Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Lauren M. Gillespie
CORRESPONDING AUTHOR
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Nathalie Y. Triches
Department of Environment, Faculty of Bioscience Engineering, Ghent
University, Coupure links 653, 9000, Ghent, Belgium
present address: Max
Planck Institute for Biogeochemistry, Hans-Knöll-Straße
10, 07745, Jena, Germany
Diego Abalos
Department of Agroecology, iCLIMATE, Aarhus University, Blichers
Allé 20, Tjele, 8830, Denmark
Peter Finke
Department of Environment, Ghent
University, Coupure links 653, 9000, Ghent, Belgium
Sophie Zechmeister-Boltenstern
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Stephan Glatzel
University of Vienna, Department of Geography and Regional Research,
Universitätsstraße 7, 1010 Vienna, Austria
Eugenio Díaz-Pinés
Institute of Soil Research, University of Natural Resources and
Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82, 1190, Vienna,
Austria
Related authors
No articles found.
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Armin Hofbauer, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Christoph Wohner, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Sophie Zechmeister, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-110, https://doi.org/10.5194/essd-2024-110, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Long-term observation sites have been established in Austria's six regions, covering major ecosystem types such as forests, grasslands, and wetlands. The purpose of these observations is to measure baselines for assessing the impacts of extreme climate events on the carbon cycle. The collected data sets include meteorological variables, soil temperature and moisture, carbon dioxide fluxes from the soil, and tree stem growth in forests at a resolution of 30–60 minutes between 2019 and 2021.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Julia Fohrafellner, Sophie Zechmeister-Boltenstern, Rajasekaran Murugan, and Elena Valkama
SOIL, 9, 117–140, https://doi.org/10.5194/soil-9-117-2023, https://doi.org/10.5194/soil-9-117-2023, 2023
Short summary
Short summary
The number of meta-analyses in agriculture and soil sciences is continuously rising, but they are often of poor quality. We quantitatively analyzed the quality of 31 meta-analyses studying the effects of different management practices on soil organic carbon (SOC). We found that only one meta-analysis on no tillage/reduced tillage obtained a high score. New or improved meta-analyses on the effects of organic agriculture, biochar, fertilization, and crop diversification on SOC are urgently needed.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel
SOIL, 3, 161–176, https://doi.org/10.5194/soil-3-161-2017, https://doi.org/10.5194/soil-3-161-2017, 2017
Short summary
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.
David Pelster, Mariana Rufino, Todd Rosenstock, Joash Mango, Gustavo Saiz, Eugenio Diaz-Pines, German Baldi, and Klaus Butterbach-Bahl
Biogeosciences, 14, 187–202, https://doi.org/10.5194/bg-14-187-2017, https://doi.org/10.5194/bg-14-187-2017, 2017
Short summary
Short summary
In order to quantify greenhouse gas fluxes from typical eastern African smallholder farms, we measured flux rates every week for 1 year at 59 farms in western Kenya. These upland soils tend to be small sinks for CH4 and small sources of N2O. The management intensity of the farm plots had no effect on emissions, likely because the variability was low. Plots with trees had higher CH4 uptake than other plots. This suggests that emissions from small, low-input farms in this region are quite low.
Sebastian Rainer Fiedler, Peter Leinweber, Gerald Jurasinski, Kai-Uwe Eckhardt, and Stephan Glatzel
SOIL, 2, 475–486, https://doi.org/10.5194/soil-2-475-2016, https://doi.org/10.5194/soil-2-475-2016, 2016
Short summary
Short summary
We applied Py-FIMS, CO2 measurements and hot-water extraction on farmland to investigate short-term effects of tillage on soil organic matter (SOM) turnover. SOM composition changed on the temporal scale of days and the changes varied significantly under different types of amendment. Particularly obvious were the turnover of lignin-derived substances and depletion of carbohydrates due to soil respiration. The long-term impact of biogas digestates on SOM stocks should be examined more closely.
E. Opolot and P. A. Finke
Biogeosciences, 12, 6791–6808, https://doi.org/10.5194/bg-12-6791-2015, https://doi.org/10.5194/bg-12-6791-2015, 2015
Short summary
Short summary
This study evaluated the sensitivity of silicate mineral dissolution rates to intrinsic and extrinsic factors using a soil evolution model, SoilGen2.25. Modelling results showed a dominant role of pH and a direct effect of soil texture on dissolution rates. Clay migration and plant nutrient recycling influenced the pH and thus the dissolution rates. These results demonstrate the need to couple different soil processes in order to explain differences between lab and field dissolution rates.
C. Gritsch, M. Zimmermann, and S. Zechmeister-Boltenstern
Biogeosciences, 12, 5981–5993, https://doi.org/10.5194/bg-12-5981-2015, https://doi.org/10.5194/bg-12-5981-2015, 2015
Short summary
Short summary
Our experiments showed that, in cold areas (e.g. northern latitudes or mountain areas), warming as well as rain events will have a larger impact on CO2 emissions. Increased moisture in dry areas or drying of wet areas will largely promote CO2 emissions. Irrigation of arable lands might have a higher impact on CO2 emissions in warmer regions in the south of Europe than in the north.
