Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-351-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-351-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of the effects of long-term straw return on soil organic matter spatiotemporal variation: a case study in a typical black soil region
Yang Yan
College of land Science and Technology, China Agricultural University,
Beijing 100193, China
Wenjun Ji
CORRESPONDING AUTHOR
College of land Science and Technology, China Agricultural University,
Beijing 100193, China
Key Laboratory of Agricultural Land Quality, Ministry of Natural
Resources, Beijing 100193, China
State Key Laboratory of Remote Sensing Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Baoguo Li
College of land Science and Technology, China Agricultural University,
Beijing 100193, China
Key Laboratory of Agricultural Land Quality, Ministry of Natural
Resources, Beijing 100193, China
Guiman Wang
Lishu Metrological Bureau, Lishu, Jilin 158100, China
Songchao Chen
InfoSol, INRAE, US 1106, Orléans 4075, France
ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Hangzhou 311200, China
Dehai Zhu
College of land Science and Technology, China Agricultural University,
Beijing 100193, China
Key Laboratory of Agricultural Land Quality, Ministry of Natural
Resources, Beijing 100193, China
Zhong Liu
College of land Science and Technology, China Agricultural University,
Beijing 100193, China
Key Laboratory of Agricultural Land Quality, Ministry of Natural
Resources, Beijing 100193, China
Related authors
No articles found.
Bowen Niu, Quanlong Feng, Bingwen Qiu, Shuai Su, Xinmin Zhang, Rongji Cui, Xinhong Zhang, Fanli Sun, Wenhui Yan, Siyuan Zhao, Hanyu Shi, Cong Ou, Xiaolu Yan, Jianhua Gong, Gaofei Yin, Jianxi Huang, Jiantao Liu, Bingbo Gao, Xiaochuang Yao, Jianyu Yang, and Dehai Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-538, https://doi.org/10.5194/essd-2024-538, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We have proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020 derived from Sentinel-2. Results show that the global PCGs area is approximately 14,259.85 km² in 2020, mainly distributed between 30° N and 40° N. China, not only has the largest area of PCGs in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km², making up 57.67 % of the global and 83.29 % of the Asia. The overall accuracy of our Global-PCG-10 is satisfactory of 92.08 %.
Zhige Wang, Ce Zhang, Kejian Shi, Yulin Shangguan, Bifeng Hu, Xueyao Chen, Danqing Wei, Songchao Chen, Peter M. Atkinson, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-315, https://doi.org/10.5194/essd-2024-315, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The irreversible trend in global warming underscores the necessity for accurate monitoring of atmospheric carbon dynamics on a global scale. This study generated a global dataset of column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full coverage using carbon satellite data and a deep learning model. The dataset accurately depicts global and regional XCO2 patterns, advancing the monitoring of carbon emissions and understanding of global carbon dynamics.
Songchao Chen, Qi Shuai, Dominique Arrouays, Zhongxing Chen, Lingju Dai, Yongsheng Hong, Bifeng Hu, Yuyang Huang, Wenjun Ji, Shuo Li, Zongzheng Liang, Yuxin Ma, Anne C. Richer-de-Forges, Calogero Schillaci, Yang Su, Hongfen Teng, Nan Wang, Xi Wang, Yanyu Wang, Zheng Wang, Zhige Wang, Dongyun Xu, Jie Xue, Su Ye, Xianglin Zhang, Yin Zhou, Peng Zhu, and Zhou Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-373, https://doi.org/10.5194/essd-2024-373, 2024
Manuscript not accepted for further review
Short summary
Short summary
The impact of land use and land cover change (LULCC) on soil organic carbon stock (SOCS) is uncertain due to limited global data. Despite regional efforts, a comprehensive global SOCS database has been lacking. This study introduces the Global Soil Organic Carbon Stock dataset after LULCC (GSOCS-LULCC), compiled from 639 articles covering 1,206 sites and 5,982 records across five major land uses. This open-access database enables global assessment of LULCC's effects on SOCS dynamics.
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024, https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary
Short summary
A new dataset for topsoil bulk density (BD) and soil organic carbon (SOC) stock (0–20 cm) across Europe using machine learning was generated. The proposed approach performed better in BD prediction and slightly better in SOC stock prediction than earlier-published PTFs. The outcomes present a meaningful advancement in enhancing the accuracy of BD, and the resultant topsoil BD and SOC stock datasets across Europe enable more precise soil hydrological and biological modeling.
