Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine
Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba
8410501, Israel
Zuckerberg Institute for Water Research, Blaustein Institutes for
Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
Eva Petrova
Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na
Sádkách 7, 370 05 České Budějovice, Czech Republic
Osnat Gillor
Zuckerberg Institute for Water Research, Blaustein Institutes for
Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
Yaron Ziv
Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba
8410501, Israel
Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na
Sádkách 7, 370 05 České Budějovice, Czech Republic
Related authors
No articles found.
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
SOIL, 11, 735–753, https://doi.org/10.5194/soil-11-735-2025, https://doi.org/10.5194/soil-11-735-2025, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites, and active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021, https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
Short summary
In this paper, we describe changes in desert soil bacterial diversity and function when two ecosystem engineers, shrubs and ant nests, in an arid environment are present. The results show that bacterial activity increases when there are ecosystem engineers and that their impact is non-additive. This is one of a handful of studies that investigated the separate and combined effects of ecosystem engineers on soil bacterial communities investigating both composition and function.
Capucine Baubin, Noya Ran, Hagar Siebner, and Osnat Gillor
SOIL Discuss., https://doi.org/10.5194/soil-2021-88, https://doi.org/10.5194/soil-2021-88, 2021
Revised manuscript not accepted
Short summary
Short summary
In this manuscript, we describe changes in desert biocrust bacterial community during drought, rainfall, and dehydration in the Negev Desert. We followed the active bacterial community composition and their potential activity and showed that rainfall changes the bacterial community, triggers photosynthesis in soil phototrophs, and induces the production of extracellular polymeric substances that retain water during dehydration allowing bacterial cells to persist during the dehydration stage.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Cited articles
Aanderud, Z. T., Jones, S. E., Fierer, N., and Lennon, J. T.: Resuscitation
of the rare biosphere contributes to pulses of ecosystem activity, Front.
Microbiol., 6, 24, https://doi.org/10.3389/fmicb.2015.00024, 2015.
Acea, M.: Cyanobacterial inoculation of heated soils: effect on
microorganisms of C and N cycles and on chemical composition in soil
surface, Soil Biol. Biochem., 35, 513–524,
https://doi.org/10.1016/S0038-0717(03)00005-1, 2003.
Angel, R.: Stable Isotope Probing Techniques and Methodological
Considerations Using 15N, in: Stable Isotope
Probing: Methods and Protocols, edited by: Dumont, M. G. and Hernández
García, M., Springer New York, New York, NY, 175–187,
https://doi.org/10.1007/978-1-4939-9721-3_14, 2019.
Angel, R. and Conrad, R.: Elucidating the microbial resuscitation cascade in
biological soil crusts following a simulated rain event: Microbial
resuscitation in biological soil crusts, Environ. Microbiol., 15, 2799–2815,
https://doi.org/10.1111/1462-2920.12140, 2013.
Angel, R., Panhölzl, C., Gabriel, R., Herbold, C., Wanek, W., Richter,
A., Eichorst, S. A., and Woebken, D.: Application of stable-isotope
labelling techniques for the detection of active diazotrophs: Detecting
diazotrophs with stable-isotope techniques, Environ. Microbiol., 20, 44–61,
https://doi.org/10.1111/1462-2920.13954, 2018.
Antoninka, A., Faist, A., Rodriguez-Caballero, E., Young, K. E., Chaudhary,
V. B., Condon, L. A., and Pyke, D. A.: Biological soil crusts in ecological
restoration: emerging research and perspectives, Restor. Ecol., 28, S3–S8,
https://doi.org/10.1111/rec.13201, 2020.
Apprill, A., McNally, S., Parsons, R., and Weber, L.: Minor revision to V4
region SSU rRNA 806R gene primer greatly increases detection of SAR11
bacterioplankton, Aquat. Microb. Ecol., 75, 129–137,
https://doi.org/10.3354/ame01753, 2015.
Aranibar, J. N.: Functional responses of biological soil crusts to simulated
small precipitation pulses in the Monte desert, Argentina, Geoderma, 410, 115660, https://doi.org/10.1016/j.geoderma.2021.115660, 2022.
Arslan, M., Müller, J. A., and Gamal El-Din, M.: Aerobic naphthenic
acid-degrading bacteria in petroleum-coke improve oil sands process water
remediation in biofilters: DNA-stable isotope probing reveals methylotrophy
in Schmutzdecke, Sci. Total Environ., 815, 151961,
https://doi.org/10.1016/j.scitotenv.2021.151961, 2022.
Baubin, C., Ran, N., Siebner, H., and Gillor, O.: The response of desert biocrust bacterial communities to hydration-desiccation cycles, SOIL Discuss. [preprint], https://doi.org/10.5194/soil-2021-88, 2021.
Belnap, J.: The world at your feet: desert biological soil crusts, Front. Ecol. Environ., 1, 181–189,
https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2, 2003.
Belnap, J. and Eldridge, D.: Disturbance and Recovery of Biological Soil
Crusts, in: Biological Soil Crusts: Structure, Function, and Management,
edited by: Belnap, J. and Lange, O. L., Springer Berlin Heidelberg, Berlin,
Heidelberg, 363–383,
https://doi.org/10.1007/978-3-642-56475-8_27, 2003.
Belnap, J. and Lange, O. L.:
Biological Soil Crusts: Structure, Function, and Management, Springer Berlin
Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-56475-8,
2003.