J. P. Krüger, J. Leifeld, S. Glatzel, S. Szidat, and C. Alewell
Biogeosciences, 12, 2861–2871, https://doi.org/10.5194/bg-12-2861-2015, https://doi.org/10.5194/bg-12-2861-2015, 2015
Short summary
Short summary
Biogeochemical soil parameters are studied to detect peatland degradation along a land use gradient (intensive, extensive, near-natural). Stable carbon isotopes, radiocarbon ages and ash content confirm peat growth in the near-natural bog but also indicate previous degradation. When the bog is managed extensively or intensively as grassland, all parameters indicate degradation and substantial C loss of the order of 18.8 to 42.9 kg C m-2.
T. Leppelt, R. Dechow, S. Gebbert, A. Freibauer, A. Lohila, J. Augustin, M. Drösler, S. Fiedler, S. Glatzel, H. Höper, J. Järveoja, P. E. Lærke, M. Maljanen, Ü. Mander, P. Mäkiranta, K. Minkkinen, P. Ojanen, K. Regina, and M. Strömgren
Biogeosciences, 11, 6595–6612, https://doi.org/10.5194/bg-11-6595-2014, https://doi.org/10.5194/bg-11-6595-2014, 2014
Y. Y. Yu, P. A. Finke, H. B. Wu, and Z. T. Guo
Geosci. Model Dev., 6, 29–44, https://doi.org/10.5194/gmd-6-29-2013, https://doi.org/10.5194/gmd-6-29-2013, 2013
Related subject area
Soils and biogeochemical cycling
Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)
Investigating the complementarity of thermal and physical soil organic carbon fractions
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Depth-dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Mixed signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
Biochar reduces early-stage mineralization rates of plant residues more in coarse than fine-texture soils – an artificial soil approach
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
The six rights of how and when to test for soil C saturation
Comprehensive increase in CO2 release by drying-rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Interactions of fertilisation and crop productivity on soil nitrogen cycle microbiome and gas emissions
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Contrasting potential for biological N2 fixation at three polluted central European Sphagnum peat bogs: combining the 15N2-tracer and natural-abundance isotope approaches
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments
Stable isotope signatures of soil nitrogen on an environmental–geomorphic gradient within the Congo Basin
Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs
Switch of fungal to bacterial degradation in natural, drained and rewetted oligotrophic peatlands reflected in δ15N and fatty acid composition
Catchment export of base cations: improved mineral dissolution kinetics influence the role of water transit time
Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence
Ruizhe Wang and Xia Hu
SOIL, 10, 859–871, https://doi.org/10.5194/soil-10-859-2024, https://doi.org/10.5194/soil-10-859-2024, 2024
Short summary
Short summary
This study characterized pore structure and soil organic carbon (SOC) fractions of aggregates during the seasonal freeze–thaw process. Freezing was associated with SOC accumulation, while the early stage of thawing was characterized by SOC loss. In the freezing period, pore structure could enhance SOC accumulation by promoting formation of > 80 μm pores. In the thawing period, pores of < 15 μm might inhibit SOC loss. These results present new perspectives on soil microstructure–SOC interactions.
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, and Vojtěch Enev
SOIL, 10, 813–826, https://doi.org/10.5194/soil-10-813-2024, https://doi.org/10.5194/soil-10-813-2024, 2024
Short summary
Short summary
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and various soil properties. Nine plots across an altitudinal range from 10 to 320 m were investigated in the deglaciated region of James Ross Island (Antarctica). Our results indicate that the primary factor influencing the SOC content is likely not altitude or coarse-fraction content; rather, other hard-to-quantify factors, such as the presence of liquid water during the summer period, impact SOC content.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024, https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary
Short summary
Land use change to cropping is known to greatly reduced organic carbon and nitrogen concentrations, but much remains unknown about the mechanisms influencing their persistence in soil. In a soil from a subtropical Australian cropping system, we demonstrate that organic carbon is protected by mineral associations but not particulate forms. Importantly, we also show that reversion from cropping to pasture or plantation can partially restore this organic carbon.
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024, https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary
Short summary
Our soil incubation experiment demonstrates that dissolved labile carbon substrate is a significant contributor to the soil particulate organic carbon pool. Dissolved carbon flow to particulate organic carbon is regulated by microbial biomass carbon and soil texture. The soil carbon model underestimates soil carbon sequestration when carbon flow from dissolved substrates to particulate organic carbon through microbial processes is not considered.
