Articles | Volume 1, issue 2
https://doi.org/10.5194/soil-1-665-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/soil-1-665-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils
Institute of Biological & Environmental Sciences, Scottish Food Security Alliance-Crops and ClimateXChange, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK
M. F. Cotrufo
Department of Soil and Crop Sciences & Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1499, USA
C. Rumpel
CNRS, IEES (UMR UPMC, CNRS, UPEC, INRA, IRD) and Ecosys (UMR INRA, AgroParisTech), Campus AgroParisTech, Bâtiment EGER, 78850 Thiverval-Grignon, France
K. Paustian
Department of Soil and Crop Sciences & Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1499, USA
P. J. Kuikman
Alterra Wageningen UR, P.O. Box 47, 6700AA Wageningen, the Netherlands
J. A. Elliott
Environment Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, S7N 3H5, Canada
R. McDowell
AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New Zealand
R. I. Griffiths
Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford Wallingford, OX10 8BB, UK
S. Asakawa
Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
M. Bustamante
Departamento de Ecologia, Universidade de Brasília, I.B. C.P. 04457. Campus Universitário Darcy Ribeiro – UnB. D.F. CEP: 70919-970 Brasília, Brazil
J. I. House
Cabot Institute, School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK
J. Sobocká
National Agriculture and Food Centre Lužianky, Soil Science and Conservation Research Institute Bratislava, Gagarinova 10, 827 13 Bratislava, Slovakia
R. Harper
School of Environmental Science, Murdoch University, South Street, Murdoch WA, 6150, Australia
Institute of Resources, Environment and Ecosystem of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
P. C. West
Global Landscapes Initiative, Institute on the Environment (IonE), University of Minnesota, 325 Learning & Environmental Sciences, 1954 Buford Ave, St. Paul, MN 55108, USA
J. S. Gerber
Global Landscapes Initiative, Institute on the Environment (IonE), University of Minnesota, 325 Learning & Environmental Sciences, 1954 Buford Ave, St. Paul, MN 55108, USA
J. M. Clark
Soil Research Centre, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6DW, UK
T. Adhya
School of Biotechnology, KIIT University, Bhubaneswar – 751024, Odisha, India
R. J. Scholes
Global Change and Sustainability Research Institute and School of Animal, Plant and Environmental Studies, University of Witwatersrand, Private Bag 3, Wits 2050, South Africa
M. C. Scholes
Global Change and Sustainability Research Institute and School of Animal, Plant and Environmental Studies, University of Witwatersrand, Private Bag 3, Wits 2050, South Africa
Related authors
Peter M. Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, and Neal W. Menzies
SOIL, 10, 873–885, https://doi.org/10.5194/soil-10-873-2024, https://doi.org/10.5194/soil-10-873-2024, 2024
Short summary
Short summary
Soil produces 98.8 % of the calories consumed by humans, but the contribution that the anthropogenic use of soil makes to global warming is not clear. We show that soil has contributed 15 % of the total global warming caused by well-mixed greenhouse gases. Thus, our finding that soil is a substantial contributor to global anthropogenic greenhouse gas emissions represents a "wicked problem" – how do we continue to increase food production from soil whilst also decreasing emissions?
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Peter M. Kopittke, Ram C. Dalal, Brigid A. McKenna, Pete Smith, Peng Wang, Zhe Weng, Frederik J. T. van der Bom, and Neal W. Menzies
SOIL, 10, 873–885, https://doi.org/10.5194/soil-10-873-2024, https://doi.org/10.5194/soil-10-873-2024, 2024
Short summary
Short summary
Soil produces 98.8 % of the calories consumed by humans, but the contribution that the anthropogenic use of soil makes to global warming is not clear. We show that soil has contributed 15 % of the total global warming caused by well-mixed greenhouse gases. Thus, our finding that soil is a substantial contributor to global anthropogenic greenhouse gas emissions represents a "wicked problem" – how do we continue to increase food production from soil whilst also decreasing emissions?
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021, https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Short summary
In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas fluxes and soil microbial communities remains uncertain. We have found emission rates of the potent greenhouse gas nitrous oxide on mineral soil to be higher from oil palm plantations than logged forest over a 2-year study and concluded that emissions have increased over the last 42 years in Sabah, with the proportion of emissions from plantations increasing.
Cited articles
Aerts, R., Wallen, B., and Malmer, N.: Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply, J. Ecol., 80, 131–140, 1992.
