Articles | Volume 9, issue 2
https://doi.org/10.5194/soil-9-411-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-411-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping land degradation risk due to land susceptibility to dust emission and water erosion
Mahdi Boroughani
CORRESPONDING AUTHOR
Research Center for Geoscience and Social Studies, Hakim Sabzevari
University, Sabzevar, Iran
Fahimeh Mirchooli
Research Center for Geoscience and Social Studies, Hakim Sabzevari
University, Sabzevar, Iran
Lab Expert, Sari agricultural Science and Natural Resources
University, Sari, Iran
Mojtaba Hadavifar
Environmental Sciences Department, Hakim Sabzevari University,
Sabzevar, Iran
Stephanie Fiedler
GEOMAR Helmholtz Centre for Ocean Research Kiel & Faculty of
Mathematics and Natural Sciences, Christian-Albrecht University of Kiel, Kiel,
Germany
Related authors
No articles found.
Stephanie Fiedler, Fiona M. O'Connor, Duncan Watson-Parris, Robert J. Allen, William J. Collins, Paul T. Griffiths, Matthew Kasoar, Jarmo Kikstra, Jasper F. Kok, Lee T. Murray, Fabien Paulot, Maria Sand, Steven Turnock, James Weber, Laura J. Wilcox, and Vaishali Naik
EGUsphere, https://doi.org/10.5194/egusphere-2025-5669, https://doi.org/10.5194/egusphere-2025-5669, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Aerosol and Chemistry Model Intercomparison Project phase two (AerChemMIP2) allows the community to compare results from contemporary Earth system models. AerChemMIP2 is asking modelling centres to perform experiments following the same protocol. It includes experiments for enabling new science and for tracking progress. Model output will be used for addressing research and policy questions about anthropogenic and natural drivers of climate change, and the impacts on air quality.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Domenico Cimini, Rémi Gandoin, Stephanie Fiedler, Claudia Acquistapace, Andrea Balotti, Sabrina Gentile, Edoardo Geraldi, Christine Knist, Pauline Martinet, Saverio T. Nilo, Giandomenico Pace, Bernhard Pospichal, and Filomena Romano
Atmos. Meas. Tech., 18, 2041–2067, https://doi.org/10.5194/amt-18-2041-2025, https://doi.org/10.5194/amt-18-2041-2025, 2025
Short summary
Short summary
Atmospheric stability indicates whether air vertical motion is dumped or amplified. This is important for wind energy applications as it affects wind turbine wakes and thus the yield of wind parks. The paper provides an assessment of stability metrics measured by ground-based microwave radiometers in different climatological conditions and instrument types, onshore and offshore. Results indicate that special precaution may be required offshore to achieve typical onshore performances.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Mark Reyers, Stephanie Fiedler, Patrick Ludwig, Christoph Böhm, Volker Wennrich, and Yaping Shao
Clim. Past, 19, 517–532, https://doi.org/10.5194/cp-19-517-2023, https://doi.org/10.5194/cp-19-517-2023, 2023
Short summary
Short summary
In this study we performed high-resolution climate model simulations for the hyper-arid Atacama Desert for the mid-Pliocene (3.2 Ma). The aim is to uncover the atmospheric processes that are involved in the enhancement of strong rainfall events during this period. We find that strong upper-level moisture fluxes (so-called moisture conveyor belts) originating in the tropical eastern Pacific are the main driver for increased rainfall in the mid-Pliocene.