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1266, https://doi.org/10.5194/egusphere-2024-1266, 2024
Short summary
Short summary
With decreasing colloidal particle diameter, the total carbon content, organic carbon, organic functional groups content and illite content all increased. The critical coagulation concentrations (CCCs) values of soil colloids followed the descending order of d < 100 nm, d < 1 μm, d < 2 μm, thus soil nanoparticles exhibited strongest suspension stability.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
EGUsphere, https://doi.org/10.5194/egusphere-2024-1284, https://doi.org/10.5194/egusphere-2024-1284, 2024
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depth that need to be preserved.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1466, https://doi.org/10.5194/egusphere-2024-1466, 2024
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine what type of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1143, https://doi.org/10.5194/egusphere-2024-1143, 2024
Short summary
Short summary
Here, we investigated how biochar, a potential C sequestration tool, affects early carbon storage in different soil types. We created artificial soils to isolate the impact of soil texture. We found that biochar significantly reduces plant residue’s breakdown in all soil textures, but mainly sandy soils, which naturally hold less carbon. This suggests biochar could be a valuable tool for improving soil health, especially in sandy soils.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
EGUsphere, https://doi.org/10.5194/egusphere-2024-419, https://doi.org/10.5194/egusphere-2024-419, 2024
Short summary
Short summary
We incubated 10 Japanese soils to study CO2 release under drying-rewetting cycles (DWCs). CO2 release was increased by DWCs among all soils, showing soil-by-soil variations in CO2 release increase magnitude. Organo-Al complex was the primary predictor for the increase magnitude, suggesting vulnerability of carbon protection by reactive minerals against DWCs. Microbial biomass decrease by DWCs was also suggested, although its linkage with the CO2 release increase is unclear yet.
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
EGUsphere, https://doi.org/10.5194/egusphere-2024-848, https://doi.org/10.5194/egusphere-2024-848, 2024
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semiarid environment (olive grove). For this purpose, one year of automatic multi-chamber measurements were used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this manuscript.
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-593, https://doi.org/10.5194/egusphere-2024-593, 2024
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through the analysis of soil environmental characteristics and microbiome, soil N2O and N2 emissions, and biomass production. Results show that wheat was growing well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climate.
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024, https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Short summary
Cover crops have substantial impacts on soil properties, but so far it is not clear how long a legacy effect of cover cropping will remain in the soil. We found that cover crops attenuate negative effects on soil structure that come from soil cultivation. The combination of plants with different litter qualities and rhizodeposits in biodiverse cover crop mixtures can improve the positive effects of cover cropping on soil structure amelioration.
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, and Thomas W. Boutton
SOIL, 10, 93–108, https://doi.org/10.5194/soil-10-93-2024, https://doi.org/10.5194/soil-10-93-2024, 2024
Short summary
Short summary
Tree cover has increased in grasslands worldwide, with juniper and oak trees expanding in the southern Great Plains, USA. Here, we examine how these changes interact with geology to affect soil C, N, and P storage. Soil concentrations of these elements were significantly higher under trees than grasslands but increased more under trees growing on Edwards soils. Our results suggest that geology and vegetation change should be considered when predicting soil storage in dryland ecosystems globally.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
EGUsphere, https://doi.org/10.5194/egusphere-2024-107, https://doi.org/10.5194/egusphere-2024-107, 2024
Short summary
Short summary
Farmers frequently apply fresh organic matter such as crop residues to soil to boost its carbon content. Yet, one burning question remains: Does the quantity of applied organic matter affect its decomposition and that of native soil organic matter? Our experiments indicate that smaller application doses might deplete soil organic matter more rapidly. In contrast, applying intermediate or high doses might be a promising strategy for maintaining it.
Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Frantisek Veselovsky, Jan Curik, Eva Prechova, Arnost Komarek, and Leona Bohdalkova
SOIL, 9, 623–640, https://doi.org/10.5194/soil-9-623-2023, https://doi.org/10.5194/soil-9-623-2023, 2023
Short summary
Short summary
Biological N2 fixation helps to sustain carbon accumulation in peatlands and to remove CO2 from the atmosphere. Changes in N2 fixation may affect the dynamics of global change. Increasing inputs of reactive N from air pollution should lead to downregulation of N2 fixation. Data from three N-polluted peat bogs show an interplay of N2-fixation rates with 10 potential drivers of this process. N2 fixation was measurable only at one site characterized by high phosphorus and low sulfate availability.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023, https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Short summary
Across northern Europe, millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH, and initial soil SOC stocks (before liming).
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Claudia Cagnarini, Stephen Lofts, Luigi Paolo D'Acqui, Jochen Mayer, Roman Grüter, Susan Tandy, Rainer Schulin, Benjamin Costerousse, Simone Orlandini, and Giancarlo Renella
SOIL, 7, 107–123, https://doi.org/10.5194/soil-7-107-2021, https://doi.org/10.5194/soil-7-107-2021, 2021
Short summary
Short summary
Application of organic amendments, although considered a sustainable form of soil fertilisation, may cause an accumulation of trace elements (TEs) in the topsoil. In this research, we analysed the concentration of zinc, copper, lead and cadmium in a > 60-year experiment in Switzerland and showed that the dynamic model IDMM adequately predicted the historical TE concentrations in plots amended with farmyard manure, sewage sludge and compost and produced reasonable concentration trends up to 2100.
