability zones. However, we were unable to link POM abundance to soil properties or cropping
system characteristics. Instead, we posit that POM dynamics in these systems may be controlled by differences
in decomposition patterns between stable and unstable yield zones. Our results show that, at the subfield scale,
increasing SOM may not directly confer increased yield stability. Instead, in fields with high spatiotemporal
yield heterogeneity, SOM stocks may be determined by interactive effects of topography, weather, and soil char-
acteristics on crop productivity and SOM decomposition. These findings suggest that POM has the potential to
be a useful indicator of yield stability, with higher POM stocks in unstable zones, and highlights the need to
consider these factors during soil sampling campaigns, especially when attempting to quantify farm-scale soil C
stocks.
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1 Introduction

A substantial number of cropland areas exhibit marked pro-
duction variability from year to year (Basso et al., 2019;
Driscoll et al., 2022). This phenomenon has been observed
across scales, from global (Ray et al., 2015) to national
(Renard and Tilman, 2019) down to the farm and sub-
field level (Maestrini and Basso, 2018). Previous work has
demonstrated that interactions between climate (Leuthold et
al., 2022b), geomorphology (Kravchenko et al., 2005), and
edaphic characteristics (Al-Kaisi et al., 2016) are central
drivers of this variability. These factors combine to create
areas that are high-yielding under certain climatic conditions
but low-yielding under others. The oscillating nature of these
areas across time leads to their designation as “unstable,” in
contrast to “stable” areas, which maintain consistent yields
regardless of a given growing season’s weather. While some
level of year-to-year yield variability is inevitable, sustained
yield instability represents an important source of environ-
mental degradation, as well as increased economic uncer-
tainty for farmers (Basso et al., 2019).

Increasing cropland soil organic matter (SOM) stocks have
been associated with decreased yield instability (Qiao et al.,
2022). A regional survey of cropping systems across China
found a significant negative relationship between crop yield
variability and topsoil SOM concentrations (Pan et al., 2009).
Other recent work has provided evidence that increasing
SOM can reduce the effect that droughts have on crop pro-
duction (Renwick et al., 2021), decreasing total crop losses
and associated crop insurance indemnity payments by sta-
bilizing yields over time (Kane et al., 2021). These results
indicate that increasing SOM may be a viable management
strategy for reducing crop yield variability. However, the bulk
of these studies take place at the regional scale (e.g., Pan et
al., 2009; Kane et al., 2021), and it remains unclear if this
association holds true at the subfield level.

One means by which the relationship between SOM and
yield stability may be better understood is to separate the
bulk SOM into discrete physical fractions. Physical SOM
fractions allow for increased understanding of the function
and formation of SOM. In particular, particulate organic mat-
ter (POM) and mineral-associated organic matter (MAOM)
have been shown to be well suited to act as indicators of SOM
dynamics (Christensen, 2001; Cotrufo et al., 2019). Indeed,
POM and MAOM have unique formation pathways (Cotrufo
et al., 2015) and different average turnover times (von Lüt-
zow et al., 2008) and tend to provision different ecosys-
tem services in managed systems (Lavallee et al., 2020).
In agricultural lands, the balance of these two fractions of-
ten skews heavily towards MAOM, with reported global- to
continental-scale averages of 71.5 %–79 % of C stored in the
MAOM fraction (Lugato et al., 2021; Sokol et al., 2022),
a distribution that can be attributed to a lack of consistent
C inputs and frequent disturbances that can catalyze rapid
POM decomposition (Lugato et al., 2021). Changes in POM

C stocks therefore have the potential to act as an important
indicator of changes in ecosystem processes – several re-
searchers have previously identified it as a sensitive predictor
of agronomic function (Schipanski et al., 2010), especially at
the field scale.

Given the increased sensitivity of SOM fractions to envi-
ronmental and management factors (Prairie et al., 2023) and
the association between SOM and yield stability, SOM frac-
tions may be able to act as robust indicators for subfield pat-
terns of yield variability. Further combining SOM fractions
with additional factors associated with yield stability, such as
topographic and soil physicochemical properties, may prove
even more useful. Tajik et al. (2012) explained 96 %–98 %
of the variability in soil enzyme activity using a combina-
tion of topographic and edaphic data, including SOM. Simi-
lar approaches have been applied to understand variability in
soil microbial diversity and activity in row cropping systems
(Kaleita et al., 2017). However, to the best of our knowledge,
covariation in SOM fractions with state factors has not been
explored as a means to understand spatiotemporal yield vari-
ability at the farm subfield scale.