Alberti, G., Vicca, S., Inglima, I., Belelli-Marchesini, L., Genesio, L., Miglietta, F., Marjanovic, H., Martinez, C., Matteucci, G., D'Andrea E., Peressotti, A., Petrella, F., Rodeghiero, M., and Cotrufo, M. F.: Soil C : N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests, iForest, 8, 195–206, https://doi.org/10.3832/ifor1196-008, 2014.
Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy in microbial communities, P. Natl. Acad. Sci. USA, 105, 11512–11519, 2008.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage, Nature, 505, 543–545, 2014.
Baker, J. M., Ochsner, T. E., Venterea, R. T., and Griffis, T. J.: Tillage and soil carbon sequestration – What do we really know?, Agric. Ecosyst. Env., 118, 1–5, 2006.
Ballard, C. E., McIntyre, N., and Wheater, H. S.: Effects of peatland drainage management on peak flows, Hydrol. Earth Syst. Sci., 16, 2299–2310, https://doi.org/10.5194/hess-16-2299-2012, 2012.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, European J. Soil Sci., 47, 151–163, 1996.
Beniston, J. W., DuPont, S. T., Glover, J. D., Lal, R., and Dungait, J. A. J.: Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems, Biogeochem., 127, 37–49, 2014.
Bennett, E. M., Carpenter, S. R., and Caraco, N. F.: Human impact on erodable phosphorus and eutrophication: a global perspective. Increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication, BioSci., 51, 227–234, 2001.
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.: The Pyrogenic Carbon Cycle, Ann. Rev. Earth Planet. Sci., 43, 9.1–9.26, https://doi.org/10.1146/annurev-earth-060614-105038, 2015.
Blum, W. E. H.: Land degradation, in: Land degradation – Contributions to the International Workshop "Land degradation", 5–6 December 2002, Ispra, Italy, edited by: Jones, R. J. A. and Montanarella, L., 2002.
Bodelier, P. L. E.: Toward understanding, managing, and protecting microbial ecosystems, Front. Microbiol., 2, 80, https://doi.org/10.3389/fmicb.2011.00080, 2011.
Bolan, N. S., Adriano, D. C., Kunhikrishnan, A., James, T., McDowell, R. W., and Senesi, N.: Dissolved organic matter: biogeochemistry, dynamics and environmental significance in soils, Adv. Agron., 110, 1–75, 2011.
Borken, W. and Matzner, E.: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824, 2008.
Brzostek, E. R., Dragoni, D., Brown, Z. A., and Phillips, R. P.: Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest, New Phytol., 206, 1274–1282, 2015.
Butman, D. E., Wilson, H. F., Barnes, R. T., Xenopoulos, M. A., and Raymond, P. A.: Increased mobilization of aged carbon to rivers by human disturbance, Nature Geosci., 8, 112–116, 2014.
Buurman, P., Bartoli, F., Basile, A., Füleky, G., Garcia Rodeja, E., Hernandez Moreno, J., and Madeira, M.: The physico-chemical database, in: Soils of Volcanic Regions in Europe, edited by: Arnalds, Ó., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., and García-Rodeja, E., Springer, Berlin, 271–287, 2007.
Carlton, R., Berry, P., and Smith, P.: Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land, Int. J. Agric. Sust., 8, 164–175, 2010.
Carlton, R., West, J., Smith, P., and Fitt, B.: A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control, Eur. J. Plant Path., 133, 333–351, 2012.
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and Smith, V. H.: Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8, 559–568, 1998.
Certini, G.: Effects of fire on properties of forest soils: a review, Oecologia, 143, 1–10, 2005.
Chabbi, A., Kögel-Knabner, I., and Rumpel, C.: Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, Soil Biol. Biochem., 41, 256–271, 2009.
Ciais, P. and Sabine, C.: Carbon and other biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., and Sokonaet, Y., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Clark, J. M., Heinemeyer, A., Martin, P., and Bottrell, S. H.: Processes controlling DOC in pore water during simulated drought cycles in six different UK peats, Biogeochem., 109, 253–270, 2012.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S.E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. A. M., and Bradford, M. A.: Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward, Glob. Change Biol., 17, 3392–3404, 2011.
Cotrufo, M. F., Wallenstein, M. D., Boot, C., Denef, K., and Paul, E.: The microbial efficiency-matrix stabilisation (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable organic matter?, Glob. Change Biol., 19, 988–995, 2013.