Simon Baumgartner, Marijn Bauters, Matti Barthel, Travis W. Drake, Landry C. Ntaboba, Basile M. Bazirake, Johan Six, Pascal Boeckx, and Kristof Van Oost
SOIL, 7, 83–94, https://doi.org/10.5194/soil-7-83-2021, https://doi.org/10.5194/soil-7-83-2021, 2021
Short summary
Short summary
We compared stable isotope signatures of soil profiles in different forest ecosystems within the Congo Basin to assess ecosystem-level differences in N cycling, and we examined the local effect of topography on the isotopic signature of soil N. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed, whereas the lowland forest and Miombo woodland experienced a more open N cycle. Topography only alters soil δ15N values in forests with high erosional forces.
Rota Wagai, Masako Kajiura, and Maki Asano
SOIL, 6, 597–627, https://doi.org/10.5194/soil-6-597-2020, https://doi.org/10.5194/soil-6-597-2020, 2020
Short summary
Short summary
Global significance of metals (extractable Fe and Al phases) to control organic matter (OM) in recognized. Next key questions include the identification of their localization and mechanism behind OM–metal relationships. Across 23 soils of contrasting mineralogy, Fe and Al phases were mainly associated with microbially processed OM as meso-density microaggregates. OM- and metal-rich nanocomposites with a narrow OM : metal ratio likely acted as binding agents. A new conceptual model was proposed.
Marco Panettieri, Denis Courtier-Murias, Cornelia Rumpel, Marie-France Dignac, Gonzalo Almendros, and Abad Chabbi
SOIL, 6, 435–451, https://doi.org/10.5194/soil-6-435-2020, https://doi.org/10.5194/soil-6-435-2020, 2020
Short summary
Short summary
In the context of global change, soil has been identified as a potential C sink, depending on land-use strategies. This work is devoted to identifying the processes affecting labile soil C pools resulting from changes in land use. We show that the land-use change in ley grassland provoked a decoupling of the storage and degradation processes after the grassland phase. Overall, the study enables us to develop a sufficient understanding of fine-scale C dynamics to refine soil C prediction models.
Miriam Groß-Schmölders, Pascal von Sengbusch, Jan Paul Krüger, Kristy Klein, Axel Birkholz, Jens Leifeld, and Christine Alewell
SOIL, 6, 299–313, https://doi.org/10.5194/soil-6-299-2020, https://doi.org/10.5194/soil-6-299-2020, 2020
Short summary
Short summary
Degradation turns peatlands into a source of CO2. There is no cost- or time-efficient method available for indicating peatland hydrology or the success of restoration. We found that 15N values have a clear link to microbial communities and degradation. We identified trends in natural, drained and rewetted conditions and concluded that 15N depth profiles can act as a reliable and efficient tool for obtaining information on current hydrology, restoration success and drainage history.
Martin Erlandsson Lampa, Harald U. Sverdrup, Kevin H. Bishop, Salim Belyazid, Ali Ameli, and Stephan J. Köhler
SOIL, 6, 231–244, https://doi.org/10.5194/soil-6-231-2020, https://doi.org/10.5194/soil-6-231-2020, 2020
Short summary
Short summary
In this study, we demonstrate how new equations describing base cation release from mineral weathering can reproduce patterns in observations from stream and soil water. This is a major step towards modeling base cation cycling on the catchment scale, which would be valuable for defining the highest sustainable rates of forest harvest and levels of acidifying deposition.
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020, https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Cited articles
Aciego Pietri, J. C. and Brookes, P. C.: Nitrogen mineralisation along a pH
gradient of a silty loam UK soil, Soil Biol. Biochem., 40, 797–802,
https://doi.org/10.1016/j.soilbio.2007.10.014, 2008.
Adamsen, A. P. S. and King, G. M.: Methane Consumption in Temperate and
Subarctic Forest Soils: Rates, Vertical Zonation, and Responses to Water and
Nitrogen, Appl. Environ Microbiol., 59, 485–490,
https://doi.org/10.1128/aem.59.2.485-490.1993, 1993.
Ambus, P.: Nitrous oxide production by denitrification and nitrification in
temperate forest, grassland and agricultural soils, Eur. J. Soil Sci., 49,
495–502, https://doi.org/10.1046/j.1365-2389.1998.4930495.x, 1998.
Ambus, P., Zechmeister-Boltenstern, S., and Butterbach-Bahl, K.: Sources of nitrous oxide emitted from European forest soils, Biogeosciences, 3, 135–145, https://doi.org/10.5194/bg-3-135-2006, 2006.
Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino,
M. C., Butterbach-Bahl, K., and Verchot, L. V: Spatial variability of soil
N2O and CO2 fluxes in different topographic positions in a tropical montane
forest in Kenya, J. Geophys. Res.-Biogeo., 122, 514–527,
https://doi.org/10.1002/2016JG003667, 2017.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models using lme4, J. Stat. Softw., 67, 1–48, 2015.