Here, we attempt to leverage the increased insight into
ecosystem biogeochemistry that physical SOM fractions pro-
vide to better understand the relationship between yields,
spatiotemporal yield stability, and increasing SOM. Specif-
ically, we asked the following question: how do POM and
MAOM distribute amongst areas of different yields and yield
stabilities? As increasing POM is often associated with in-
creased nutrient processing (Daly et al., 2021), aggregate
formation (Witzgall et al., 2021), and improved soil struc-
ture, we hypothesized that POM-C would be highest in high-
yielding, stable areas and, consequently, that the ratio of
POM : MAOM-C would be highest in these zones. Addition-
ally, we expected these areas to have a higher amount of bulk
SOM-C overall. Accordingly, we hypothesized that the low-
est POM : MAOM-C values would be observed in the unsta-
ble yield zones, indicating decreased SOM biogeochemical
functioning, and that these unstable areas of the field would
be relatively C poor as a result of inconsistent residue inputs.
To investigate these hypotheses, we performed a combined
size-density fractionation on soils sampled from nine farms
across the central United States. At each farm, we sampled
from areas of different yields (i.e., low-, moderate-, and high-
yielding) and different yield stabilities (i.e., stable and unsta-
ble). We used linear mixed-effect models to examine the dis-
tribution of SOM among physical fractions as it relates to the
various stability zones and then supported our findings us-
ing a gradient boosting machine learning approach. Our goal
was to understand if physical SOM fractions could be used
as indicators of areas of various yield stability at the farm
subfield scale and, consequently, if recommendations for im-
proving yield stability could be gained via an understanding
of fractional SOM distribution.
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2 Materials and methods

2.1 Site descriptions and soil sampling

Nine farms across the upper Midwestern United States were
sampled to assess the relationship between soil character-
istics and crop yield stability (Fig. 1, Table 1). The 30-
year mean annual precipitation (MAP) ranged from 617–
702 mmyr−1, and the average annual cumulative growing de-
gree days (GDD) ranged from 1502–1989 (Table 1). Crop
management information was obtained via communication
with growers and land managers. While crop rotation var-
ied amongst the farms, wheat (Triticum aestivum), soybean
(Glycine max L.), and maize (Zea mays) were the dominant
crops in rotation at all sites (Table 1), and all sites were sam-
pled during either the corn or soybean phase of the rotation.
Nutrient management varied by farm as well, but as these
were primarily working farms, we assumed that fertilizer
management represented a mixture of economic and agro-
nomic optimum rates for the region (see Fowler et al., 2024,
for further discussion). Soils were sampled as described in
Fowler et al. (2024). Briefly, at each farm, three 15 cm cores
from three separate replicate areas of each of the stabil-
ity zones (i.e., low-stability, medium-stability, high-stability,
and unstable) were taken, such that 12 samples were col-
lected from each farm (n= 108). Samples were then sent
to Woods End Laboratory for characterization and analysis
(Fowler et al., 2024).

2.2 Delineation of yield stability zones

Yield data were obtained using real-time kinematic global
positioning system-enabled (RTK-GPS-enabled) research
combine with a yield monitor, which recorded crop yield
at a 1 m resolution. Following Maestrini and Basso (2018),
raster yield data were scaled to the annual field average, and
a yield level was calculated relative to the mean yield (i.e.,
high, medium, and low yields). Yield stability was then de-
rived from the standard deviation (SD) of yield levels over
time, with a SD value greater than ±15 % designated as un-
stable. A full description of the delineation of yield stability
zones is provided in Fowler et al. (2024). In the work pre-
sented here, in order to arrive at a unitless yield stability met-
ric that accommodated differences in crop rotation, we also
normalized the annual yield from the different zones by the
yield in the high and stable zone for each year. We then used
these normalized values to calculate zonal means and SD for
the entire experimental period at each stability zone within
each farm and then calculated a coefficient of variation for
yields by dividing the SD by the mean. The resulting metric
(yield CV) was well aligned with the stability zones derived
from the SD as in Fowler et al. (2024), which we interpreted
as a validation of this approach of quantifying stability nu-
merically.

Figure 1. Location of farms sampled for this analysis. Sampling
took place in the United States, namely Indiana, Illinois, and Michi-
gan. Inset map shows the geographic location of the sampling re-
gion.

