Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie
CORRESPONDING AUTHOR
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Nathalie Y. Triches
Department of Environment, Faculty of Bioscience Engineering, Ghent
University, Coupure links 653, 9000, Ghent, Belgium
present address: Max
Planck Institute for Biogeochemistry, Hans-Knöll-Straße
10, 07745, Jena, Germany
Diego Abalos
Department of Agroecology, iCLIMATE, Aarhus University, Blichers
Allé 20, Tjele, 8830, Denmark
Peter Finke
Department of Environment, Ghent
University, Coupure links 653, 9000, Ghent, Belgium
Sophie Zechmeister-Boltenstern
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Stephan Glatzel
University of Vienna, Department of Geography and Regional Research,
Universitätsstraße 7, 1010 Vienna, Austria
Eugenio Díaz-Pinés
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Related authors
No articles found.
Theresia Yazbeck, Mark Schlutow, Abdullah Bolek, Nathalie Ylenia Triches, Elias Wahl, Martin Heimann, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-3791, https://doi.org/10.5194/egusphere-2025-3791, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Natural ecosystems are composed of heterogeneous landscapes challenging CO₂ fluxes quantification per landcover type. Here, we combine UAV measurements of CO₂ gas concentrations with a Large-Eddy simulation model in a submeso scale inversion to separate fluxes by landcover type, demonstrating a promising approach to capture and upscale flux heterogeneity within eddy-covariance footprints.
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech., 18, 3407–3424, https://doi.org/10.5194/amt-18-3407-2025, https://doi.org/10.5194/amt-18-3407-2025, 2025
Short summary
Short summary
This study explores nitrous oxide (N2O) fluxes from a nutrient-poor sub-Arctic peatland. N2O is a potent greenhouse gas; understanding its fluxes is essential for addressing global warming. Using a new instrument and flux chambers, we introduce a system to reliably detect low N2O fluxes and provide recommendations on chamber closure times and flux calculation methods to better quantify N2O fluxes. We encourage researchers to further investigate N2O fluxes in low-nutrient environments.
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Armin Malli, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Christoph Wohner, Sophie Zechmeister-Boltenstern, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data, 17, 685–702, https://doi.org/10.5194/essd-17-685-2025, https://doi.org/10.5194/essd-17-685-2025, 2025
Short summary
Short summary
Long-term observation sites have been established in six Austrian locations, covering major ecosystem types such as forests, grasslands, and wetlands. The purpose of these observations is to measure baselines for assessing the impacts of extreme climate events on the carbon cycle. The collected datasets include meteorological variables, soil temperature and moisture, carbon dioxide fluxes, and tree stem growth in forests at a resolution of 15–60 min between 2019 and 2021.
Pamela Alessandra Baur, Thiago Rodrigues-Oliveira, Karin Hager, Zhen-Hao Luo, Christa Schleper, and Stephan Glatzel
EGUsphere, https://doi.org/10.5194/egusphere-2025-443, https://doi.org/10.5194/egusphere-2025-443, 2025
Short summary
Short summary
In the subsaline reed wetland of Lake Neusiedl, we found the highest CH4 emissions in summer and via plant-mediated transport in each season. A clear diel cycle of CH4 emission was only identified for plant-mediated transport in summer. The isotopic source signature of CH4 differed between seasons, with the most 13C-depleted signature in fall. Desiccation reduced methanogenic diversity in the sediments and resulted in a marked increase and dominance of the O2-tolerant Methanomicrobiales.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140, https://doi.org/10.5194/soil-9-117-2023, https://doi.org/10.5194/soil-9-117-2023, 2023
Short summary
Short summary
The number of meta-analyses in agriculture and soil sciences is continuously rising, but they are often of poor quality. We quantitatively analyzed the quality of 31 meta-analyses studying the effects of different management practices on soil organic carbon (SOC). We found that only one meta-analysis on no tillage/reduced tillage obtained a high score. New or improved meta-analyses on the effects of organic agriculture, biochar, fertilization, and crop diversification on SOC are urgently needed.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Cited articles
Aciego Pietri, J. C. and Brookes, P. C.: Nitrogen mineralisation along a pH
gradient of a silty loam UK soil, Soil Biol. Biochem., 40, 797–802,
https://doi.org/10.1016/j.soilbio.2007.10.014, 2008.