Cited articles
Ahrens, R. J.: Digital soil mapping with limited data, PhD., Springer Science &
Business Media, 978-1-4020-8591-8, 2008.
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J.,
Amundson, R., Bol, R., Collins, C., Lal, R., and Leifeld, J. J. N. C.:
Towards a global-scale soil climate mitigation strategy, Nat. Commun., 11, 1–10, 2020.
Berhane, M., Xu, M., Liang, Z., Shi, J., Wei, G., and Tian, X.: Effects of
long-term straw return on soil organic carbon storage and sequestration rate
in North China upland crops: A meta-analysis, Global Change Biol., 26, 2686–2701,
https://doi.org/10.1111/gcb.15018, 2020.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Cambardella, C. A., Moorman, T. B., Novak, J., Parkin, T., Karlen, D.,
Turco, R., and Konopka, A.: Field-scale variability of soil properties in
central Iowa soils, Soil Sci. Soc. Am. J., 58, 1501–1511,
1994.
Chang, L., Meng, L., Jun, C., Bo, L., and Changming, F.: Effects of straw
carbon input on carbon dynamics in agricultural soils: a meta-analysis,
Global Change Biol., 20, 1336–1361, 2014.
Chen, A., Xie, X., Ge, T., Hou, H., Wang, W., Wei, W., and Kuzyakov, Y.:
Rapid decrease of soil carbon after abandonment of subtropical paddy fields,
Plant Soil, 415, 203–214, 2017.
Ciais, P., Gervois, S., Vuichard, N., Piao, S., and Viovy, N.: Effects of
land use change and management on the European cropland carbon balance,
Global Change Biol., 17, 320–338, 2011.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dou, X., Wang, X., Liu, H., Zhang, X., Meng, L., Pan, Y., Yu, Z., and Cui,
Y.: Prediction of soil organic matter using multi-temporal satellite images
in the Songnen Plain, China, Geoderma, 356, 113896, https://doi.org/10.1016/j.geoderma.2019.113896,
2019.
Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F.: Lecture
notes on the major soils of the world, PhD., 94, Food and Agriculture Organization
(FAO), 9251046379, 2000.
Fabrizzi, K. P., Moron, A., and García, F. O.: Soil carbon and nitrogen
organic fractions in degraded vs. non-degraded Mollisols in Argentina, Soil
Sci. Soc. Am. J., 67, 1831–1841, 2003.
Fan, M. M., Margenot, A. J., Zhang, L. M., Lal, R., Wu, J. T., Chang, N. J.,
Shaukate, M., Chen, F. R., and Gao, C.: Soil organic carbon dynamics in
intensively managed agricultural landscapes of eastern China, Arch. Agron. Soil Sci., 68, 503–515, 2020.
Funes, I., Savé, R., Rovira, P., Molowny-Horas, R., Alcañiz, J. M.,
Ascaso, E., Herms, I., Herrero, C., Boixadera, J., and Vayreda, J.:
Agricultural soil organic carbon stocks in the north-eastern Iberian
Peninsula: Drivers and spatial variability, Sci. Tot. Environ., 668, 283–294, 2019.
Goydaragh, M. G., Taghizadeh-Mehrjardi, R., Jafarzadeh, A. A., Triantafilis,
J., and Lado, M.: Using environmental variables and Fourier Transform
Infrared Spectroscopy to predict soil organic carbon, Catena, 202, 105280, https://doi.org/10.1016/j.catena.2021.105280,
2021.
Guo, L., Fu, P., Shi, T., Chen, Y., Zeng, C., Zhang, H., and Wang, S.:
Exploring influence factors in mapping soil organic carbon on low-relief
agricultural lands using time series of remote sensing data, Soil and
Tillage Research, 210, 104982, https://doi.org/10.1016/j.still.2021.104982, 2021.
Guo, P. T., Li, M. F., Luo, W., Tang, Q. F., Liu, Z. W., and Lin, Z. M.:
Digital mapping of soil organic matter for rubber plantation at regional
scale: An application of random forest plus residuals kriging approach,
Geoderma, 237, 49–59, https://doi.org/10.1016/j.geoderma.2014.08.009, 2015.