Eduardo Weide Luiz and Stephanie Fiedler
Wind Energ. Sci., 7, 1575–1591, https://doi.org/10.5194/wes-7-1575-2022, https://doi.org/10.5194/wes-7-1575-2022, 2022
Short summary
Short summary
This work analyses a meteorological event, called nocturnal low-level jets (NLLJs), defined as high wind speeds relatively close to the surface. There were positive and negative impacts from NLLJs. While NLLJs increased the mean power production, they also increased the variability in the wind with height. Our results imply that long NLLJ events are also larger, affecting many wind turbines at the same time. Short NLLJ events are more local, having stronger effects on power variability.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Robin D. Lamboll, Chris D. Jones, Ragnhild B. Skeie, Stephanie Fiedler, Bjørn H. Samset, Nathan P. Gillett, Joeri Rogelj, and Piers M. Forster
Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, https://doi.org/10.5194/gmd-14-3683-2021, 2021
Short summary
Short summary
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. We can estimate the changes in emissions at a country level, but to make predictions about how this will affect our climate, we need more precise information about where the emissions happen. Here we combine older estimates of where emissions normally occur with very recent estimates of sector activity levels to enable different groups to make simulations of the climatic effects of lockdown.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Cited articles
Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., and Afzali, S. F.: Assessment of
the importance of gully erosion effective factors using Boruta algorithm and
its spatial modeling and mapping using three machine learning algorithms,
Geoderma, 340, 55–69, https://doi.org/10.1016/j.geoderma.2018.12.042, 2019.
Anache, J. A. A., Flanagan, D. C., Srivastava, A., and Wendland, E. C.: Land use and climate
change impacts on runoff and soil erosion at the hillslope scale in the
Brazilian Cerrado, Sci. Total Environ., 622, 140–151,
https://doi.org/10.1016/j.scitotenv.2017.11.257, 2018
Arabameri, A., Chen, W., Loche, M., Zhao, X., Li, Y., Lombardo, L., Cerda, A.,
Pradhan, B., and Bui, D. T.: Comparison of machine learning models for gully erosion
susceptibility mapping, Geosci. Front., 11, 1609–1620,
https://doi.org/10.1016/j.gsf.2019.11.009, 2019a.
Arabameri, A., Pradhan, B., and Rezaei, K.: Gully erosion zonation mapping using
integrated geographically weighted regression with certainty factor and
random forest models in GIS, J. Environ. Manag., 232, 928–942,
https://doi.org/10.1016/j.jenvman.2018.11.110, 2019b.
Avand, M., Moradi, H. R., and Lasboyee, M. R.: Spatial prediction of future flood risk:
An approach to the effects of climate change, Geosciences, 11, 1–20,
https://doi.org/10.3390/geosciences11010025, 2021.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model
of basin hydrology/Un modèle à base physique de zone d'appel
variable de l'hydrologie du bassin versant, Hydrol. Sci. J., 24, 43–69,
1979.
Boroughani, M., Mohammadi, M., Mirchooli, F., and Fiedler, S.: Assessment of the
impact of dust aerosols on crop and water loss in the Great Salt Desert in
Iran, Comput. Electron. Agr., 192, 106605, https://doi.org/10.1016/j.compag.2021.106605, 2022.
Boroughani, M. and Pourhashemi, S.: Susceptibility Zoning of Dust Source Areas by
Data Mining Methods over Khorasan Razavi Province, Q. J. Environ.
Erosion Res., 9, 1–22, 2020.
Boroughani, M., Pourhashemi, S., Hashemi, H., Salehi, M., Amirahmadi, A., Asadi,
M. A., and Berndtsson, R.: Application of remote sensing techniques and machine
learning algorithms in dust source detection and dust source susceptibility
mapping, Ecol. Inform., 56, 101059,
https://doi.org/10.1016/j.ecoinf.2020.101059, 2020.
Boroughani, M., Pourhashemi, S., Gholami, H., and Kaskaoutis, D. G.: 2021. Predicting
of dust storm source by combining remote sensing, statistic-based predictive
models and game theory in the Sistan watershed, southwestern Asia, J. Arid
Land., 13, 1103–1121, 2021.
Breiman, L.: Random forests, Mach Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Chicas, S. D., Omine, K., and Ford, J. B.: Identifying erosion hotspots and assessing
communities perspectives on the drivers, underlying causes and impacts of
soil erosion in Toledo's Rio Grande Watershed: Belize, Appl. Geogr., 68,
57–67, https://doi.org/10.1016/j.apgeog.2015.11.010, 2016.
Darvand, S., Khosravi, H., Keshtkar, H., Zehtabian, G., and Rahmati, O.: Comparison
of machine learning models to prioritize susceptible areas to dust
production, J. Watershed Manag. Res., 74, 53–68, 2021.