Adamsen, A. P. S. and King, G. M.: Methane Consumption in Temperate and
Subarctic Forest Soils: Rates, Vertical Zonation, and Responses to Water and
Nitrogen, Appl. Environ Microbiol., 59, 485–490,
https://doi.org/10.1128/aem.59.2.485-490.1993, 1993.
Ambus, P.: Nitrous oxide production by denitrification and nitrification in
temperate forest, grassland and agricultural soils, Eur. J. Soil Sci., 49,
495–502, https://doi.org/10.1046/j.1365-2389.1998.4930495.x, 1998.
Ambus, P., Zechmeister-Boltenstern, S., and Butterbach-Bahl, K.: Sources of nitrous oxide emitted from European forest soils, Biogeosciences, 3, 135–145, https://doi.org/10.5194/bg-3-135-2006, 2006.
Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino,
M. C., Butterbach-Bahl, K., and Verchot, L. V: Spatial variability of soil
N2O and CO2 fluxes in different topographic positions in a tropical montane
forest in Kenya, J. Geophys. Res.-Biogeo., 122, 514–527,
https://doi.org/10.1002/2016JG003667, 2017.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models using lme4, J. Stat. Softw., 67, 1–48, 2015.
Borken, W. and Beese, F.: Methane and nitrous oxide fluxes of soils in pure
and mixed stands of European beech and Norway spruce, Eur. J. Soil Sci., 57,
617–625, https://doi.org/10.1111/j.1365-2389.2005.00752.x, 2006.
Born, M., Dorr, H., and Levin, I.: Methane consumption in aerated soils of
the temperate zone, Tellus B, 42, 2–8,
https://doi.org/10.1034/j.1600-0889.1990.00002.x, 1990.
Brumme, R. and Borken, W.: Site variation in methane oxidation as affected
by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cy., 13, 493–501, https://doi.org/10.1029/1998GB900017, 1999.
Buchmann, N.: Biotic and abiotic factors controlling soil respiration rates
in Picea abies stands, Soil Biol. Biochem., 32, 1625–1635,
https://doi.org/10.1016/S0038-0717(00)00077-8, 2000.
Burt, T. P. and Butcher, D. P.: Topographic controls of soil moisture
distributions, J. Soil Sci., 36, 469–486,
https://doi.org/10.1111/j.1365-2389.1985.tb00351.x, 1985.
Butler, J., Goetz, H., and Richardson, J. L.: Vegetation and Soil-Landscape
Relationships in the North Dakota Badlands, Am. Midland Nat.,
116, 378, https://doi.org/10.2307/2425746, 1986.
Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S.,
Papen, H., and Kiese, R.: Temporal variations of fluxes of NO, NO2, N2O,
CO2, and CH4 in a tropical rain forest ecosystem, Global Biogeochem. Cy.,
18, GB3012, https://doi.org/10.1029/2004GB002243, 2004.
Butterbach-bahl, K., Kiese, R., and Liu, C.: Chapter eighteen – Measurements
of Biosphere – Atmosphere Exchange of CH4 in Terrestrial Ecosystems, in:
Methods in Enzymology, vol. 495, Elsevier Inc., 271–287,
https://doi.org/10.1016/B978-0-12-386905-0.00018-8, 2011.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. Roy. Soc. B, 368, 20130122,
https://doi.org/10.1098/rstb.2013.0122, 2013.
Butterbach-Bahl, K., Diaz-Pines, E., and Dannenmann, M.: Soil Trace Gas
Emissions and Climate Change, in: Global Environmental Change, Springer
Netherlands, Dordrecht, 325–334,
https://doi.org/10.1007/978-94-007-5784-4_ 4, 2014.
Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D., and Bowden, R.
D.: Factors controlling atmospheric methane consumption by temperate forest
soils, Global Biogeochem. Cy., 9, 1–10,
https://doi.org/10.1029/94GB02651, 1995.
Cowan, N. J., Famulari, D., Levy, P. E., Anderson, M., Reay, D. S., and Skiba, U. M.: Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method, Atmos. Meas. Tech., 7, 4455–4462, https://doi.org/10.5194/amt-7-4455-2014, 2014.