Das, B., Chakraborty, D., Singh, V. K., Aggarwal, P., Singh, R., Dwivedi, B. S., and Mishra, R. P.: Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system, Soil Till. Res., 136, 9–18, 2014.
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., and Lavelle, P.: The value of soil animals for conservation biology, Eur. J. Soil. Biol., 60, 807–819, 2006.
Dominati, E., Patterson, M., and Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils, Ecol. Econ., 69, 1858–1868, 2010.
Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis, Glob. Change Biol., 17, 1658–1670, 2011.
Dümig, A., Häusler, W., Steffens, M., and Kögel-Knabner, I.: Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations, Geochim. Cosmochim. Acta, 85, 1–18, 2012.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Glob. Change Biol., 18, 1781–1796, 2012.
Dymond, J.: Ecosystem services in New Zealand, Manaaki Whenua Press, Lincoln, New Zealand, 540 p., 2014.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed the world, Nature Geosci. 1, 636–639, 2008.
European Commission, Organisation for Economic Co-operation and Development, United Nations and World Bank: System of Environmental-Economic Accounting 2012. Experimental-Economic Accounting, White cover publication, 2013.
European Commission, Eurostat, United Nations, Food and Agriculture Organization of the United Nations, International Monetary Fund, Organisation for Economic Co-operation and Development and World Bank: System of Environmental-Economic Accounting 2012 Central Framework, New York; Luxembourg: UNO; Publications Office, available at: http://bookshop.europa.eu/uri?target=EUB:NOTICE:KS0114120:EN:HTML (last access: 27 May 2015), 2014.
FAOSTAT: http://faostat3.fao.org/home/E, last access: 28 March 2015.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–631, 2006.
Fierer, N., Ladau, J., Clemente, J. C., Leff, J., Owens, S. M., Pollard, K. S., Knight, R., Gilbert, J. A., and McCulley, R. L.: Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States, Science, 342, 621–624, 2013.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M. A., and Phillips, R. P.: Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles, Glob. Change Biol., 21, 2082–2094, 2015.
Fisher, B. R., Turner, K., and Morling, P.: Defining and classifying ecosystem services for decision making, Ecol. Econ., 68, 643–653, 2009.
Fontaine, S., Mariotti, A., and Abbadie, L.: The priming effect of organic matter: a question of microbial competition, Soil Biol. Biochem., 35, 837–843, 2003.
Freeman, C., Ostle, N., and Kang, H.: An enzymic "latch" on a global carbon store, Nature, 409, 149, 2001.
Furusaka, C.: Global environment and microorganisms, B. Jpn. Soc. Microb. Ecol., 8, 127–131, 1993.
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., Jackson, R. B., Jones, C. D., Kraxner, F., Nakicenovic, N., Le Quéré, C., Raupach, M., Sharifi, A., Smith, P., and Yamagata, Y.: Betting on negative emissions, Nature Clim. Change, 4, 850–853, 2014.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions, Science, 320, 889–892, 2008.
Gans, J., Wolinsky, M., and Dunbar, J.: Computational improvements reveal great bacterial diversity and high metal toxicity in soil, Science, 309, 1387–1390, 2005.
Gärdenäs, A. I., Ågren, G. I., Bird, J. A., Clarholm, M., Hallin, S., Ineson, P., Kätterer, T., Knicker, H., Nilsson, S. I., Näsholm, T., Ogle, S., Paustian, K., Persson, T., and Stendahl, J.: Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale, Soil Biol. Biochem., 43, 702–717, 2011.
Gattinger, A., Muller, A., Haenia, M., Skinner, C., Fließbach, A., Buchmann, N., Mädera, P., Stolzea, M., Smith, P., El-Hage Scialabbad, N., and Niggli, U.: Enhanced top soil carbon stocks under organic farming - a global meta-analysis, P. Natl. Acad. Sci. USA, 109, 18226–18231, 2012.
Ghassemi, F., Jakeman, A. J., and Nix, H.: Salinisation of land and water resources: human causes, extent, management and case studies, Centre for Resource and Environmental Studies, Canberra, Australia, 544 p., 1995.
Godbold, D. L., Hoosbeek, M. R., Lukac, M. Cotrufo, M. F., Janssens, I. A., Ceulemans, R., Polle, A., Velthorst, E. J., Scarascia-Mugnozza, G., De Angelis, P., Miglietta, F., and Peressotti, A.: Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter, Plant Soil 281, 15–24, 2006.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182–195, 1991.
Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., and Whiteley, A. S.: The bacterial biogeography of British soils, Environ. Microbiol. 13, 1642–1654, 2011.
Guo, L. B. and Gifford, R. M. Soil carbon stocks and land use change: a meta-analysis, Glob. Change Biol., 8, 345–360, 2002.
Güsewell, S.: N : P ratios in terrestrial plants: variation and functional significance, New Phytol., 164, 243–266, 2004.
Guswa, A. J., Brauman, K. A., Brown, C., Hamel, P., Keeler, B. L., and Sayre, S. S.: Ecosystem services: Challenges and opportunities for hydrologic modelling to support decision making, Wat. Resour. Res., 50, 4535–4544, 2014.
Haines-Young, R. and Potschin, M. CICES Version 4: Response to Consultation, Centre for Environmental Management, University of Nottingham, Nottingham, UK, 2012.
House, G. J. and Parmelee, R. W.: Comparison or soil arthropods and earthworms from conventional and no-tillage agroecosystems, Soil Till. Res., 5, 351–360, 1985.
Huang, M., Yang, L., Qin, H. D., Jiang, L. G., and Zou, Y. B.: Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies, Field Crops Res., 154, 172–177, 2013.
IPCC: Supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: Wetlands, Cambridge University Press, Cambridge, UK, 2013.
Janzen, H. H.: The soil carbon dilemma: Shall we hoard it or use it?, Soil Biol. Biochem., 38, 419–424, 2006.
Jenkinson, D. S.: Studies on the decomposition of 14C-labelled organic matter in soil, Soil Sci., 111, 64–70, 1971.
Kalbitz, K. and Kaiser, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, 2012.
Kell, D.: Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how, Phil. Trans. R. Soc. B, 367, 1589–1597, 2012.
Kibblewhite, M., Ritz, K., and Swift, M.: Soil health in agricultural systems, Phil. Trans. R. Soc. B, 363, 685–701, 2008.
Kirkham, M. B.: Principles of soil and plant water relations, Academic Press, San Diego, CA, 2014.
Knicker, H.: How does fire affect the nature and stability of soil organic nitrogen and carbon? A review, Biogeochem., 85, 91–118, 2007.
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering potential of artificially enhanced silicate weathering of olivine, P. Natl. Acad. Sci. USA, 107, 20228–20233, 2010.
Kuzyakov, Y., Freidel, J. K., and Stahr, K.: Review of mechanisms and quantification of priming effects, Soil Biol. Biochem., 32, 1485–1498, 2000.
Lal, R.: Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment, Soil Till. Res., 43, 81–107, 1997.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, 2004.
Lal, R.: Sequestration of atmospheric CO2 in global carbon pools, Energy Env. Sci., 1, 86–100, 2008.
Liu, X. Y., Ye, Y. X., and Liu, Y. M.: Sustainable biochar effects for low carbon crop production: A three year field experiment in Central China, Agric. Syst., 129, 22–29, 2014.
Liu, Z. H., Jiang, L. H., Zhang, W. J., Zheng, F. L., Wang, M., and Lin, H. T.: Evolution of fertilization rate and variation of soil nutrient contents in greenhouse vegetable cultivation in Shandong, Pedologica Sinica, 45, 296–303, 2008.
Lorenz, K., Lal, R., Preston, C. M., and Nierop, K. G. I. M: Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules, Geoderma, 142, 1–10, 2007.
Lugato, E., Berti, A., and Giardini, L.: Soil organic carbon (SOC) dynamics with and without residue incorporation in relation to different nitrogen fertilisation rates, Geoderma, 135, 315–321, 2006.
MacDonald, G. K., Bennett, E. M., Potter, P. A., and Ramankutty, N.: Agronomic phosphorus imbalances across the world's croplands, P. Natl. Acad. Sci. USA, 108, 3086–3091, 2011.
Marshall, M. R., Francis, O. J., Frogbrook, Z. L., Jackson, B. M., McIntyre, N., Reynolds, B., Solloway, I., Wheater, H. S., and Chell, J.: The impact of upland land management on flooding: results from an improved pasture hillslope, Hydrol. Processes, 23, 464–475, 2009.
Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J.: Agricultural intensification and ecosystem properties, Science, 277, 504–509, 1997.
Mbow, C., Smith, P., Skole, D., Duguma, L., and Bustamante, M.: Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa, Curr. Op. Env. Sust., 6, 8–14, 2014.