Derakhshan-Babaei, F., Mirchooli, F., Mohammadi, M., Nosrati, K., and Egli, M.:
Tracking the origin of trace metals in a watershed by identifying
fingerprints of soils, landscape and river sediments, Sci. Total Environ.,
835, 155583, https://doi.org/10.1016/j.scitotenv.2022.155583, 2022.
Duniway, M. C., Pfennigwerth, A. A., Fick, S. E., Nauman, T. W., Belnap, J., and Barger, N. N.: Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world, Ecosphere., 10, e02650, https://doi.org/10.1002/ecs2.2650, 2019.
Ebrahimi-khusfi, Z., Taghizadeh-mehrjardi, R., and Mirakbari, M.: Evaluation of
machine learning models for predicting the temporal variations of dust storm
index in arid regions of Iran, Atmos. Pollut. Res., 12, 134–147,
https://doi.org/10.1016/j.apr.2020.08.029, 2021.
Emadodin, I., Narita, D., and Rudolf, H.: Soil degradation and agricultural
sustainability: an overview from Iran, Environ. Dev. Sustain., 14,
611–625, https://doi.org/10.1007/s10668-012-9351-y, 2012.
Gao, L., Bowker, M. A., Xu, M., Sun, H., Tuo, D., and Zhao, Y.: Biological soil crusts
decrease erodibility by modifying inherent soil properties on the Loess
Plateau, China, Soil Biol. Biochem., 105, 49–58,
https://doi.org/10.1016/j.soilbio.2016.11.009, 2017.
Gao, X., Xie, Y., Liu, G., Liu, B., and Duan, X.: Effects of soil erosion on soybean
yield as estimated by simulating gradually eroded soil profiles, Soil
Till. Res., 145, 126–134, 2015.
Gherboudj, I., Beegum, S. N., and Ghedira, H.: Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth-Sci. Rev., 165, 342–355, https://doi.org/10.1016/j.earscirev.2016.12.010, 2017.
Gholami, H., Kordestani, M. D., Li, J., Telfer, M. W., and Fathabadi, A.: Diverse
sources of aeolian sediment revealed in an arid landscape in southeastern
Iran using a modified Bayesian un-mixing model, Aeolian Res., 41, 100547, https://doi.org/10.1016/j.aeolia.2019.100547,
2019a.
Gholami, H., Mohammadifar, A., and Collins, A. L.: Spatial mapping of the provenance
of storm dust: Application of data mining and ensemble modelling Hamid,
Atmos. Res., 233, 104716, https://doi.org/10.1016/j.atmosres.2019.104716, 2019b.
Gholami, H., Mohamadifar, A., Sorooshian, A., and Jansen, J. D.:
Machine-learning algorithms for predicting land susceptibility to dust
emissions: The case of the Jazmurian Basin, Iran, Atmos. Pollut. Res., 11,
1303–1315, https://doi.org/10.1016/j.apr.2020.05.009, 2020a.
Gholami, H., Mohammadifar, A., Pourghasemi, H. R., and Collins, A. L.: A new integrated
data mining model to map spatial variation in the susceptibility of land to
act as a source of aeolian dust, Environ. Sci. Pollut. Res., 27,
42022–42039, 2020b.
Ghorbanzadeh, O., Valizadeh Kamran, K., Blaschke, T., Aryal, J., Naboureh, A.,
Einali, J., and Bian, J.: Spatial Prediction of Wildfire Susceptibility Using
Field Survey GPS Data and Machine Learning Approaches, Fire, 2, 1–23, 2019.
Gia, T., Degener, J., and Kappas, M.: Integrated universal soil loss equation
(USLE) and Geographical Information System (GIS) for soil erosion estimation
in A Sap basin: Central Vietnam, Int. Soil Water Conserv. Res., 6, 99–110,
https://doi.org/10.1016/j.iswcr.2018.01.001, 2018.
Halecki, W., Kruk, E., and Ryczek, M.: Land Use Policy Loss of topsoil and soil
erosion by water in agricultural areas: A multi- criteria approach for
various land use scenarios in the Western Carpathians using a SWAT model,
Land Use Policy, 73, 363–372,
https://doi.org/10.1016/j.landusepol.2018.01.041, 2018.