Creed, I. F., Webster, K. L., Braun, G. L., Bourbonnière, R. A., and
Beall, F. D.: Topographically regulated traps of dissolved organic carbon
create hotspots of soil carbon dioxide efflux in forests, Biogeochemistry,
112, 149–164, https://doi.org/10.1007/s10533-012-9713-4, 2013.
Cronan, C. S.: Ecosystem Biogeochemistry, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-66444-6, 2018.
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V, and Veldkamp,
E.: Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric
Oxides, Bioscience, 50, 667,
https://doi.org/10.1641/0006-3568(2000)050[0667:tacmos]2.0.co;2, 2000.
Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing
artifacts and biases in chamber-based measurements of soil respiration,
Agr. Forest Meteorol., 113, 21–37,
https://doi.org/10.1016/S0168-1923(02)00100-4, 2002.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis-Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Global Change Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Davidson, EriC. A., Belk, E., and Boone, R. D.: Soil water content and
temperature as independent or confounded factors controlling soil
respiration in a temperate mixed hardwood forest, Global Change Biol., 4,
217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Diaz-Pines, E. and Gasch, J.: Rosalia Lehrforst Austria – Meteorological
Data 2001–2020,
https://b2share.eudat.eu/records/681966be29a34f3ebc6015ac255ab143, 2021.
Eickenscheidt, N. and Brumme, R.: Contribution of 15N-labelled leaf litter
to N turnover, nitrous oxide emissions and N sequestration in a beech forest
during eleven years, Plant Soil, 362, 67–77,
https://doi.org/10.1007/s11104-012-1245-0, 2013.
Epron, D., Farque, L., Lucot, É., and Badot, P.-M.: Soil CO2 efflux in a
beech forest: dependence on soil temperature and soil water content, Ann. For.
Sci., 56, 221–226, https://doi.org/10.1051/forest:19990304, 1999.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil
bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–631,
https://doi.org/10.1073/pnas.0507535103, 2006.
Fürst, J., Nachtnebel, H. P., Gasch, J., Nolz, R., Stockinger, M. P., Stumpp, C., and Schulz, K.: Rosalia: an experimental research site to study hydrological processes in a forest catchment, Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, 2021.
Gillespie, L. M., Triches, N. Y., Abalos, D., Finke, P., Zechmeister-Boltenstern, S., Glatzel, S., and Diaz-Pines, E.: Soil CO2, CH4 and N2O fluxes, soil and litter parameters and meteorological data from a temperate upland forest along a land inclination gradient [data set], https://b2share.eudat.eu/records/3900981a45684bfea5d648eb744622d3, last access: 4 September 2023,
2023.
Gundersen, P., Christiansen, J. R., Alberti, G., Brüggemann, N., Castaldi, S., Gasche, R., Kitzler, B., Klemedtsson, L., Lobo-do-Vale, R., Moldan, F., Rütting, T., Schleppi, P., Weslien, P., and Zechmeister-Boltenstern, S.: The response of methane and nitrous oxide fluxes to forest change in Europe, Biogeosciences, 9, 3999–4012, https://doi.org/10.5194/bg-9-3999-2012, 2012.
Hahn, M., Gartner, K., and Zechmeister-Boltenstern, S.: Greenhouse gas
emissions (N2O, CO2 and CH4) from three forest soils near Vienna (Austria)
with different water and nitrogen regimes, Die Bodenkultur, 2, 115–125,
2000.
Hairston, A. B. and Grigal, D. F.: Topographic variation in soil water and
nitrogen for two forested landforms in Minnesota, USA, Geoderma, 64,
125–138, https://doi.org/10.1016/0016-7061(94)90093-0, 1994.
Hanson, P. J., Wullschleger, S. D., Bohlman, S. A., and Todd, D. E.:
Seasonal and topographic patterns of forest floor CO2 efflux from an upland
oak forest, Tree Physiol., 13, 1–15,
https://doi.org/10.1093/treephys/13.1.1, 1993.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60,
439–471, https://doi.org/10.1128/mr.60.2.439-471.1996, 1996.
Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner,
C., Li, K., Moore, K. L., Ingrisch, J., Reinthaler, D.,
Zechmeister-Boltenstern, S., Glatzel, S., Brüggemann, N., and Bahn, M.:
Denitrifying pathways dominate nitrous oxide emissions from managed
grassland during drought and rewetting, Sci. Adv., 7, eabb7118,
https://doi.org/10.1126/sciadv.abb7118, 2021.
Hiltbrunner, D., Zimmermann, S., Karbin, S., Hagedorn, F., and Niklaus, P.
A.: Increasing soil methane sink along a 120-year afforestation
chronosequence is driven by soil moisture, Global Change Biol., 18, 3664–3671,
https://doi.org/10.1111/j.1365-2486.2012.02798.x, 2012.
Hinsinger, P., Plassard, C., Tang, C., and Jaillard, B.: Origins of
root-mediated pH changes in the rhizosphere and their responses to
environmental constraints: A review, Plant. Soil, 248, 43–59,
https://doi.org/10.1023/A:1022371130939, 2003.
Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field
Measurement of Nitrous Oxide Fluxes, Soil Sci. Soc. Am.
J., 45, 311–316,
https://doi.org/10.2136/sssaj1981.03615995004500020017x, 1981.
IPCC: IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and
Vulnerability, Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge University Press, Cambridge, UK and New York,
https://doi.org/10.1017/9781009325844, 2022.
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann,
N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grünwald, T.,
Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik,
Ü., Morgenstern, K., Oltchev, S., Clement, R., Guðmundsson, J.,
Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M.,
Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E.-D.,
Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., and Valentini,
R.: Productivity overshadows temperature in determining soil and ecosystem
respiration across European forests, Global Change Biol., 7, 269–278,
https://doi.org/10.1046/j.1365-2486.2001.00412.x, 2001.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest
Package: Tests in Linear Mixed Effects Models, J. Stat. Softw., 82,
https://doi.org/10.18637/jss.v082.i13, 2017.
Lamprea Pineda, P. A., Bauters, M., Verbeeck, H., Baez, S., Barthel, M., Bodé, S., and Boeckx, P.: Ideas and perspectives: patterns of soil CO2, CH4, and N2O fluxes along an altitudinal gradient – a pilot study from an Ecuadorian neotropical montane forest, Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, 2021.
Leitner, S., Sae-Tun, O., Kranzinger, L., Zechmeister-Boltenstern, S., and
Zimmermann, M.: Contribution of litter layer to soil greenhouse gas
emissions in a temperate beech forest, Plant. Soil, 403, 455–469,
https://doi.org/10.1007/s11104-015-2771-3, 2016.
Lin, H. S., Kogelmann, W., Walker, C., and Bruns, M. A.: Soil moisture
patterns in a forested catchment: A hydropedological perspective, Geoderma,
131, 345–368, https://doi.org/10.1016/j.geoderma.2005.03.013, 2006.
Liu, H., Li, Y., Pan, B., Zheng, X., Yu, J., Ding, H., and Zhang, Y.:
Pathways of soil N2O uptake, consumption, and its driving factors: a review,
Environmental Science and Pollution Research, 29, 30850–30864,
https://doi.org/10.1007/s11356-022-18619-y, 2022.
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315, https://doi.org/10.2307/2389824, 1994.
Lookingbill, T. and Urban, D.: An empirical approach towards improved
spatial estimates of soil moisture for vegetation analysis, Lands. Ecol., 19,
417–433, https://doi.org/10.1023/B:LAND.0000030451.29571.8b, 2004.
Lovett, G. M., Weathers, K. C., Arthur, M. A., and Schultz, J. C.: Nitrogen
cycling in a northern hardwood forest: Do species matter?, Biogeochemistry,
67, 289–308, https://doi.org/10.1023/B:BIOG.0000015786.65466.f5, 2004.
Luo, G. J., Brüggemann, N., Wolf, B., Gasche, R., Grote, R., and Butterbach-Bahl, K.: Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Höglwald Forest, Germany, Biogeosciences, 9, 1741–1763, https://doi.org/10.5194/bg-9-1741-2012, 2012.
Marrero, T. R. and Mason, E. A.: Gaseous Diffusion Coefficients, J. Phys. Chem.