2.3 Soil processing and characterization

At Woods End Laboratory, the air-dried samples were sieved
to 2 mm to remove root fragments and rocks and were ground
prior to analyses. Soils were analyzed for a range of proper-
ties, including soil pH using a 1 : 1 soil : water extract and
pH electrode method, Mehlich I- and Mehlich III-extracted
nutrients (NCERA-13, 2015), and cation exchange capac-
ity (NCERA-13, 2015). Total soil organic C was measured
via dry combustion at 900 °C using a Shimadzu TOC-L
coupled to a solid-sample-dry-combustion module (SSM-
5000A) (Shimadzu Corporation, Kyoto, Japan), following
manufacturer protocols (Shimadzu, 2017). Across sites, soil
pH varied by almost an order of magnitude, ranging from
5.68–6.51 (Table 1). Total soil organic C (SOC) varied
amongst sites as well, ranging from 8.62–25.9 g C kg soil−1

(Table 1). Given our interest in the role of the fine fraction
of soil particles in determining SOC dynamics, we did not
measure texture directly. Instead, we inferred the proportion
of silt and clay particles and the proportion of sand parti-
cles from the results of our physical fractionation analysis
(see below). In the soil we analyzed, the distribution of parti-
cle sizes ranged from relatively sandy soils (∼ 64 % sand) to
soils dominated by fine particles (> 90 % silt and clay parti-
cles; Table 1).
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Table 1. Major characteristics of farms from which soils were sampled for analysis. Growing season precipitation (GSP) and mean cumula-
tive growing degree day (cum. GDD) values represent 30-year means retrieved from the Gridmet data product.

Farm GSP Mean cum. GDD Soil organic carbon Soil pH Sand Silt + clay Cropping system history∗

– (mm) – (g C per kg soil) – (%) (%) –

210 Well 617 1522 11.0 6.49 64.2 35.8 C/S/C/S/W
F-71 701 1561 8.62 5.86 64.3 35.7 S/C/S/W
F-79-2 698 1559 9.66 5.68 64.5 35.5 W/S/C/S/W
Horn South 637 1988 25.9 6.22 5.2 94.8 C/S/C/S/C
Micic State 702 1753 16.5 6.00 52.2 74.8 S/C/S/C/S
South Lane 643 1989 21.1 6.25 7.4 92.6 C/C/S/S/C
SR13 624 1513 13.6 6.21 39.5 60.5 W/S/C/S/W
Watt East 687 1741 20.1 6.51 25.2 74.8 C/S/C/C/S/C
ZC1 644 1502 15.7 5.76 45.0 55.0 C/S/C/S/W

∗ C – corn (Zea mays); soybean (Glycine max L.); wheat (Triticum aestivum). Reported for years available during study period which ended in 2020.

2.4 Physical fractionation and SOM analysis

A well-homogenized subsample from all 108 samples was
shipped to Colorado State University, where they were frac-
tionated into physical SOM fractions using a combined size
density fractionation as reviewed in Leuthold et al. (2022a).
Briefly, a 6 g subsample of 2 mm sieved soils was dried
overnight and then shaken in deionized (DI) water for 15 min.
The sample was then centrifuged and the supernatant was
subjected to vacuum filtration using a 20 µm nylon filter to
isolate the dissolved organic matter fraction (DOM). Follow-
ing the removal of the DOM, sodium polytungstate (SPT;
Na6[H2W12O40]) adjusted to a density of 1.85 gcm−3 was
added to each sample and samples were shaken for 18 h. Af-
ter shaking, the samples were centrifuged and the supernatant
was aspirated via vacuum filtration using a 20 µm nylon filter.
The material that remained in the filter was characterized as
the POM fraction. The remaining mineral fraction was resus-
pended in DI water and centrifuged and the resulting super-
natant discarded. This rinsing procedure was repeated two
more times to remove any residual SPT from the samples.
Upon the fourth resuspension of the mineral fraction, the
samples were separated via wet sieving into the coarse, heavy
associated organic matter fraction (CHAOM; > 53 µm) and
MAOM fraction (< 53 µm). These samples were then placed
in an oven at 60 °C and dried to a constant weight.

Oven-dried samples were weighed, and mass recovery was
assessed. If the recovered mass was not between 95 % and
105 % of the initial sample mass, the fractionation was re-
peated until an appropriate mass was reached. Two samples
did not achieve acceptable recoveries despite repeated ef-
forts; we do not include these samples in the analysis pre-
sented here. After weighing, samples were ground into a fine
powder using a mortar and pestle and analyzed for C and
nitrogen (N) concentrations via a VELP CN802 Carbon/Ni-
trogen Analyzer (VELP Scientific, Deer Park, NY). As the
soils contained negligible content of inorganic C, total C val-
ues obtained through elemental analysis reflect fraction or-

ganic C. As the DOM fraction typically represents a minor
fraction of the total SOM, especially in agricultural soils, we
opted not to analyze it further after separation. However, we
did find it necessary to separate the DOM and CHAOM frac-
tions to isolate the POM and MAOM pools that are most ho-
mogenous in the composition and are best aligned with their
conceptual definitions.