Borken, W. and Beese, F.: Methane and nitrous oxide fluxes of soils in pure
and mixed stands of European beech and Norway spruce, Eur. J. Soil Sci., 57,
617–625, https://doi.org/10.1111/j.1365-2389.2005.00752.x, 2006.
Born, M., Dorr, H., and Levin, I.: Methane consumption in aerated soils of
the temperate zone, Tellus B, 42, 2–8,
https://doi.org/10.1034/j.1600-0889.1990.00002.x, 1990.
Brumme, R. and Borken, W.: Site variation in methane oxidation as affected
by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cy., 13, 493–501, https://doi.org/10.1029/1998GB900017, 1999.
Buchmann, N.: Biotic and abiotic factors controlling soil respiration rates
in Picea abies stands, Soil Biol. Biochem., 32, 1625–1635,
https://doi.org/10.1016/S0038-0717(00)00077-8, 2000.
Burt, T. P. and Butcher, D. P.: Topographic controls of soil moisture
distributions, J. Soil Sci., 36, 469–486,
https://doi.org/10.1111/j.1365-2389.1985.tb00351.x, 1985.
Butler, J., Goetz, H., and Richardson, J. L.: Vegetation and Soil-Landscape
Relationships in the North Dakota Badlands, Am. Midland Nat.,
116, 378, https://doi.org/10.2307/2425746, 1986.
Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S.,
Papen, H., and Kiese, R.: Temporal variations of fluxes of NO, NO2, N2O,
CO2, and CH4 in a tropical rain forest ecosystem, Global Biogeochem. Cy.,
18, GB3012, https://doi.org/10.1029/2004GB002243, 2004.
Butterbach-bahl, K., Kiese, R., and Liu, C.: Chapter eighteen – Measurements
of Biosphere – Atmosphere Exchange of CH4 in Terrestrial Ecosystems, in:
Methods in Enzymology, vol. 495, Elsevier Inc., 271–287,
https://doi.org/10.1016/B978-0-12-386905-0.00018-8, 2011.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. Roy. Soc. B, 368, 20130122,
https://doi.org/10.1098/rstb.2013.0122, 2013.
Butterbach-Bahl, K., Diaz-Pines, E., and Dannenmann, M.: Soil Trace Gas
Emissions and Climate Change, in: Global Environmental Change, Springer
Netherlands, Dordrecht, 325–334,
https://doi.org/10.1007/978-94-007-5784-4_ 4, 2014.
Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D., and Bowden, R.
D.: Factors controlling atmospheric methane consumption by temperate forest
soils, Global Biogeochem. Cy., 9, 1–10,
https://doi.org/10.1029/94GB02651, 1995.
Cowan, N. J., Famulari, D., Levy, P. E., Anderson, M., Reay, D. S., and Skiba, U. M.: Investigating uptake of N2O in agricultural soils using a high-precision dynamic chamber method, Atmos. Meas. Tech., 7, 4455–4462, https://doi.org/10.5194/amt-7-4455-2014, 2014.
Creed, I. F., Webster, K. L., Braun, G. L., Bourbonnière, R. A., and
Beall, F. D.: Topographically regulated traps of dissolved organic carbon
create hotspots of soil carbon dioxide efflux in forests, Biogeochemistry,
112, 149–164, https://doi.org/10.1007/s10533-012-9713-4, 2013.
Cronan, C. S.: Ecosystem Biogeochemistry, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-66444-6, 2018.
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V, and Veldkamp,
E.: Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric
Oxides, Bioscience, 50, 667,
https://doi.org/10.1641/0006-3568(2000)050[0667:tacmos]2.0.co;2, 2000.
Davidson, E. A., Savage, K., Verchot, L. V., and Navarro, R.: Minimizing
artifacts and biases in chamber-based measurements of soil respiration,
Agr. Forest Meteorol., 113, 21–37,
https://doi.org/10.1016/S0168-1923(02)00100-4, 2002.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual
Arrhenius and Michaelis-Menten kinetics model for decomposition of soil
organic matter at hourly to seasonal time scales, Global Change Biol., 18,
371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Davidson, EriC. A., Belk, E., and Boone, R. D.: Soil water content and
temperature as independent or confounded factors controlling soil
respiration in a temperate mixed hardwood forest, Global Change Biol., 4,
217–227, https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998.
Diaz-Pines, E. and Gasch, J.: Rosalia Lehrforst Austria – Meteorological
Data 2001–2020,
https://b2share.eudat.eu/records/681966be29a34f3ebc6015ac255ab143, 2021.
Eickenscheidt, N. and Brumme, R.: Contribution of 15N-labelled leaf litter
to N turnover, nitrous oxide emissions and N sequestration in a beech forest
during eleven years, Plant Soil, 362, 67–77,
https://doi.org/10.1007/s11104-012-1245-0, 2013.
Epron, D., Farque, L., Lucot, É., and Badot, P.-M.: Soil CO2 efflux in a
beech forest: dependence on soil temperature and soil water content, Ann. For.
Sci., 56, 221–226, https://doi.org/10.1051/forest:19990304, 1999.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil
bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–631,
https://doi.org/10.1073/pnas.0507535103, 2006.