Ref. Data, 1, 3–118, https://doi.org/10.1063/1.3253094, 1972.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of
methane by soils: A review, Eur. J. Soil Biol., 37, 25–50,
https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
Nakagawa, S., Johnson, P. C. D., and Schielzeth, H.: The coefficient of
determination R2 and intra-class correlation coefficient from generalized
linear mixed-effects models revisited and expanded, J. R. Soc. Interface, 14,
20170213, https://doi.org/10.1098/rsif.2017.0213, 2017.
Nash, J. C. and Varadhan, R.: Unifying Optimization Algorithms to Aid
Software System Users: optimx for R, J. Stat. Softw., 43,
https://doi.org/10.18637/jss.v043.i09, 2011.
ÖNORM: ÖNORM L 1061, Physical investigations of soil; determination of grain size distribution of soils less than 2 mm particle size, Österreichisches Normungsinstitut, Vienna, Austria, 1988.
ÖNORM: ÖNORM L 1083, Chemical analyses of soils – Determination of acidity (pH value), Österreichisches Normungsinstitut, Vienna, Austria, 2006.
ÖNORM: ÖNORM L 1080, Chemical Analyses of Soils – Determination of Organic Carbon by Dry Combustion with and without Consideration of Carbonates, Österreichisches Normungsinstitut, Vienna, Austria, 2013.
Ou, Y., Rousseau, A. N., Wang, L., Yan, B., Gumiere, T., and Zhu, H.:
Identification of the alteration of riparian wetland on soil properties,
enzyme activities and microbial communities following extreme flooding,
Geoderma, 337, 825–833, https://doi.org/10.1016/j.geoderma.2018.10.032,
2019.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993,
https://doi.org/10.1126/science.1201609, 2011.
Parkin, T. B., Venterea, R. T., and Hargreaves, S. K.: Calculating the
Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements, J.
Environ. Qual., 41, 705–715, https://doi.org/10.2134/jeq2011.0394, 2012.
Pilegaard, K., Skiba, U., Ambus, P., Beier, C., Brüggemann, N., Butterbach-Bahl, K., Dick, J., Dorsey, J., Duyzer, J., Gallagher, M., Gasche, R., Horvath, L., Kitzler, B., Leip, A., Pihlatie, M. K., Rosenkranz, P., Seufert, G., Vesala, T., Westrate, H., and Zechmeister-Boltenstern, S.: Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O), Biogeosciences, 3, 651–661, https://doi.org/10.5194/bg-3-651-2006, 2006.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M.,
Janssens, I., Yuste, J. C., Grünzweig, J. M., Reth, S., Subke, J.-A.,
Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth,
A., and Hari, P.: Comparison of different chamber techniques for measuring
soil CO2 efflux, Agr. Forest Meteorol., 123, 159–176,
https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
Quebbeman, A. W., Menge, D. N. L., Zimmerman, J., and Uriarte, M.: Spatial
Variation in Soil Greenhouse Gas Fluxes in a Subtropical Forest, Ecosystems,
25, https://doi.org/10.1007/s10021-021-0067, 2022.
Raich, J. W. and Potter, C. S.: Global patterns of carbon dioxide emissions
from soils, Global Biogeochem. Cy., 9, 23–36,
https://doi.org/10.1029/94GB02723, 1995.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2022.
Reth, S., Reichstein, M., and Falge, E.: The effect of soil water content,
soil temperature, soil pH-value and the root mass on soil CO2 efflux – A
modified model, Plant. Soil, 268, 21–33,
https://doi.org/10.1007/s11104-005-0175-5, 2005.
Savage, K., Phillips, R., and Davidson, E.: High temporal frequency measurements of greenhouse gas emissions from soils, Biogeosciences, 11, 2709–2720, https://doi.org/10.5194/bg-11-2709-2014, 2014.
Schad, P.: The International Soil Classification System WRB, Third Edition,
2014, in: Springer Water, Springer International Publishing, 563–571,
https://doi.org/10.1007/978-3-319-24409-9_ 25, 2016.
Schimel, J. P.: Life in Dry Soils: Effects of drought on soil microbial
communities and processes, Annu. Rev. Ecol. Evol. Syst., 49, 409–432,
https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K.,
Hansen, S., Brumme, R., Borken, W., Christensen, S., Priemé, A., Fowler,
D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A.,
Degórska, A., and Orlanski, P.: Oxidation of atmospheric methane in
Northern European soils, comparison with other ecosystems, and uncertainties
in the global terrestrial sink, Global Change Biol., 6, 791–803,
https://doi.org/10.1046/j.1365-2486.2000.00356.x, 2000.