2.5 Topography and climate data acquisition

To create the data set used in subsequent multivariate analy-
ses, several databases were called upon using R version 4.2.2
(R Core Team, 2022). For each farm, 1 km gridded, daily cli-
mate data were retrieved for the period between 2015 and
2020 from the Daymet daily surface weather data set (Thorn-
ton et al., 2022) using the R package daymetr (Hufkens et
al., 2018). Climate data were trimmed to represent the aver-
age period of planting through harvest for major row crops in
the northern Corn Belt, starting on Julian day 121 and end-
ing on Julian day 304. The Daymet data set provides daily
maximum and minimum temperatures, which we averaged
to construct a daily mean temperature. We calculated grow-
ing degree days with a base temperature of 10 °C, such that
heat units only accumulated when mean air temperatures ex-
ceeded 10 °C. Elevation data were retrieved from the USGS
3D Elevation Program using the get_tiles function contained
within the terra package in R (Hijmans, 2022). To better cap-
ture landscape-level trends, we resampled and aggregated the
elevation data using a factor of 8 based on an iterative analy-
sis of the scale at which geomorphic features in agricultural
land were most pronounced. We then used the terrain func-
tion in the terra package to calculate slope and topographic
position indices (TPI), a measurement of the elevation of a
given grid cell relative to the grid cells surrounding it (higher
values indicate a relatively higher grid cell and vice versa).
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2.6 Data analysis

2.6.1 Mixed linear model and regression analysis

We used mixed-effect linear models to test for differences in
soil texture, soil pH, SOM-C, POM-C, and MAOM-C among
stability zones. Models were built using the lme4 package
in R (v.1.1-31; Bates et al., 2015) and evaluated using the
anova() function in the stats package (v. 4.2.2; R Core Team,
2022). Pairwise comparisons were made using examinations
of the estimated marginal means of each stability zone con-
trasts pair using the emmeans package (Lenth, 2022). In the
models we examined, stability zone was a fixed effect and
farm was a random effect. The alpha level for significant
differences was set to 0.05. We also examined relationships
between soil texture and MAOM-C and POM-C, as well as
average crop yield and yield CV and soil texture and topo-
graphic indices via linear regression, using the lm() function
in the stats R package (R Core Team, 2022). To account for
differences in cropping rotation, edaphoclimatic character-
istics, and management history, we scaled the response vari-
ables to the farm level using z scores, with the mean and stan-
dard deviation of the population calculated at the site level,
similar to the approach of Aksoy et al. (2016). All results
presented below have been scaled using this method unless
explicitly noted.

2.6.2 Assessing feature importance via gradient
boosting

We used a supervised classification machine learning ap-
proach (i.e., regularized gradient boosting) to identify and
understand potential indicator variables for delineating yield
stability zones. We reclassified the stability zones into binary
categories (i.e., stable and unstable) and then randomly split
the data set into training and testing data sets such that 80 %
of the data were contained in the training data set and 20 %
in the testing data set. We included all SOM fraction data in
the model matrix, as well as soil physical property data, nu-
trient data, and topography data. After training the model, we
tested the optimized model on the training set and assessed its
accuracy in classifying yield zones based on soil and topog-
raphy characteristics. We repeated this process 1000 times to
arrive at an average model accuracy. From this ensemble of
gradient boosting results, we extracted the edaphic, biogeo-
chemical, and topographic variables that had the largest and
most consistent impact on zone delineation.

3 Results and discussion

To better understand the relationship between increasing
SOM and spatiotemporal yield heterogeneity, we fraction-
ated soils from areas of different yields and yield stabilities
across nine farms in the upper Midwestern US. Our exper-
imental goals and hypotheses were informed by a growing
body of literature that shows that increasing SOM correlates