Fürst, J., Nachtnebel, H. P., Gasch, J., Nolz, R., Stockinger, M. P., Stumpp, C., and Schulz, K.: Rosalia: an experimental research site to study hydrological processes in a forest catchment, Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, 2021.
Gillespie, L. M., Triches, N. Y., Abalos, D., Finke, P., Zechmeister-Boltenstern, S., Glatzel, S., and Diaz-Pines, E.: Soil CO2, CH4 and N2O fluxes, soil and litter parameters and meteorological data from a temperate upland forest along a land inclination gradient [data set], https://b2share.eudat.eu/records/3900981a45684bfea5d648eb744622d3, last access: 4 September 2023,
2023.
Gundersen, P., Christiansen, J. R., Alberti, G., Brüggemann, N., Castaldi, S., Gasche, R., Kitzler, B., Klemedtsson, L., Lobo-do-Vale, R., Moldan, F., Rütting, T., Schleppi, P., Weslien, P., and Zechmeister-Boltenstern, S.: The response of methane and nitrous oxide fluxes to forest change in Europe, Biogeosciences, 9, 3999–4012, https://doi.org/10.5194/bg-9-3999-2012, 2012.
Hahn, M., Gartner, K., and Zechmeister-Boltenstern, S.: Greenhouse gas
emissions (N2O, CO2 and CH4) from three forest soils near Vienna (Austria)
with different water and nitrogen regimes, Die Bodenkultur, 2, 115–125,
2000.
Hairston, A. B. and Grigal, D. F.: Topographic variation in soil water and
nitrogen for two forested landforms in Minnesota, USA, Geoderma, 64,
125–138, https://doi.org/10.1016/0016-7061(94)90093-0, 1994.
Hanson, P. J., Wullschleger, S. D., Bohlman, S. A., and Todd, D. E.:
Seasonal and topographic patterns of forest floor CO2 efflux from an upland
oak forest, Tree Physiol., 13, 1–15,
https://doi.org/10.1093/treephys/13.1.1, 1993.
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60,
439–471, https://doi.org/10.1128/mr.60.2.439-471.1996, 1996.
Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner,
C., Li, K., Moore, K. L., Ingrisch, J., Reinthaler, D.,
Zechmeister-Boltenstern, S., Glatzel, S., Brüggemann, N., and Bahn, M.:
Denitrifying pathways dominate nitrous oxide emissions from managed
grassland during drought and rewetting, Sci. Adv., 7, eabb7118,
https://doi.org/10.1126/sciadv.abb7118, 2021.
Hiltbrunner, D., Zimmermann, S., Karbin, S., Hagedorn, F., and Niklaus, P.
A.: Increasing soil methane sink along a 120-year afforestation
chronosequence is driven by soil moisture, Global Change Biol., 18, 3664–3671,
https://doi.org/10.1111/j.1365-2486.2012.02798.x, 2012.
Hinsinger, P., Plassard, C., Tang, C., and Jaillard, B.: Origins of
root-mediated pH changes in the rhizosphere and their responses to
environmental constraints: A review, Plant. Soil, 248, 43–59,
https://doi.org/10.1023/A:1022371130939, 2003.
Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field
Measurement of Nitrous Oxide Fluxes, Soil Sci. Soc. Am.
J., 45, 311–316,
https://doi.org/10.2136/sssaj1981.03615995004500020017x, 1981.
IPCC: IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and
Vulnerability, Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge University Press, Cambridge, UK and New York,
https://doi.org/10.1017/9781009325844, 2022.
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann,
N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grünwald, T.,
Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik,
Ü., Morgenstern, K., Oltchev, S., Clement, R., Guðmundsson, J.,
Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M.,
Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E.-D.,
Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., and Valentini,
R.: Productivity overshadows temperature in determining soil and ecosystem
respiration across European forests, Global Change Biol., 7, 269–278,
https://doi.org/10.1046/j.1365-2486.2001.00412.x, 2001.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest
Package: Tests in Linear Mixed Effects Models, J. Stat. Softw., 82,
https://doi.org/10.18637/jss.v082.i13, 2017.
Lamprea Pineda, P. A., Bauters, M., Verbeeck, H., Baez, S., Barthel, M., Bodé, S., and Boeckx, P.: Ideas and perspectives: patterns of soil CO2, CH4, and N2O fluxes along an altitudinal gradient – a pilot study from an Ecuadorian neotropical montane forest, Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, 2021.
Leitner, S., Sae-Tun, O., Kranzinger, L., Zechmeister-Boltenstern, S., and
Zimmermann, M.: Contribution of litter layer to soil greenhouse gas
emissions in a temperate beech forest, Plant. Soil, 403, 455–469,
https://doi.org/10.1007/s11104-015-2771-3, 2016.
Lin, H. S., Kogelmann, W., Walker, C., and Bruns, M. A.: Soil moisture
patterns in a forested catchment: A hydropedological perspective, Geoderma,
131, 345–368, https://doi.org/10.1016/j.geoderma.2005.03.013, 2006.