Han, P., Zhang, W., Wang, G., Sun, W., and Huang, Y.: Changes in soil
organic carbon in croplands subjected to fertilizer management: a global
meta-analysis, Sci. Rep., 6, 1–13, 2016.
Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G.,
Shepherd, K. D., Sila, A., MacMillan, R. A., Mendes de Jesus, J., and
Tamene, L.: Mapping soil properties of Africa at 250 m resolution: Random
forests significantly improve current predictions, PLoS One, 10, e0125814, https://doi.org/10.1371/journal.pone.0125814,
2015.
Hu, K., Wang, S., Li, H., Huang, F., and Li, B.: Spatial scaling effects on
variability of soil organic matter and total nitrogen in suburban Beijing,
Geoderma, 226, 54–63, 2014.
Jenny, H.: Factors of soil formation: a system of quantitative pedology, PhD.,
Courier Corporation,, 04-866-81289, 1994.
Li, X., Toma, Y., Yeluripati, J., Iwasaki, S., Bellingrath-Kimura, S. D.,
Jones, E. O., and Hatano, R.: Estimating agro-ecosystem carbon balance of
northern Japan, and comparing the change in carbon stock by soil inventory
and net biome productivity, Sci. Total Environ., 554, 293–302,
2016.
Li, Y., Li, Z., Chang, S. X., Cui, S., Jagadamma, S., Zhang, Q., and Cai,
Y.: Residue retention promotes soil carbon accumulation in minimum tillage
systems: Implications for conservation agriculture, Science of The Total
Environment, 740, 140147, https://doi.org/10.1016/j.scitotenv.2020.140147, 2020.
Li, Y. E., Shi, S., Waqas, M. A., Zhou, X., Li, J., Wan, Y., Qin, X., Gao,
Q., Liu, S., Wilkes, A.: Long-term (=20 years) application of fertilizers
and straw return enhances soil carbon storage: a meta-analysis, Mittig. Adapt. Strat. Gl., 23, 603–619, 2018.
Liang, Z., Chen, S., Yang, Y., Zhao, R., Shi, Z., and Viscarra Rossel, R.
A.: National digital soil map of organic matter in topsoil and its
associated uncertainty in 1980's China, Geoderma, 335, 47–56,
https://doi.org/10.1016/j.geoderma.2018.08.011, 2019.
Liu, C., Lu, M., Cui, J., Li, B., and Fang, C.: Effects of straw carbon
input on carbon dynamics in agricultural soils: a meta-analysis, Global Change Biol., 20, 1366–1381, 2014.
Liu, G., Jiang, N., and Zhang, L.: Soil physical and chemical analysis &
description of soil l profiles, PhD., Beiiing: Standards Press of China, 1996 (in Chinese).
Liu, Z., Liu, Z., Wan, W., Huang, J., Wang, J., and Zheng, M.: Estimation of
maize residue cover on the basis of SAR and optical remote sensing image,
Nat. Remote Sens. Bull., 25, 1308–1323, 2021.
Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H., and Miao, H.:
Soil carbon sequestrations by nitrogen fertilizer application, straw return
and no-tillage in China's cropland, Global Change Biol., 15, 281–305,
2009.
Lugato, E., Panagos, P., Bampa, F., Jones, A., and Montanarella, L.: A new
baseline of organic carbon stock in European agricultural soils using a
modelling approach, Global Change Biol., 20, 313–326, 2014.
Ma, Y., Minasny, B. and Wu, C.: Mapping key soil properties to support
agricultural production in Eastern China. Geoderma Regional, 10, 144–153,
2017.
McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil mapping,
Geoderma, 117, 3–52, 2003.
Muñoz-Rojas, M., Doro, L., Ledda, L., Francaviglia, R., and Environment:
Application of CarboSOIL model to predict the effects of climate change on
soil organic carbon stocks in agro-silvo-pastoral Mediterranean management
systems, Agr. Ecosyst. Environ., 202, 8–16, 2015.
Nguemezi, C., Tematio, P., Silatsa, F. B., Yemefack, M. J. S., and Research,
T.: Spatial variation and temporal decline (1985–2017) of soil organic
carbon stocks (SOCS) in relation to land use types in Tombel area,
South-West Cameroon, Soil Till. Res., 213, 105114, https://doi.org/10.1016/j.still.2021.105114, 2021.