Subke, J.-A., Kutzbach, L., and Risk, D.: Soil Chamber Measurements, in:
Springer Handbook of Atmospheric Measurements, Springer International
Publishing, 1603–1624,
https://doi.org/10.1007/978-3-030-52171-4_ 60, 2021.
Thomas, P. A. and Packham, J. R.: Energy and nutrients. In Ecology of Woodlands and Forests: Description, Dynamics and Diversity, Cambridge: Cambridge University Press, 318–349,
https://doi.org/10.1017/CBO9780511805578.010, 2007.
Unger, I. M., Motavalli, P. P., and Muzika, R.-M.: Changes in soil chemical
properties with flooding: A field laboratory approach, Agr. Ecosyst. Environ., 131, 105–110, https://doi.org/10.1016/j.agee.2008.09.013, 2009.
Vilain, G., Garnier, J., Passy, P., Silvestre, M., and Billen, G.: Budget of N2O emissions at the watershed scale: role of land cover and topography (the Orgeval basin, France), Biogeosciences, 9, 1085–1097, https://doi.org/10.5194/bg-9-1085-2012, 2012.
Walkiewicz, A., Rafalska, A., Bulak, P., Bieganowski, A., and Osborne, B.:
How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils?, A
Mini-Review, Forests, 12, 1276, https://doi.org/10.3390/f12091276, 2021.
Wang, Y., Wang, H., Ma, Z., Dai, X., Wen, X., Liu, Y., and Wang, Z.-L.: The
litter layer acts as a moisture-induced bidirectional buffer for atmospheric
methane uptake by soil of a subtropical pine plantation, Soil Biol. Biochem.,
66, 45–50, https://doi.org/10.1016/j.soilbio.2013.06.018, 2013.
Warner, D. L., Vargas, R., Seyfferth, A., and Inamdar, S.: Transitional
slopes act as hotspots of both soil CO2 emission and CH4 uptake in a
temperate forest landscape, Biogeochemistry, 138, 121–135,
https://doi.org/10.1007/s10533-018-0435-0, 2018.
Webster, K. L., Creed, I. F., Bourbonnière, R. A., and Beall, F. D.:
Controls on the heterogeneity of soil respiration in a tolerant hardwood
forest, J. Geophys. Res., 113, G03018, https://doi.org/10.1029/2008JG000706,
2008.
Wrage, N., Lauf, J., del Prado, A., Pinto, M., Pietrzak, S., Yamulki, S.,
Oenema, O., and Gebauer, G.: Distinguishing sources of N2O in European
grasslands by stable isotope analysis, Rapid Communications in Mass
Spectrometry, 18, 1201–1207, https://doi.org/10.1002/rcm.1461, 2004.
Yu, K., Faulkner, S. P., and Baldwin, M. J.: Effect of hydrological
conditions on nitrous oxide, methane, and carbon dioxide dynamics in a
bottomland hardwood forest and its implication for soil carbon
sequestration, Global Change Biol., 14, 798–812,
https://doi.org/10.1111/j.1365-2486.2008.01545.x, 2008.
Yu, L., Zhu, J., Ji, H., Bai, X., Lin, Y., Zhang, Y., Sha, L., Liu, Y.,
Song, Q., Dörsch, P., Mulder, J., and Zhou, W.: Topography-related
controls on N2O emission and CH4 uptake in a tropical rainforest catchment,
Science of The Total Environment, 775, 145616,
https://doi.org/10.1016/j.scitotenv.2021.145616, 2021.
Zechmeister-Boltenstern, S., Díaz-Pinés, E., Spann, C., Hofmann,
K., Schnecker, J., and Reinsch, S.: Soil – The Hidden Part of Climate, in:
Soil and Climate, CRC Press, Boca Raton, FL: CRC Press, Taylor & Francis
Group, 2018, Adv. Soil Sci., 11–60,
https://doi.org/10.1201/b21225-2, 2018.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.:
Mixed effects models and extensions in ecology with R, Springer New York,
New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4),...