McDowell, R. W. and Srinivasan, M. S.: Identifying critical source areas for water quality: 2. Validating the approach for phosphorus and sediment losses in grazed headwater catchments, J. Hydrol., 379, 68–80, 2009.
McDowell, R. W., Houlbrooke, D. J., Muirhead, R. W., Müller, K., Shepherd, M., and Cuttle, S. P.: Grazed Pastures and Surface Water Quality, Nova Science Publishers, New York, NY, 2008.
McDowell, R. W., van der Weerden, T. J., and Campbell, J.: Nutrient losses associated with irrigation, intensification and management of land use: a study of large scale irrigation in North Otago, New Zealand, Agric. Water Manage., 98, 877–885, 2011.
McDowell, R. W., Cox, N., Daughney, C. J., Wheeler, D., and Moreau, M.: A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus, J. Am. Water Res. Assoc., 51, 992–1002, 2015.
McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland soil carbon: a global review, Glob. Change Biol., 19, 1347–1357, 2013.
Mikutta, R. and Kaiser, K.: Organic matter bound to mineral surfaces: Resistance to chemical and biological oxidation, Soil Biol. Biochem., 43, 1738–1741, 2011.
Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Synthesis, World Resource Institute, Island Press, Washington, D.C., USA, 2005.
Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM genesis: microbial biomass as a significant source, Biogeochem., 111, 41–55, 2012.
Moore, S., Evans, C. D., Page, S. E., Garnett, M. H., Jones, T. G., Freeman, C., Hooijer, A., Wiltshire, A. J., Limin, S. H., and Gauci, V.: Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes, Nature, 493, 660–663, 2013.
Naisse, C., Girardin, C., Lefèvre, R., Pozzi, A., Maas, R. Stark, A., and Rumpel, C.: Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil, Glob. Change Biol. Bioenergy, 7, 488–496, 2015.
Ngo, P. T., Rumpel, C., Doan T. T., Henry-des-Tureaux, T., Dang, D.-K., and Jouquet, P.: Use of organic substrates for increasing soil organic matter quality and carbon sequestration of tropical degraded soil (a 3 years mesocosms experiment), Carbon Manage, 5, 155–168, 2014.
Nordt, L. C., Wilding, L. P., and Drees, L. R.: Pedogenic carbonate transformations in leaching soil systems: Implications for the global C cycle, in: Global Climate Change and Pedogenic Carbonates, edited by: Lal, R., Kimble, J. M., Eswaran, H., and Stewart, B. A., Lewis Publishers, Boca Raton, FL, USA, 43–64, 2000.
Ogle, S. M., Breidt, F. J., and Paustian, K.: Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions, Biogeochem., 72, 87–121, 2005.
Olid, C., Nilsson, M. B., Eriksson, T., and Klaminder, J.: The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210 Pb peat chronologies, J. Geophys. Res.-Biogeosci., 119, 392–403, 2014.
Pan, G., Zhou, P., Li, Z. P., Smith, P., Li, L. Q., Qiu, D. S., Zhang, X. H., Xu, X. B., Shen, S. Y., and Chen, X. M.: Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China, Agr. Ecosys. Env., 131, 274–280, 2009.
Pan, G., Huang, Z. Q., Wang, J. K., Li, H., Chabbi, A., Paustian, K., and Smith, P.: Soil organic matter dynamics: beyond carbon; A report of the 4th International Symposium on Soil Organic Matter Dynamics, Carbon Manage., 4, 485–489, 2013.
Pan, G., Li, L. Q., Zheng, J. F., Cheng, K., Zhang, X. H., Zheng, J. W., and Li, Z. C.: Managing soil organic carbon for multiple benefits case studies – positive exemplars. Benefits of SOM in agro-ecosystems: A case of China, Chapter 27, in: Benefits of Soil Carbon, edited by: Banwart, S., SCOPE Volume 71, CAB International, 383–401, 2014.
Parr, J. F., Gardner, W. R., and Elliot, L. F.: Water potential relations in soil microbiology: proceedings of a symposium, SSSA Special Publication number 9, Soil Science Society of America, Madison, WI, 151 pp., 1981.
Paul, E. A.: Soil microbiology, ecology and biochemistry, Academic Press, Burlington, MA, USA and Oxford, UK, 2014.
Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., and Woomer, P. L.: Agricultural soils as a sink to mitigate CO2 emissions, Soil Use Manage., 13, 230–244, 1997.
Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Shrumpf, M., Wützler, T., Butterbach-Bahl, K., Chertov, O., Komarov, A., Mikhailov, A., Gärdenäs, A., Perry, C., Liski, J., Smith, P., and Mäkipää, R.: Models in country scale carbon accounting of forest soils, Silva Fennica, 41, 575–602, 2007.
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., and Cassman, K. G.: Limited potential of no-till agriculture for climate change mitigation, Nature Clim. Change, 4, 678–683, 2014.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical cycling, Nature Geosci. 3, 311–314, 2010.
Radajewski, S., Ineson, P., Parekh, N. R., and Murrell, J. C.: Stable-isotope probing as a tool in microbial ecology, Nature, 403, 646–649, 2000.
Rasse, D. P., Rumpel, C., and Dignac, M.-F.: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation, Plant Soil, 269, 341–356, 2005.
Reay, D., Smith, P., and van Amstel, A. (Eds.): Methane and Climate Change, Earthscan, London, 272 pp., 2010.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, 2013.
Rillig, M. C.: Arbuscolar mycorrhizae, glomalin and soil aggregation, Can. J. Soil Sci., 84, 355–363, 2004.
Robinson, D. A., Lebron, I., and Vereecken, H.: On the definition of the natural capital of soils: A framework for description, evaluation, and monitoring, Soil Sci. Soc. Am. J., 73, 1904–1911, 2009.
Robinson, D. A., Hockley, N., Cooper, D. M., Emmett, B. A., Keith, A. M., Lebron, I., Reynolds, B., Tipping, E., Tye, A. M., Watts, C. W., Whalley, W. R., Black, H. I. J., Warren, G. P., and Robinson, J. S.: Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation, Soil Biol. Biochem., 57, 1023–1033, 2013.
Robinson, D. A., Fraser, I, Dominati, E. J., Davíðhsdóttir, B., Jónsson, J. O. G., Jones, L. Jones, S. B., Tuller, M., Lebron, I., Bristow, K. L., Souza, D. M., Banwart, S., and Clothier, B. E.: On the value of soil resources in the context of natural capital and ecosystem service delivery, Soil Sci. Soc. Am. J., 78, 685–700, 2014.
Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter – a key but poorly understood component of terrestrial C cycle, Plant Soil, 338, 143–158, 2011.
Sanaullah, M., Blagodatskaya, E., Chabbi, A., Rumpel, C., and Kuzyakov, Y.: Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition, Appl. Soil Ecol., 48, 38–44, 2011.
Sanaullah, M., Chabbi, A., Rumpel, C., and Kuzyakov, Y.: Carbon allocation in grassland communities under drought stress followed by 14C pulse labelling, Soil Biol. Biochem., 55, 132–139, 2012.
Sanaullah, M., Chabbi, A., Girardin, C., Durand, J. L., Poirier, M., and Rumpel, C.: Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil, Plant Soil, 374, 767–778, 2014.
Sato, T., Qadir, M., Yamamoto, S., Endo, T., and Zahoor, A.: Global, regional, and country level need for data on wastewater generation, treatment, and use, Agric. Water Manage., 130, 1–13, 2013.
Schlesinger, W. M. and Bernhardt, E. S.: Biogeochemstry. An analysis of global change, 3rd Edition, Academic Press, NY, USA, 2013.
Schmidt, M. W. I. and Noack, A. G.: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges, Glob. Biogeochem. Cycles, 14, 777–793, 2000.
Scholes, M. J. and Scholes, R. J.: Dust unto dust, Science, 342, 565–566, 2013.
Setia, R., Marschner, P., Baldock, J., Chittleborough, D., Smith, P., and Smith, J. U.: Salinity effects on carbon mineralization in soils of varying texture, Soil Biol. Biochem., 43, 1908–1916, 2011.
Singh, N., Abiven, S., Torn, M. S., and Schmidt, M. W. I.: Fire-derived organic carbon in soil turns over on a centennial scale, Biogeosciences, 9, 2847–2857, https://doi.org/10.5194/bg-9-2847-2012, 2012.
Smil, V.: Phosphorus in the environment: natural flows and human interferences, Annual Rev. Energy Environ., 25, 53–88, 2000.