Nishimura, S., Yonemura, S., Sawamoto, T., Shirato, Y., Akiyama, H., Sudo,
S., and Yagi, K.: Effect of land use change from paddy rice cultivation to
upland crop cultivation on soil carbon budget of a cropland in Japan,
Agr. Ecosyst. Environ., 125, 9–20,
https://doi.org/10.1016/j.agee.2007.11.003, 2008.
Ondrasek, G., Begić, H. B., Zovko, M., Filipović, L.,
Meriño-Gergichevich, C., Savić, R., and Rengel, Z.: Biogeochemistry
of soil organic matter in agroecosystems & environmental implications,
Sci. Total Environ., 658, 1559–1573, 2019.
Ou, Y., Rousseau, A. N., Wang, L., and Yan, B.: Spatio-temporal patterns of
soil organic carbon and pH in relation to environmental factors – A case
study of the Black Soil Region of Northeastern China, Agr. Ecosyst., 245, 22–31, 2017.
Pan, G., Xu, X., Smith, P., Pan, W., and Lal, R.: An increase in topsoil SOC
stock of China's croplands between 1985 and 2006 revealed by soil
monitoring, Agr. Ecosyst. Environ., 136, 133–138, 2010.
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J.,
Lundy, M. E., Van Gestel, N., Six, J., Venterea, R. T., and Van Kessel, C.:
Productivity limits and potentials of the principles of conservation
agriculture, Nature, 517, 365–368, 2015.
Poeplau, C., Kätterer, T., Bolinder, M. A., Börjesson, G., Berti,
A., and Lugato, E. J.: Low stabilization of aboveground crop residue carbon
in sandy soils of Swedish long-term experiments, Geoderma, 237, 246–255,
2015.
Powlson, D. S., Glendining, M. J., Coleman, K., and Whitmore, A. P.:
Implications for Soil Properties of Removing Cereal Straw: Results from
Long-Term Studies, Agron. J., 103, 279–287, 2011.
Russell, A. E., Laird, D., Parkin, T. B., and Mallarino, A. P.: Impact of
nitrogen fertilization and cropping system on carbon sequestration in
Midwestern Mollisols, Soil Sci. Soc. Am. J., 69, 413–422,
2005.
R Core Team R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 16 July 2020), [code], 2020.
Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Marker,
M., and Saia, S.: Spatio-temporal topsoil organic carbon mapping of a
semi-arid Mediterranean region: The role of land use, soil texture,
topographic indices and the influence of remote sensing data to modelling,
Sci. Total Environ., 601, 821–832,
https://doi.org/10.1016/j.scitotenv.2017.05.239, 2017.
Schulze, R. E. and Schütte, S.: Mapping soil organic carbon at a terrain
unit resolution across South Africa, Geoderma, 373, 114447,
https://doi.org/10.1016/j.geoderma.2020.114447, 2020.
Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, L., and
Stępień, W.: How relationships between soil organic matter
parameters and soil structure characteristics are affected by the long-term
fertilization of a sandy soil, Geoderma, 342, 75–84, 2019.
Song, X. D., Yang, F., Ju, B., Li, D. C., Zhao, Y. G., Yang, J. L., and
Zhang, G. L.: The influence of the conversion of grassland to cropland on
changes in soil organic carbon and total nitrogen stocks in the Songnen
Plain of Northeast China, Catena, 171, 588–601, 2018.
Sosulski, T. and Korc, M.: Effects of different mineral and organic
fertilization on the content of nitrogen and carbon in soil organic matter
fractions, Ecol. Chem. Eng. A. 18, 601–609, 2011.
Sun, X.-L., Wang, H.-L., Zhao, Y.-G., Zhang, C., and Zhang, G.-L.: Digital
soil mapping based on wavelet decomposed components of environmental
covariates, Geoderma, 303, 118–132, https://doi.org/10.1016/j.geoderma.2017.05.017, 2017.
Viscarra Rossel, R. A., Webster, R., Bui, E. N., and Baldock, J. A.:
Baseline map of organic carbon in Australian soil to support national carbon
accounting and monitoring under climate change, Global Change Biol., 20,
2953–2970, https://doi.org/10.1111/gcb.12569, 2014.
