Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-301-2023
https://doi.org/10.5194/soil-9-301-2023
Original research article
 | 
05 Jun 2023
Original research article |  | 05 Jun 2023

Managing soil organic carbon in tropical agroecosystems: evidence from four long-term experiments in Kenya

Moritz Laub, Marc Corbeels, Antoine Couëdel, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Magdalena Necpalova, Wycliffe Waswa, Marijn Van de Broek, Bernard Vanlauwe, and Johan Six

Related authors

Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
Moritz Laub, Magdalena Necpalova, Marijn Van de Broek, Marc Corbeels, Samuel Mathu Ndungu, Monicah Wanjiku Mucheru-Muna, Daniel Mugendi, Rebecca Yegon, Wycliffe Waswa, Bernard Vanlauwe, and Johan Six
Biogeosciences, 21, 3691–3716, https://doi.org/10.5194/bg-21-3691-2024,https://doi.org/10.5194/bg-21-3691-2024, 2024
Short summary
The six rights of how and when to test for soil C saturation
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024,https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024,https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary

Related subject area

Soils and managed ecosystems
Experimental drought and soil amendments affect grassland above- and belowground vegetation but not soil carbon stocks
Daniela Guasconi, Sara A. O. Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
SOIL, 11, 233–246, https://doi.org/10.5194/soil-11-233-2025,https://doi.org/10.5194/soil-11-233-2025, 2025
Short summary
Effects of moss restoration on surface runoff and initial soil erosion in a temperate vineyard
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025,https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary
On the risks of good intentions and poor evidence – comment on “Back to the future? Conservative grassland management can preserve soil health in the changing landscapes of Uruguay” by Säumel et al. (2023)
José Paruelo, Luis López-Mársico, Pablo Baldassini, Felipe Lezama, Bruno Bazzoni, Luciana Staiano, Agustin Nuñez, Anaclara Guido, Cecilia Ríos, Andrea Tommasino, Federico Gallego, Fabiana Pezzani, Gonzalo Camba Sans, Andrés Quincke, Santiago Baeza, Gervasio Piñeiro, and Walter Baethgen
SOIL, 11, 193–198, https://doi.org/10.5194/soil-11-193-2025,https://doi.org/10.5194/soil-11-193-2025, 2025
Short summary
The impact of agriculture on tropical mountain soils in the western Peruvian Andes: a pedo-geoarchaeological study of terrace agricultural systems in the Laramate region (14.5° S)
Fernando Leceta, Christoph Binder, Christian Mader, Bertil Mächtle, Erik Marsh, Laura Dietrich, Markus Reindel, Bernhard Eitel, and Julia Meister
SOIL, 10, 727–761, https://doi.org/10.5194/soil-10-727-2024,https://doi.org/10.5194/soil-10-727-2024, 2024
Short summary
Luminescence dating approaches to reconstruct the formation of plaggic anthrosols
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024,https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary

Cited articles

Adams, A. M., Gillespie, A. W., Dhillon, G. S., Kar, G., Minielly, C., Koala, S., Ouattara, B., Kimaro, A. A., Bationo, A., Schoenau, J. J., and Peak, D.: Long-term effects of integrated soil fertility management practices on soil chemical properties in the Sahel, Geoderma, 366, 114207, https://doi.org/10.1016/j.geoderma.2020.114207, 2020. a
Anderson, J. M. and Ingram, J. S. I. (Eds.): Tropical Soil Biology and Fertility: A Handbook of Methods, CAB international, Wallingford, 2nd Edn., https://doi.org/10.2307/2261129, 1993. a
Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter, Soil Biol. Biochem., 156, 108189, https://doi.org/10.1016/j.soilbio.2021.108189, 2021. a
Bedoussac, L., Journet, E.-P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., Prieur, L., and Justes, E.: Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review, Agron. Sustain. Dev., 35, 911–935, https://doi.org/10.1007/s13593-014-0277-7, 2015. a
Bucka, F. B., Felde, V. J. M. N. L., Peth, S., and Kögel-Knabner, I.: Disentangling the effects of OM quality and soil texture on microbially mediated structure formation in artificial model soils, Geoderma, 403, 115213, https://doi.org/10.1016/j.geoderma.2021.115213, 2021. a
Download
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
Share