with increased yield stability (Kane et al., 2021; Pan et al.,
2009; Williams et al., 2016). Given that different physical
fractions of SOM are thought to have different functions, we
predicted that examining the fractions would give increased
insight into the mechanisms behind the SOM-yield stabil-
ity relationship. Specifically, we hypothesized that total SOM
would be highest in high-yielding, stable areas and that these
areas would have a higher POM : MAOM-C value than ar-
eas of the field that were more unstable. Contrary to our hy-
potheses, however, we found that, on average, unstable zones
had higher SOM-C stocks than stable yielding zones (Fowler
et al., 2024). Additionally, while we found significant dif-
ferences in the amount of POM- and MAOM-C among dif-
ferent stability zones, we did not observe significant dif-
ferences in POM : MAOM-C. These findings challenge the
often-assumed direction of causality whereby higher SOM
supports higher-yielding (Bauer and Black, 1994; Oldfield
et al., 2022; Ma et al., 2023) and more stable cropping sys-
tems (Williams et al., 2016). Instead, our results indicate that
causal linkages between SOM and yield stability may be bi-
directional depending on the scale of the inquiry (e.g., field
vs. county vs. region). Here, we present the results of our
study, discuss potential drivers of POM and MAOM stor-
age at the subfield scale, and evaluate the implications of our
findings in regard to soil health indicators and soil C storage
goals.

3.1 Patterns of C storage in bulk SOM and fractions

When examined across the farms in our study, we observed
significant differences in the total SOM-C, MAOM-C, and
POM-C storage between our four different yield stability
zones. Post hoc analysis of the differences between zones
in SOM-C indicated that unstable zones had 25.7 % more
SOM-C on average than low-yielding stable zones (p =
0.016; Fig. 2a). We also observed trends towards increased
SOM-C in the unstable zones relative to the other two stable
zones based on estimated marginal means; however, these
differences were not significant (p = 0.475 and 0.331, re-
spectively; Fig. 2a). These observations run in contrast to
current paradigms that indicate increasing crop yield stabil-
ity in response to increasing SOM content. For instance, Pan
et al. (2009) showed that the average yield variability de-
creased by 5 % for every 1 % increase in SOM (i.e., SOM-
C× 1.72) when examined at the regional scale across Chi-
nese provinces. Although our data do not yield robust regres-
sions between SOM-C and yield CV, the general trend of the
data indicates increasing variability as standardized SOM in-
creases (Fig. S1 in the Supplement; p = 0.077, r2

= 0.02).
The MAOM-C results mirror the patterns we observed in
SOM-C, with significant differences among stability zones
(p = 0.023; Fig. 2b) and post hoc tests indicating that the
low-yielding stable zone had significantly less MAOM-C
than the unstable zone (p = 0.013) while the medium- and
high-yielding zones were not significantly different than un-
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stable zones (p = 0.522, 0.662; Fig. 2b). The consistency of
these two patterns is not surprising, as MAOM-C accounted
for ∼ 77 % of the SOM-C in our data on average, which is
consistent with previous examinations of agricultural soils
(Sokol et al., 2022). Subfield variation in MAOM-C content
has been observed in previous studies (Usowicz and Lipiec,
2017), but to the best of our knowledge, the covariation with
yield stability such as this has not been examined thus far.

The POM-C content showed a different pattern across
yields and stability zones from the patterns we observed
for SOM-C and MAOM-C contents (Fig. 2). While we still
found a significant difference between stable and unstable
zones, stable zones showed similar POM-C levels regardless
of average yield (p = 0.019; Fig. 2c). This contrasts with our
original hypothesis that POM-C would be highest in high-
yielding, stable zones as a result of increased organic inputs
in the form of both aboveground crop residue and crop roots
(Gosling et al., 2013; Sokol et al., 2019). Our results indicate
that POM-C abundance was not driven by yield or residue
inputs. Rather, other characteristics of unstable yield zones
may have led to increased POM-C stocks relative to stable
areas.

3.2 Evaluation of POM : MAOM-C ratio as an indicator
of biogeochemical function

The POM : MAOM-C ratio has been suggested as a useful
indicator for soil biogeochemical function (Cotrufo et al.,
2019). Previous work has shown that the balance of POM-
C to MAOM-C may help to both explain the mineraliza-
tion rate of organic N (Daly et al., 2021; Grandy et al.,
2022) and identify soils that are approaching mineral C sat-
uration sensu Stewart et al. (2007) (Castellano et al., 2015;
Just et al., 2023). It has also been posited that a decreas-
ing POM : MAOM-C ratio may indicate when residue inputs
outpace residue decomposition, assuming fragmentation pro-
cesses are not inhibited (Just et al., 2023). Despite similar
POM-C levels across the various stable yield zones and co-
variation in yield with MAOM-C in our data, however, we
observed no significant differences in the POM : MAOM-C
ratio across the different yield stability zones (p = 0.170;
Fig. S2). This similarity across zones, despite differences
in POM- and MAOM-C among different stability zones, is
likely the result of the reasonable expected effect size of
changes in POM : MAOM-C ratio in agricultural soils that
are inherently MAOM-C rich and POM-C poor (Prairie et al.,
2023; Lugato et al., 2021). To exemplify this issue, across all
of our samples, the average POM-C was 2.0 g C per kg soil,
and the average total SOM-C was 15.9 g C per kg soil, with
an average POM : MAOM-C ratio of 0.16. If POM-C was
increased by 50 %, to 3.0 g C per kg soil, SOM-C would in-
crease by 5.9 %, but the POM : MAOM-C ratio would adjust
only to 0.23, an ecologically insignificant shift well within
the observed range of our data (0.02–0.42; Fig. S2). As such,
we were unable to use it as a metric to understand differ-