Hao, J., Ma, C., Gao, C., Qiu, J., Wang, M., Zhang, Y., and Xu, P.: Pseudomonas stutzeri as a novel biocatalyst for pyruvate production from DL-lactate, Biotechnol. Lett., 29, 105–110, https://doi.org/10.1007/s10529-006-9204-6, 2007.
Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M.,
and Behbahani, A. M.: How can statistical and artificial intelligence approaches
predict piping erosion susceptibility?, Sci. Total Environ., 646,
1554–1566, https://doi.org/10.1016/j.scitotenv.2018.07.396, 2019.
Hahnenberger, M. and Nicoll, K.: Geomorphic and land cover identification of dust
sources in the eastern Great Basin of Utah, USA, Geomorphology, 204,
657–672, https://doi.org/10.1016/j.geomorph.2013.09.013, 2014.
Jafari, M., Mesbahzadeh, T., Masoudi, R., Zehtabian, G., and Amouei Torkmahalleh, M.:
Dust storm surveying and detection using remote sensing data, wind tracing,
and atmospheric thermodynamic conditions (case study: Isfahan Province,
Iran), Air Qual. Atmos. Health., 14, 1301–1311, 2021.
Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., and Mansor, S.: Assessment of
the effects of training data selection on the landslide susceptibility
mapping: a comparison between support vector machine (SVM), logistic
regression (LR) and artificial neural networks (ANN), Geomatics, Nat.
Hazards Risk., 5705, 1–21, https://doi.org/10.1080/19475705.2017.1407368,
2017.
Kalantar, B., Ueda, N., Saeidi, V., Ahmadi, K., Halin, A. A., and Shabani, F.: Landslide
susceptibility mapping: Machine and ensemble learning based on remote
sensing big data, Remote Sens., 12, 1–23,
https://doi.org/10.3390/rs12111737, 2020.
Kim, J. W. and Kim, H. G.: Landslide susceptibility analysis by type of cultural
heritage site using ensemble model: Case study of the Chungcheong Region of
South Korea, Sens. Mater., 33, 3819–3833,
https://doi.org/10.18494/SAM.2021.3593, 2021.
Lal, R. and Moldenhauer, W. C.: Effects of soil erosion on crop productivity,
Effects of soil erosion on crop productivity, Crit. Rev. Plant Sci., 5, 303–367,
https://doi.org/10.1080/07352688709382244, 2008.
Lee, J. A., Gill, T. E., Mulligan, K. R., Acosta, M. D., and Perez, A. E.: Land use/land cover
and point sources of the 15 December 2003 dust storm in southwestern North
America, Geomorphology, 105, 18–27, 2009.
Lee, S., Hong, S.-M., and Jung, H. S.: GIS-based groundwater potential mapping using
artificial neural network and support vector machine models: the case of
Boryeong city in Korea, Geocarto Int., 6049, 1–15,
https://doi.org/10.1080/10106049.2017.1303091, 2017.
Lei, L., Huang, X., Zhang, S., Yang, J., Yang, L., and Xu, M.: Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in Southwestern China, Med. Sci. Monit., 26, e924609-1, https://doi.org/10.12659/MSM.924609, 2020.
Miller, S. D.: A consolidated technique for enhancing desert dust storms with MODIS, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL018279, 2003.
Mirchooli, F., Motevalli, A., Pourghasemi, H. R., Mohammadi, M., Bhattacharya, P.,
Maghsood, F. F., and Tiefenbacher, J. P.: How do data-mining models consider arsenic
contamination in sediments and variables importance?,
Environ. Monit. Assess., 191, 1–19,
https://doi.org/10.1007/s10661-019-7979-x, 2019.
Moridnejad, A., Karimi, N., and Ariya, P. A.: Newly desertified regions in Iraq and its surrounding areas: Significant novel sources of global dust particles, J. Arid. Environ., 116, 1–10, https://doi.org/10.1016/j.jaridenv.2015.01.008, 2015.
Mosavi, A., Golshan, M., Janizadeh, S., Choubin, B., Melesse, A. M., and Dineva, A. A.:
Ensemble models of GLM, FDA, MARS, and RF for flood and erosion
susceptibility mapping: a priority assessment of sub-basins, Geocarto Int.,
37, 2541–2560, https://doi.org/10.1080/10106049.2020.1829101, 2020.