Liu, H., Li, Y., Pan, B., Zheng, X., Yu, J., Ding, H., and Zhang, Y.:
Pathways of soil N2O uptake, consumption, and its driving factors: a review,
Environmental Science and Pollution Research, 29, 30850–30864,
https://doi.org/10.1007/s11356-022-18619-y, 2022.
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315, https://doi.org/10.2307/2389824, 1994.
Lookingbill, T. and Urban, D.: An empirical approach towards improved
spatial estimates of soil moisture for vegetation analysis, Lands. Ecol., 19,
417–433, https://doi.org/10.1023/B:LAND.0000030451.29571.8b, 2004.
Lovett, G. M., Weathers, K. C., Arthur, M. A., and Schultz, J. C.: Nitrogen
cycling in a northern hardwood forest: Do species matter?, Biogeochemistry,
67, 289–308, https://doi.org/10.1023/B:BIOG.0000015786.65466.f5, 2004.
Luo, G. J., Brüggemann, N., Wolf, B., Gasche, R., Grote, R., and Butterbach-Bahl, K.: Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Höglwald Forest, Germany, Biogeosciences, 9, 1741–1763, https://doi.org/10.5194/bg-9-1741-2012, 2012.
Marrero, T. R. and Mason, E. A.: Gaseous Diffusion Coefficients, J. Phys. Chem.
Ref. Data, 1, 3–118, https://doi.org/10.1063/1.3253094, 1972.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of
methane by soils: A review, Eur. J. Soil Biol., 37, 25–50,
https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
Nakagawa, S., Johnson, P. C. D., and Schielzeth, H.: The coefficient of
determination R2 and intra-class correlation coefficient from generalized
linear mixed-effects models revisited and expanded, J. R. Soc. Interface, 14,
20170213, https://doi.org/10.1098/rsif.2017.0213, 2017.
Nash, J. C. and Varadhan, R.: Unifying Optimization Algorithms to Aid
Software System Users: optimx for R, J. Stat. Softw., 43,
https://doi.org/10.18637/jss.v043.i09, 2011.
ÖNORM: ÖNORM L 1061, Physical investigations of soil; determination of grain size distribution of soils less than 2 mm particle size, Österreichisches Normungsinstitut, Vienna, Austria, 1988.
ÖNORM: ÖNORM L 1083, Chemical analyses of soils – Determination of acidity (pH value), Österreichisches Normungsinstitut, Vienna, Austria, 2006.
ÖNORM: ÖNORM L 1080, Chemical Analyses of Soils – Determination of Organic Carbon by Dry Combustion with and without Consideration of Carbonates, Österreichisches Normungsinstitut, Vienna, Austria, 2013.
Ou, Y., Rousseau, A. N., Wang, L., Yan, B., Gumiere, T., and Zhu, H.:
Identification of the alteration of riparian wetland on soil properties,
enzyme activities and microbial communities following extreme flooding,
Geoderma, 337, 825–833, https://doi.org/10.1016/j.geoderma.2018.10.032,
2019.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993,
https://doi.org/10.1126/science.1201609, 2011.
Parkin, T. B., Venterea, R. T., and Hargreaves, S. K.: Calculating the
Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements, J.
Environ. Qual., 41, 705–715, https://doi.org/10.2134/jeq2011.0394, 2012.
Pilegaard, K., Skiba, U., Ambus, P., Beier, C., Brüggemann, N., Butterbach-Bahl, K., Dick, J., Dorsey, J., Duyzer, J., Gallagher, M., Gasche, R., Horvath, L., Kitzler, B., Leip, A., Pihlatie, M. K., Rosenkranz, P., Seufert, G., Vesala, T., Westrate, H., and Zechmeister-Boltenstern, S.: Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O), Biogeosciences, 3, 651–661, https://doi.org/10.5194/bg-3-651-2006, 2006.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M.,
Janssens, I., Yuste, J. C., Grünzweig, J. M., Reth, S., Subke, J.-A.,
Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth,
A., and Hari, P.: Comparison of different chamber techniques for measuring
soil CO2 efflux, Agr. Forest Meteorol., 123, 159–176,
https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
Quebbeman, A. W., Menge, D. N. L., Zimmerman, J., and Uriarte, M.: Spatial
Variation in Soil Greenhouse Gas Fluxes in a Subtropical Forest, Ecosystems,
25, https://doi.org/10.1007/s10021-021-0067, 2022.
Raich, J. W. and Potter, C. S.: Global patterns of carbon dioxide emissions
from soils, Global Biogeochem. Cy., 9, 23–36,
https://doi.org/10.1029/94GB02723, 1995.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2022.
Reth, S., Reichstein, M., and Falge, E.: The effect of soil water content,
soil temperature, soil pH-value and the root mass on soil CO2 efflux – A
modified model, Plant. Soil, 268, 21–33,
https://doi.org/10.1007/s11104-005-0175-5, 2005.