Figure 2. Normalized concentrations of total soil organic carbon
(SOM-C) (a), mineral-associated organic matter carbon (MAOM-
C) (b), and particulate organic matter carbon (POM-C) (c) among
the various stability zones. Different colored points represent differ-
ent farms. To account for edaphoclimatic differences among farms,
we scaled all data using z scores prior to analysis, with the mean
and standard deviation calculated at the farm level, yielding a unit-
less metric to compare with. Different lower-case letters indicate
significant differences (p < 0.05). Points are offset horizontally to
improve readability of the plot.
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Figure 3. Scaled density plot of z-scored silt and clay content of
soils from various stability zones. Dashed lines indicate the mean z

score for the corresponding stability zone.

ences in SOM formation and function among different sta-
bility zones. We suggest that for POM : MAOM-C ratio to be
a useful indicator, further research is needed regarding how
to best contextualize and understand this measure when ap-
plying it to agricultural systems. For example, exploring the
ratio of POM-C to exchangeable MAOM-C may present a
more actionable indicator if robust methods of exchangeable
MAOM-C quantification can be identified (Daly et al., 2021;
Jilling et al., 2018).

3.3 Drivers of carbon accumulation in MAOM

To explore the possible mechanisms behind the variability
in MAOM-C content among different yield stability zones,
we examined a set of edaphic characteristics known to be
well correlated with MAOM storage (Hassink, 1992). As
expected, MAOM-C had a significant positive relationship
with the proportion of fine particles within a sample (p <

0.001, r2
= 0.30; Fig. S3). This relationship partially ex-

plained the patterns we observed in MAOM-C across stabil-
ity zones (Fig. 2b); when we examined the difference be-
tween MAOM-C in unstable and low-yielding, stable zones
as a function of the difference in fine particles, the differ-
ences in MAOM-C became negligible when particle distri-
butions were similar (p = 0.002, r2

= 0.297; Fig. S4). On
average across sites, however, we observed significant differ-
ences in the proportion of silt and clay particles across stabil-
ity zones, with unstable and high-yielding, stable zones hav-
ing significantly higher farm-scaled silt and clay values than
medium- and low-yielding stable zones (p < 0.001; Fig. 3).

Figure 4. (a) Topographic position index values across the various
stability zones. Lower values indicate a point in space lower than
its surroundings, while higher values indicate relatively elevated
locations. (b) Slope values scaled using z scores to the individual
farm level. Different colored dots represent different farms. Dif-
ferent lower-case letters indicate significant differences (p < 0.05).
Points are offset horizontally to improve readability of the plot.

We posit that these differences are a result of the topographic
settings of the unstable and high-yielding, stable zones, cor-
roborated by our observation of a significant relationship be-
tween the silt and clay content in soil and the TPI (p < 0.001,
r2
= 0.10). As observed by Maestrini and Basso (2018), both

high-yielding, stable zones and unstable zones are often lo-
cated in depositional areas that receive downslope contri-
butions of fine soil particles on the decadal timescale. Our
study finds a similar distribution of stability zones amongst
low-lying areas, with both the high-yielding, stable zones
and the unstable zones having a relatively high fine-particle
content (Fig. 3), and primarily in lower areas of the field
(Fig. 4). Our findings thus corroborate previous observations
of crop yield heterogeneity in areas of topographic complex-
ity (Kravchenko and Bullock, 2000; Maestrini and Basso,
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Figure 5. Conceptual model of proposed biogeochemical differences between stable and unstable yield zones. Stable zones, often in upslope
positions, are characterized by consistent yields across weather conditions, partially due to a decreased incidence of saturated conditions.
The same conditions allow for a consistent rate of particulate organic matter (POM) decomposition and nutrient provisioning across growing
seasons. In contrast, low-lying, unstable yield zones experience much more drastic shifts in their soil water status from year to year, altering
the rate of POM decomposition. In wetter years in which saturated soil conditions are more likely, decomposition rates are slowed, leading to
an accumulation of POM. Under dry or optimal conditions, low-lying, deeper, more finely textured soils that are characteristic of the unstable
yield areas may maintain increased water retention, leading to an advanced rate of nutrient cycling; increased productivity relative to the rest
of the field; and, subsequently, increased inputs to the POM pool. These different mechanisms between dry and wet conditions, working in
tandem, may thus create a feedback that leads to the accumulation of POM in unstable areas that we observe.