Smith, J. U., Gottschalk, P., Bellarby, J., Chapman, S., Lilly, A., Towers, W., Bell, J., Coleman, K., Nayak, D. R., Richards, M. I., Hillier, J., Flynn, H. C., Wattenbach, M., Aitkenhead, M., Yeluripurti, J. B., Farmer, J., Milne, R., Thomson, A., Evans, C., Whitmore, A. P., Falloon, P., and Smith, P.: Estimating changes in national soil carbon stocks using ECOSSE – a new model that includes upland organic soils. Part I. Model description and uncertainty in national scale simulations of Scotland, Climate Res., 45, 179–192, 2010.
Smith, P.: Soils as carbon sinks – the global context, Soil Use Manage., 20, 212–218, 2004.
Smith, P.: Soils and climate change, Curr. Op. Env. Sust., 4, 539–544, 2012.
Smith, P., Ashmore, M., Black, H., Burgess, P. J., Evans, C., Quine, T., Thomson, A. M., Hicks, K., and Orr, H.: The role of ecosystems and their management in regulating climate, and soil, water and air quality, J. Appl. Ecol., 50, 812–829, 2013.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Robledo Abad, C., Romanovskaya, A., Sperling, F., and Tubiello, F.: Agriculture, Forestry and Other Land Use (AFOLU), in: Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., and Seyboth, K., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.
Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bondeau, A., Jain, A. K, Meersmans, J., and Pugh, T. A. M.: Global change pressures on soils from land use and management, Glob. Change Biol., in press, https://doi.org/10.1111/gcb.13068, 2015.
Snyder, C. S., Davidson, E. A., Smith, P., and Venterea, R. T.: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions, Curr. Op. Environ. Sust., 9–10, 46–54, 2014.
Sollins, P., Homann, P., and Caldwell, B. A.: Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma, 74, 65–105, 1996.
Song, X. Y., Li, L. Q., Zheng, J. F., Pan, G., Zhang, X. H., Zheng, J. W., Hussain, Q., Han, X. J., and Yu, X. Y.: Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance, Chemosphere, 87, 649–654, 2012.
State Bureau of Statistics-China: 50 Years Rural Statistics of New China; China Statistics Press, Beijing, China, 2005.
Steinfeld, H., Gerber, P., Wassenaar, C. V., Rosales, M., and de Haan, C.: Livestock's long shadow, Food and Agriculture Organization of the United Nations, Rome, Italy, available at: http://www.fao.org/docrep/010/a0701e/a0701e00.htm (last access: August 2014), 2006.
Stewart, C. E., Zheng, J. Y., Botte, J., and Cotrufo, M. F.: Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils, Glob. Change Biol. Bioenergy, 5, 153–164, 2013.
Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Butterbach Bahl, K., Cellier, P., de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P., Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J., Gallagher, M. W., Neftel, A., Flechard, C. R., Herrmann, B., Calanca, P. L., Schjoerring, J. K., Daemmgen, U., Horvath, L., Tang, Y. S., Emmett, B. A., Tietema, A., Peñuelas, J., Kesik, M., Brueggemann, N., Pilegaard, K., Vesala, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R., Levy, P., Mobbs, D. C., Milne, R., Viovy, N., Vuichard, N., Smith, J. U., Smith, P., Bergamaschi, P., Fowler, D., and Reis, S.: Challenges in quantifying biosphere-atmosphere exchange of nitrogen species, Environ. Poll., 150, 125–139, 2007.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Glob. Biogeochem. Cycles, 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Thévenot, M., Dignac, M.-F., and Rumpel, C.: Fate of lignins in soils: a review, Soil Biol. Biochem., 42, 1200–1211, 2010.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.: Agricultural sustainability and intensive production practices, Nature, 418, 671–677, 2002.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Trumbore, S.: Radiocarbon and soil carbon dynamics, Ann. Rev. Earth Planet. Sci., 37, 47–66, 2009.
Turunen, J., Roulet, N. T., Moore, T. R., and Richard, P. J. H.: Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada, Glob. Biogeochem. Cycles, 18, GB3002, https://doi.org/10.1029/2003GB002154, 2004.
UKNEA: The UK National Ecosystem Assessment. Synthesis of the Key Findings, UNEP-WCMC, Cambridge, 2011.
Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., and Van Kessel, C.: Towards an agronomic assessment of N2O emissions: a case study for arable crops, Eur. J. Soil Sci., 61, 903–913, 2010.
Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., da Silva, J. R. M., and Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626–629, 2007.