Naghibi, S. A., Ahmadi, K., and Daneshi, A.: Application of Support Vector Machine,
Random Forest, and Genetic Algorithm Optimized Random Forest Models in
Groundwater Potential Mapping, Water Resour. Manag., 31, 2761–2775,
https://doi.org/10.1007/s11269-017-1660-3, 2017.
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., and Bosello, F.: Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models, Land. Degrad. Dev., 29, 471–484, https://doi.org/10.1002/ldr.2879, 2018.
Park, S. S., Kim, J., Lee, J., Lee, S., Kim, J. S., Chang, L. S., and Ou, S.: Combined dust
detection algorithm by using MODIS infrared channels over East Asia, Remote
Sens. Environ., 141, 24–39, https://doi.org/10.1016/j.rse.2013.09.019, 2014.
Péré, J. C., Rivellini, L., Crumeyrolle, S., Chiapello, I., Minvielle, F.,
Thieuleux, F., Choël, M., and Popovici, I.: Simulation of African dust
properties and radiative effects during the 2015 SHADOW campaign in Senegal,
Atmos. Res., 199, 14–28, 2018.
Pournader, M., Ahmadi, H., Feiznia, S., Karimi, H., and Peirovan, H. R.: Spatial prediction of soil erosion susceptibility: an evaluation of the maximum entropy model, Earth Sci. Inform., 11, 389–401, https://doi.org/10.1007/s12145-018-0338-6, 2018.
Qu, J. J., Hao, X., Kafatos, M., and Wang, L.: Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements, IEEE Geosci. Remote. Sens. Lett., 3, 484–486, https://doi.org/10.1109/LGRS.2006.877752, 2006.
Rahmati, O., Pourghasemi, H. R., and Melesse, A. M.: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran, Catena., 137, 360–372, https://doi.org/10.1016/j.catena.2015.10.010, 2016.
Rahmati, O., Mohammadi, F., Ghiasi, S. S., Tiefenbacher, J., Moghaddam, D. D., Coulon,
F., Nalivan, O. A., and Bui, D. T.: Identifying sources of dust aerosol using a new
framework based on remote sensing and modelling, Sci. Total Environ., 737,
139508, https://doi.org/10.1016/j.scitotenv.2020.139508, 2020a.
Rahmati, O., Pourghasemi, H. R., and Melesse, A. M.: Application of GIS-based data
driven random forest and maximum entropy models for groundwater potential
mapping: A case study at Mehran Region, Iran, Catena, 137, 360–372,
https://doi.org/10.1016/j.catena.2015.10.010, 2020b.
Roy, J. and Saha, S.: GIS-based Gully Erosion Susceptibility Evaluation Using
Frequency Ratio, Cosine Amplitude and Logistic Regression Ensembled with
fuzzy logic in Hinglo River Basin, India, Remote Sens. Appl.,
15, 100247, https://doi.org/10.1016/j.rsase.2019.100247, 2019.
Sakizadeh, M., Mirzaei, R., and Ghorbani, H.: Support vector machine and artificial
neural network to model soil pollution: a case study in Semnan Province,
Iran, Neural. Comput. Appl., 28, 3229–3238,
https://doi.org/10.1007/s00521-016-2231-x, 2017.
Shi, P., Yan, P., Yuan, Y., and Nearing, M. A.: Wind erosion research in China: Past,
present and future, Prog. Phys. Geogr., 28, 366–386,
https://doi.org/10.1191/0309133304pp416ra, 2004.
Shit, P. K., Pourghasemi, H. R., and Bhunia, G. S.: Gully erosion studies from India and
surrounding regions, Springer, https://doi.org/10.1007/978-3-030-23243-6, 2020.
Sholagberu, A. T., Raza, M. M., Yusof, K. W., and Mustafa, H. A.: Assessing the influence of terrain characteristics on spatial distribution of satellite derived land surface parameters in mountainous areas, in: Proceedings of the IAHR World Congress, 2897–2906, 2017.