2018; Leuthold et al., 2021). The similarity in texture and to-
pography between unstable and high-yielding, stable zones
highlights an important point: unstable zones have a capacity
to be especially high-yielding under the right environmental
conditions (Fowler et al., 2024; Martinez-Feria and Basso,
2020). Further research into the properties of these unsta-
ble zones, such as impeded soil drainage or impediments to
rooting ability, may help to disentangle what makes some
areas with similar textures and topography consistently high-
yielding, while others are especially sensitive to environmen-
tal stressors.

In addition to these edaphic controls, we also observed
an association between increasing yields and increasing
MAOM-C content. Linear regression analysis indicated that
as mean yield within a stability zone increased, so did
MAOM-C. This relationship was weak, likely reflecting the
influence of cropping system, soil physicochemical prop-
erties, and climate on variability in MAOM-C and yield
(p = 0.048, r2

= 0.08; Fig. S5). However, this result does
mirror recent studies that support causal linkages between
increasing productivity and increased MAOM-C (Prairie et
al., 2023; King et al., 2023; Hansen et al., 2024). Indeed,
there are a number of pathways by which increasing yield
(and the associated increase in crop residue) can increase the

amount of MAOM-C, especially in areas of the field that are
receiving inputs of eroded minerals that may have a high
capacity for sorption of dissolved organics (Van Oost and
Six, 2023). Understanding relationships between topography,
productivity, and mineralogy is thus key for understanding
how MAOM-C accumulates in croplands and how sampling
strategies must be designed to capture accurate estimates of
cropland SOC stocks and their spatial variability.

3.4 Mechanisms for increased POM-C storage

In contrast to MAOM-C, POM-C did not closely follow the
patterns of total SOM-C content variation observed across
our yield stability zones, and POM-C content in unstable
zones was significantly higher than in all stable zones (p =
0.019) that had the same POM-C content independent of
yields (Fig. 2c). Further diverging from patterns in MAOM-
C, we could not identify any edaphic or cropping system
properties that helped to explain patterns in POM-C – it
was not correlated with average yield (p = 0.337, data not
shown), even when accounting for differences in cropping
system (reported in Table 1). We did observe significant posi-
tive relationships between POM-C and soil texture and POM-
C and soil pH (p < 0.001 and p = 0.009, respectively; data
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Figure 6. Relative importance of variables in predicting yield stability zones as determined by the gradient-boosted random forest model
employed here. Relative importance represents the average of the feature importance over the course of 1000 model iterations (POM – par-
ticulate organic matter; CHAOM – coarse, heavy organic matter; MAOM – mineral-associated organic matter; C – carbon; TPI – topographic
position index; P – phosphorus; N – nitrogen; CEC – cation exchange capacity; K – potassium; Na – sodium; Mg – magnesium; GDD –
growing degree days).

not shown), both of which have been suggested as poten-
tial controls on POM-C accumulation (Hansen et al., 2024;
Kögel-Knabner and Amelung, 2021). In our study, however,
our observation of the parallel increasing of POM-C and tex-
ture may be indicative of covariation in these measurements
across our stability zones rather than a signal of a causality.
Additionally, pH did not vary systematically across the sta-
bility zones in a way that would help to explain the patterns
of POM-C variation (p = 0.224).