Venterea, R. T., Maharjan, B., and Dolan M. S.: Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system, J. Environ. Qual., 40, 1521–1531, 2011.
Vitousek, P. M. and Matson, P. A.: Biological diversity and terrestrial ecosystem biogeochemistry, in: The biogeochemistry of global change: radiative trace gases, edited by: Oremland, R. S., Chapman and Hall, New York, 193–208, 1993.
Vogel, C., Mueller, C. W., Hoschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., and Kogel-Knabner, I.: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils, Nature Comm., 5, 2947, https://doi.org/10.1038/ncomms3, 2014.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Euro. J. Soil Sci., 57, 426–445, 2006.
von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K. Guggenberger, G., Marschner, B., and Kalbitz, K.: Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model, J. Plant Nut. Soil Sci., 171, 111–124, 2008.
Walthall, C. L., Hatfield, J., Backlund, P., Lengnick, L., Marshall, E., Walsh, M., Adkins, S., Aillery, M., Ainsworth, E. A., Ammann, C., Anderson, C. J., Bartomeus, I., Baumgard, L. H., Booker, F., Bradley, B., Blumenthal, D. M., Bunce, J., Burkey, K., Dabney, S. M., Delgado, J. A., Dukes, J., Funk, A., Garrett, K., Glenn, M., Grantz, D. A., Goodrich, D., Hu, S., Izaurralde, R. C., Jones, R. A. C., Kim, S.-H., Leaky, A. D. B., Lewers, K., Mader, T. L., McClung, A., Morgan, J., Muth, D. J., Nearing, M., Oosterhuis, D. M., Ort, D., Parmesan, C., Pettigrew, W. T., Polley, W., Rader, R., Rice, C., Rivington, M., Rosskopf, E., Salas, W. A., Sollenberger, L. E., Srygley, R., Stöckle, C., Takle, E. S., Timlin, D., White, J. W., Winfree, R., Wright-Morton, L., and Ziska, L. H.: Climate change and agriculture in the united states: effects and adaptation, USDA Technical Bulletin 1935, Washington, D.C., 186 p., 2012.
Wei, X., Shao, M., Gale, W., and Li, L.: Global pattern of soil carbon losses due to the conversion of forests to agricultural land, Scientific Reports, 4, 4062, https://doi.org/10.1038/srep04062, 2014.
West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., Cassidy, E. S., Johnston, M., MacDonald, G. K., Ray, D., and Siebert, S.: Leverage points for improving global food security and the environment, Science, 345, 325–328, 2014.
West, T. O. and Post, W. M.: Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis, Soil Sci. Soc. Am. J., 66, 1930–1946, 2002.
Wiedner, K., Rumpel, C., Pozzi, A., Maas, R., Steiner, C., and Glaser, B.: Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale, Biomass Bioenergy, 59, 264–278, 2013.
Whitmore, A. P., Kirk, G. J. D., and Rawlins, B. G.: Technologies for increasing carbon storage in soil to mitigate climate change, Soil Use Manage., 30, 10–22, 2014.
Wilkinson, M. T., Richards, P. J., and Humphreys, G. S.: Breaking ground: Pedological, geological and ecological implications of soil biotrubation, Earth Sci. Rev., 97, 257–272, 2009.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosci. 9, 4071–4085, 2012.
Zhang, A. F., Cui, L. Q., Pan, G., Li, L, Q., Husaain, Q., Zhang, X. H., Zheng, J. W., and Crowley, D.: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China, Agric. Ecosys. Environ., 139, 469–475, 2010.
Zheng, J. F., Li, L. Q., Pan, G., Zhang, X. H., Smith, P., and Hussain, Q.: Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long-term fertilizer treatments, Soil Use Manage., 28, 185–193, 2012.
Zhou, P., Song, G. H., Pan, G., Li, L. Q., and Zhang, X. H.: Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China, Geoderma, 153, 52–60, 2009.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.: Measured soil organic matter fractions can be related to pools in the RothC model, Euro. J. Soil Sci., 55, 658–667, 2007.
Zvomuya, F., Janzen, H. H., Larney, F. J., and Olson, B. M.: A long-term field bioassay of soil quality indicators in a semiarid environment, Soil Sci. Soc. Am. J., 72, 683–692, 2008.
Short summary
Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can affect other services. We provide a critical review of these aspects, and conclude that, although there are knowledge gaps, enough is known improve soils globally, and we suggest actions to start this process.
Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water),...