Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-301-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-301-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Managing soil organic carbon in tropical agroecosystems: evidence from four long-term experiments in Kenya
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Marc Corbeels
CIRAD, Avenue d'Agropolis, 34398 Montpellier, France
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772-00100, Nairobi, Kenya
Antoine Couëdel
CIRAD, Avenue d'Agropolis, 34398 Montpellier, France
Samuel Mathu Ndungu
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772-00100, Nairobi, Kenya
Monicah Wanjiku Mucheru-Muna
Department of Environmental Sciences and Education, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
Daniel Mugendi
Department of Land and Water Management, University of Embu, P.O. Box 6-60100, Embu, Kenya
Magdalena Necpalova
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
Wycliffe Waswa
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772-00100, Nairobi, Kenya
Marijn Van de Broek
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Bernard Vanlauwe
International Institute of Tropical Agriculture (IITA), c/o ICIPE Compound, P.O. Box 30772-00100, Nairobi, Kenya
Johan Six
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
Data sets
ISFM/SOM long-term trials soil data B. Vanlauwe, J. Six, M. Laub, S. Mathu, and D. Mugendi https://doi.org/10.25502/wdh5-6c13/d
Short summary
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied how different quality organic inputs combined with mineral N fertilizer could counteract this. Farmyard manure was the best input to counteract soil carbon loss; mineral N fertilizer had no effect on carbon. Yet, the rates needed to offset soil carbon losses are unrealistic for farmers (>10 t of dry matter per hectare and year). Additional agronomic measures may be needed.
In sub-Saharan Africa, long-term low-input maize cropping threatens soil fertility. We studied...