Wang, H., Guan, D., Zhang, R., Chen, Y., Hu, Y., and Xiao, L.: Soil
aggregates and organic carbon affected by the land use change from rice
paddy to vegetable field, Ecol. Eng., 70, 206–211, 2014.
Wang, J. and Xu, C.: Geodetector: Principle and prospective, Ac.
Geogr. Sin., 72, 116–134, 2017.
Wang, J., Wang, X., Xu, M., Feng, G., and Zhang, W.: Crop yield and soil
organic matter after long-term straw return to soil in China, Nutr. Cyc. Agroecosyst., 102, 371–381, 2015.
Wang, S., Zhuang, Q., Jia, S., Jin, X., and Wang, Q.: Spatial variations of
soil organic carbon stocks in a coastal hilly area of China, Geoderma, 314,
8–19, 2018.
Wang, S., Zhuang, Q., Wang, Q., Jin, X., and Han, C.: Mapping stocks of soil
organic carbon and soil total nitrogen in Liaoning Province of China,
Geoderma, 305, 250–263, 2017.
Wang, S., Zhao, Y., Wang, J., Zhu, P., Cui, X., Han, X., Xu, M., and Lu, C.:
The efficiency of long-term straw return to sequester organic carbon in
Northeast China's cropland, J. Int. Agr., 17, 436–448,
https://doi.org/10.1016/s2095-3119(17)61739-8, 2018.
West, T. and Post, W.: Soil organic carbon sequestration rates by tillage
and crop rotation: a global data analysis, Soil Sci. Soc. Am. J., 66, 1930–1946, 2002.
Wiesmeier, M., Barthold, F., Blank, B., and Kogel-Knabner, I.: Digital
mapping of soil organic matter stocks using Random Forest modeling in a
semi-arid steppe ecosystem, Plant Soil, 340, 7–24,
https://doi.org/10.1007/s11104-010-0425-z, 2011.
Wu, Z., Liu, Y., Han, Y., Zhou, J., Liu, J., and Wu, J.: Mapping farmland
soil organic carbon density in plains with combined cropping system
extracted from NDVI time-series data, Sci. Total Environ., 754,
142120, https://doi.org/10.1016/j.scitotenv.2020.142120, 2021.
Xia, L., Lam, S. K., Wolf, B., Kiese, R., Chen, D., and Butterbach-Bahl, K.:
Trade-offs between soil carbon sequestration and reactive nitrogen losses
under straw return in global agroecosystems, Global Change Biol., 24,
5919–5932, 2018.
Yang, L., He, X., Shen, F., Zhou, C., Zhu, A. X., Gao, B., Chen, Z., and Li,
M.: Improving prediction of soil organic carbon content in croplands using
phenological parameters extracted from NDVI time series data, Soil
Till. Res., 196, 104465, https://doi.org/10.1016/j.still.2019.104465, 2020.
Zeng, C., Zhu, A. X., Liu, F., Yang, L., Rossiter, D. G., Liu, J., and Wang,
D.: The impact of rainfall magnitude on the performance of digital soil
mapping over low-relief areas using a land surface dynamic feedback
method, Ecol. Ind., 72, 297–309, 2017.
Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M., and Gao, C.: Prediction of
soil organic carbon in an intensively managed reclamation zone of eastern
China: A comparison of multiple linear regressions and the random forest
model, Sci. Total Environ., 592, 704–713,
https://doi.org/10.1016/j.scitotenv.2017.02.146, 2017.
Zheng, L., Wu, W., Wei, Y., and Hu, K.: Effects of straw return and regional
factors on spatio-temporal variability of soil organic matter in a
high-yielding area of northern China, Soil Till. Res., 145, 78–86,
2015.
Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z., and Lu, Y.: Land use and
climate change effects on soil organic carbon in North and Northeast China,
Sci. Total Environ., 647, 1230–1238, 2019.
Short summary
The response rate of soil organic matter (SOM) to the amount of straw return was inversely proportional to the initial SOM and the sand contents. From paddy to dryland, the SOM loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg-1 when the straw return amount reached 60–100%. The study revealed that straw return is beneficial to carbon sink in farmland and is a way to prevent a C source caused by the change of paddy field to upland.
The response rate of soil organic matter (SOM) to the amount of straw return was inversely...