Given that we did not observe evidence that POM-C con-
ferred additional stability to cropping systems, as posited in
our original hypothesis, we propose an alternative hypoth-
esis consistent with our findings (Fig. 5): the accumulation
of POM-C within areas of increased spatiotemporal yield
heterogeneity is controlled by constraints on decomposition
outpacing those on productivity during the unfavorable cli-
mate years. Unstable zones tend to have a higher incidence
of water-logging (Leuthold et al., 2021; Maestrini and Basso,
2018), which can impact both soil microbial activity and crop
productivity. While these hydrologic stressors are most often
discussed in regard to their detrimental effect on crop yield
(i.e., early season saturation can reduce crop root viability
and emergence) (Wenkert et al., 1981), limited oxygen avail-
ability under saturated conditions also reduces the capacity
of the microbial community to depolymerize and break down

POM and alters microbial community structure (Bowles et
al., 2018; Cates et al., 2022). This reduced decomposition
could contribute to multi-season feedback in these unstable
zones; under optimal conditions, decomposition and nutrient
mineralization may be increased relative to stable yield ar-
eas due to the increased amount of available POM-C. The
ecosystem services provided by POM (e.g., increased ag-
gregation and nutrient availability), combined with optimal
soil–water conditions, could then encourage increased pro-
ductivity and yields, potentially leading to replenishing POM
stocks that may have been decreased over the course of the
optimal season (Fig. 5). This hypothesis is partially corrobo-
rated by the topographic characteristics of our various stabil-
ity zones (Fig. 4). We examined both the farm-scaled TPI and
the average slope for each stability zone and found that high-
yielding, stable zones and unstable zones both had signifi-
cantly lower average slopes and significantly lower TPI val-
ues than low- and medium-yielding stable areas (p = 0.001
and p < 0.001, respectively; Fig. 4). Additionally, we ob-
served a significant negative relationship between the po-
sition index and POM-C; as TPI increased, the amount of
POM-C decreased (p = 0.004; Fig. S6). We did not observe
the same relationship with slope (p = 0.903), which could be
due to different topographic positions having similar slopes
(e.g., summit and footslope positions). Some evidence sup-
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porting this possibility is offered by the results of including
an interaction term between slope and stability zone, which
yields a significant result (p = 0.029). Fowler et al. (2024)
found similar relationships; they indicated that topographic
variables such as slope and the log of flow accumulation
(i.e., topographic wetness index) were adequate predictors of
SOM-C and other soil health indicators in these fields, po-
tentially highlighting how POM-C can act as an indicator of
soil biogeochemical dynamics. These important trends lend
some credence to our framework (Fig. 5), though a consider-
able amount of variance in POM-C remains unexplained by
these factors (r2

= 0.07 for TPI and 0.09 for slope× stability
zone, respectively).

Our gradient boosting analysis also supports our alterna-
tive hypothesis for increased POM storage in unstable yield
zones. We used a gradient-boosted random forest analysis to
determine important predictors of stable vs. unstable yield
zones. Our model was able to predict stable vs. unstable
zones with∼ 72 % accuracy and over the course of 1000 iter-
ations identified POM-C and TPI as the most important vari-
ables in characterizing the zones (Fig. 6). Thus, while our
original hypothesis of POM acting to increase yield stability
may not be supported by these data, our results do show that
the POM-C content may serve as a useful and important in-
dicator for areas prone to increased heterogeneity or variabil-
ity in decomposition status when robust subfield sampling is
employed. Future work that links soil microclimate data to
decomposition rate across areas of complex topography will
help to further elucidate the drivers of fractional SOM dis-
tribution among yield stability zones. Microbial community
composition may also help provide insight into the means by
which different fractions of organic matter accumulate and
persist in heterogenous areas.

4 Conclusions

We examined the difference in C storage in bulk SOM and
among SOM physical fractions in soils sampled from dif-
ferent yield stability zones from nine farms across the upper
central United States. Whereas previous analyses have found
increased crop yield stability with increasing SOM, our re-
sults indicate that this relationship may not always hold true
depending on the scale of inquiry. At the subfield scale, we
found increased POM-C in unstable yield zones, which may
be an indicator of reduced decomposition. We also found in-
creased MAOM-C in unstable zones, which was well corre-
lated with increased incidence of fine particles and increased
yield potential in these zones. Given the continued develop-
ment of precision agriculture technologies (Basso and An-
tle, 2020), increased understanding of the mechanisms that
confer stability unto a given area within a crop field is of
paramount importance. Our work does not stand in contrast
to previous publications that show that cropping system het-
erogeneity may be reduced with increasing SOM concentra-

tions but instead offers an important insight that the controls
on the relationship between SOM and stability depend on
the scale of inquiry and that, at the subfield scale, unstable
zones may be characterized by increased SOM-C, especially
in the POM fraction. Our results provide steps towards under-
standing how geomorphology, inter-annual weather variabil-
ity, and cropping system productivity interact to determine
the distribution of SOM among physical fractions across het-
erogenous crop fields and can serve to improve nutrient man-
agement strategies and carbon sequestration objectives and
guide robust sampling for the quantification of farm-scale
SOM stocks.
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