Silva, L. D. C. M., Peixoto, D. S., Azevedo, R. P., Avanzi, J. C., Junior, M. D. S. D., Vanella, D., Consoli, S., Acuña-Guzman, S. F., Borghi, E., de Resende, Á. V., and Silva, B. M.: Assessment of soil water content variability using electrical resistivity imaging in an Oxisol under conservation cropping systems, Geoderma Reg., 33, e00624, https://doi.org/10.1016/j.geodrs.2023.e00624, 2023.
Sissakian, V., Al-Ansari, N., and Knutsson, S.: Sand and dust storm events in Iraq, J. Nat. Sci., 5, 1084–1094, https://doi.org/10.4236/ns.2013.510133, 2013.
Sun, W., Shao, Q., Liu, J., and Zhai, J.: Assessing the effects of land use and
topography on soil erosion on the Loess Plateau in China, Catena, 121,
151–163, https://doi.org/10.1016/j.catena.2014.05.009, 2014.
Tehrany, M. S., Pradhan, B., and Jebur, M. N.: Flood susceptibility mapping using a
novel ensemble weights-of-evidence and support vector machine models in GIS,
J. Hydrol., 512, 332–343, https://doi.org/10.1016/j.jhydrol.2014.03.008,
2014.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., and Thuiller, C. W.: Package “biomod2”, Species distribution modeling within an ensemble forecasting framework [code], https://cran.r-project.org/web/packages/biomod2/index.html (last access: September 2022), 2016.
Tien Bui, D., Shirzadi, A., Shahabi, H., Chapi, K., Omidavr, E., Pham, B. T.,
Talebpour Asl, D., Khaledian, H., Pradhan, B., Panahi, M., and Bin Ahmad, B.: A novel
ensemble artificial intelligence approach for gully erosion mapping in a
semi-arid watershed (Iran), Remote Sens., 29, 19, 2444,
https://doi.org/10.3390/s19112444, 2019.
Torabi Haghighi, A., Darabi, H., Karimidastenaei, Z., Davudirad, A. A., Rouzbeh, S., Rahmati, O., Sajedi-Hosseini, F., and Klöve, B.: Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning algorithms, for the Pole-Doab watershed, Iran, Environ. Earth Sci., 80, 1–21, https://doi.org/10.1007/s12665-020-09327-2, 2021.
Yang, M., Zhu, X., Pan, H., Ai, W., Song, W., and Pan, Y.: Changes of the relationship
between spring sand dust frequency and large-scale atmospheric circulation,
Atmos. Res., 226, 102–109, https://doi.org/10.1016/j.atmosres.2019.04.004,
2019
Youssef, A. M. and Pourghasemi, H. R.: Landslide susceptibility mapping using machine
learning algorithms and comparison of their performance at Abha Basin, Asir
Region, Saudi Arabia, Geosci. Front., 12, 639–655, 2021
Vickery, K. and Eckardt, F.: Dust emission controls on the lower Kuiseb River
valley, central Namib, Aeolian Res., 10, 125–133,
https://doi.org/10.1016/j.aeolia.2013.02.006, 2013.
Walker, A. L., Liu, M., Miller, S. D., Richardson, K. A., and Westphal, D. L.: Development of a
dust source database for mesoscale forecasting in Southwest Asia, J.
Geophys. Res., 114, 1–24, https://doi.org/10.1029/2008JD011541, 2009.
Wieland, R., Lakes, T., Yunfeng, H., and Nendel, C.: Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015, Land Use Policy, 83, 543–559, https://doi.org/10.1016/j.landusepol.2019.02.013, 2019.
Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A. K., Pourghasemi, H. R.,
Zakeri, M. A., and Sadighi, F.: Spatial modelling of gully erosion in Mazandaran
Province, northern Iran, Catena, 161, 1–13,
https://doi.org/10.1016/j.catena.2017.10.010, 2018.
Short summary
The present study used several different datasets, conducted a field survey, and paired the data with three different machine learning algorithms to construct spatial maps for areas at risk of land degradation for the Lut watershed in Iran. According to the land degradation map, almost the entire study region is at risk. A large fraction of 43 % of the area is prone to both high wind-driven and water-driven soil erosion.
The present study used several different datasets, conducted a field survey, and paired the data...