Savage, K., Phillips, R., and Davidson, E.: High temporal frequency measurements of greenhouse gas emissions from soils, Biogeosciences, 11, 2709–2720, https://doi.org/10.5194/bg-11-2709-2014, 2014.
Schad, P.: The International Soil Classification System WRB, Third Edition,
2014, in: Springer Water, Springer International Publishing, 563–571,
https://doi.org/10.1007/978-3-319-24409-9_ 25, 2016.
Schimel, J. P.: Life in Dry Soils: Effects of drought on soil microbial
communities and processes, Annu. Rev. Ecol. Evol. Syst., 49, 409–432,
https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K.,
Hansen, S., Brumme, R., Borken, W., Christensen, S., Priemé, A., Fowler,
D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A.,
Degórska, A., and Orlanski, P.: Oxidation of atmospheric methane in
Northern European soils, comparison with other ecosystems, and uncertainties
in the global terrestrial sink, Global Change Biol., 6, 791–803,
https://doi.org/10.1046/j.1365-2486.2000.00356.x, 2000.
Subke, J.-A., Kutzbach, L., and Risk, D.: Soil Chamber Measurements, in:
Springer Handbook of Atmospheric Measurements, Springer International
Publishing, 1603–1624,
https://doi.org/10.1007/978-3-030-52171-4_ 60, 2021.
Thomas, P. A. and Packham, J. R.: Energy and nutrients. In Ecology of Woodlands and Forests: Description, Dynamics and Diversity, Cambridge: Cambridge University Press, 318–349,
https://doi.org/10.1017/CBO9780511805578.010, 2007.
Unger, I. M., Motavalli, P. P., and Muzika, R.-M.: Changes in soil chemical
properties with flooding: A field laboratory approach, Agr. Ecosyst. Environ., 131, 105–110, https://doi.org/10.1016/j.agee.2008.09.013, 2009.
Vilain, G., Garnier, J., Passy, P., Silvestre, M., and Billen, G.: Budget of N2O emissions at the watershed scale: role of land cover and topography (the Orgeval basin, France), Biogeosciences, 9, 1085–1097, https://doi.org/10.5194/bg-9-1085-2012, 2012.
Walkiewicz, A., Rafalska, A., Bulak, P., Bieganowski, A., and Osborne, B.:
How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils?, A
Mini-Review, Forests, 12, 1276, https://doi.org/10.3390/f12091276, 2021.
Wang, Y., Wang, H., Ma, Z., Dai, X., Wen, X., Liu, Y., and Wang, Z.-L.: The
litter layer acts as a moisture-induced bidirectional buffer for atmospheric
methane uptake by soil of a subtropical pine plantation, Soil Biol. Biochem.,
66, 45–50, https://doi.org/10.1016/j.soilbio.2013.06.018, 2013.
Warner, D. L., Vargas, R., Seyfferth, A., and Inamdar, S.: Transitional
slopes act as hotspots of both soil CO2 emission and CH4 uptake in a
temperate forest landscape, Biogeochemistry, 138, 121–135,
https://doi.org/10.1007/s10533-018-0435-0, 2018.
Webster, K. L., Creed, I. F., Bourbonnière, R. A., and Beall, F. D.:
Controls on the heterogeneity of soil respiration in a tolerant hardwood
forest, J. Geophys. Res., 113, G03018, https://doi.org/10.1029/2008JG000706,
2008.
Wrage, N., Lauf, J., del Prado, A., Pinto, M., Pietrzak, S., Yamulki, S.,
Oenema, O., and Gebauer, G.: Distinguishing sources of N2O in European
grasslands by stable isotope analysis, Rapid Communications in Mass
Spectrometry, 18, 1201–1207, https://doi.org/10.1002/rcm.1461, 2004.
Yu, K., Faulkner, S. P., and Baldwin, M. J.: Effect of hydrological
conditions on nitrous oxide, methane, and carbon dioxide dynamics in a
bottomland hardwood forest and its implication for soil carbon
sequestration, Global Change Biol., 14, 798–812,
https://doi.org/10.1111/j.1365-2486.2008.01545.x, 2008.
Yu, L., Zhu, J., Ji, H., Bai, X., Lin, Y., Zhang, Y., Sha, L., Liu, Y.,
Song, Q., Dörsch, P., Mulder, J., and Zhou, W.: Topography-related
controls on N2O emission and CH4 uptake in a tropical rainforest catchment,
Science of The Total Environment, 775, 145616,
https://doi.org/10.1016/j.scitotenv.2021.145616, 2021.
Zechmeister-Boltenstern, S., Díaz-Pinés, E., Spann, C., Hofmann,
K., Schnecker, J., and Reinsch, S.: Soil – The Hidden Part of Climate, in:
Soil and Climate, CRC Press, Boca Raton, FL: CRC Press, Taylor & Francis
Group, 2018, Adv. Soil Sci., 11–60,
https://doi.org/10.1201/b21225-2, 2018.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.:
Mixed effects models and extensions in ecology with R, Springer New York,
New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4),...