Blazewicz, S. J., Schwartz, E., and Firestone, M. K.: Growth and death of
bacteria and fungi underlie rainfall-induced carbon dioxide pulses from
seasonally dried soil, Ecology, 95, 1162–1172,
https://doi.org/10.1890/13-1031.1, 2014.
Blazewicz, S. J., Hungate, B. A., Koch, B. J., Nuccio, E. E., Morrissey, E.,
Brodie, E. L., Schwartz, E., Pett-Ridge, J., and Firestone, M. K.:
Taxon-specific microbial growth and mortality patterns reveal distinct
temporal population responses to rewetting in a California grassland soil,
ISME J., 14, 1520–1532, https://doi.org/10.1038/s41396-020-0617-3, 2020.
Bowker, M. A.: Biological Soil Crust Rehabilitation in Theory and Practice:
An Underexploited Opportunity, Restor. Ecol., 15, 13–23,
https://doi.org/10.1111/j.1526-100X.2006.00185.x, 2007.
Bridge, G.: Contested Terrain: Mining and the Environment, Annu. Rev.
Environ. Res., 29, 205–259,
https://doi.org/10.1146/annurev.energy.28.011503.163434, 2004.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Method., 13, 581–583,
https://doi.org/10.1038/nmeth.3869, 2016.
Chung, Y. A., Thornton, B., Dettweiler-Robinson, E., and Rudgers, J. A.:
Soil surface disturbance alters cyanobacterial biocrusts and soil properties
in dry grassland and shrubland ecosystems, Plant Soil, 441, 147–159,
https://doi.org/10.1007/s11104-019-04102-0, 2019.
Colesie, C., Allan Green, T. G., Haferkamp, I., and Büdel, B.: Habitat
stress initiates changes in composition, CO2 gas exchange and C-allocation
as life traits in biological soil crusts, ISME J., 8, 2104–2115,
https://doi.org/10.1038/ismej.2014.47, 2014.
Davis, N. M., Proctor, D., Holmes, S. P., Relman, D. A., and Callahan, B.
J.: Simple statistical identification and removal of contaminant sequences
in marker-gene and metagenomics data, Microbiome, 6, 1–14,
https://doi.org/10.1101/221499, 2017.
Dixon, P.: VEGAN, a package of R functions for community ecology, J.
Veg. Sci., 14, 927–930,
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x, 2003.
Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R.,
Taylor, C. M., Huttenhower, C., and Langille, M. G. I.: PICRUSt2: An
improved and customizable approach for metagenome inference, BioRxiv, 672295,
https://doi.org/10.1101/672295, 2019.
Dumont, M. G. and Hernández García, M. (Eds.): Stable Isotope
Probing: Methods and Protocols, Springer New York, New York, NY,
https://doi.org/10.1007/978-1-4939-9721-3, 2019.
Gabay, T.: TaliaJoanne/SIP-experiment-Zin-mines: SIP experiment Zin mines (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.7848152, 2023
Gabay, T., Rotem, G., Gillor, O., and Ziv, Y.: Understanding changes in
biocrust communities following phosphate mining in the Negev Desert,
Environ. Res., 207, 112200,
https://doi.org/10.1016/j.envres.2021.112200, 2022.
Garcia-Pichel, F. and Belnap, J.: Microenvironments and Microscale
Productivity of Cyanobacterial Desert Crusts, J. Phycol., 32, 774–782,
https://doi.org/10.1111/j.0022-3646.1996.00774.x, 1996.
Green, T. G. A. and Proctor, M. C. F.: Physiology of Photosynthetic
Organisms Within Biological Soil Crusts: Their Adaptation, Flexibility, and
Plasticity, in: Biological Soil Crusts: An Organizing Principle in Drylands,
edited by: Weber, B., Büdel, B., and Belnap, J., Springer International
Publishing, Cham, 347–381,
https://doi.org/10.1007/978-3-319-30214-0_18, 2016.
Harel, Y., Ohad, I., and Kaplan, A.: Activation of Photosynthesis and
Resistance to Photoinhibition in Cyanobacteria within Biological Desert
Crust, Plant Physiol., 136, 3070–3079,
https://doi.org/10.1104/pp.104.047712, 2004.
Ho, J., Tumkaya, T., Aryal, S., Choi, H., and Claridge-Chang, A.: Moving beyond P values: data analysis with estimation graphics, Nat. Method., 16, 565–566, https://doi.org/10.1038/s41592-019-0470-3, 2019.
Jia, Z., Cao, W., and Hernández García, M.: DNA-based stable
isotope probing, in: Stable Isotope Probing, Springer, 17–29, https://doi.org/10.1007/978-1-4939-9721-3_2, 2019.
Kidron, G. J., Xiao, B., and Benenson, I.: Data variability or paradigm
shift? Slow versus fast recovery of biological soil crusts-a review, Sci. Total Environ., 721, 137683,
https://doi.org/10.1016/j.scitotenv.2020.137683, 2020.
Kim, M. and Or, D.: Hydration status and diurnal trophic interactions shape
microbial community function in desert biocrusts, Biogeosciences, 14,
5403–5424, https://doi.org/10.5194/bg-14-5403-2017, 2017.
Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O., and Belnap, J.:
Response and resilience of soil biocrust bacterial communities to chronic
physical disturbance in arid shrublands, ISME J., 6, 886–897,
https://doi.org/10.1038/ismej.2011.153, 2012.
Lange, O. L.: Photosynthesis of Soil-Crust Biota as Dependent on
Environmental Factors, in: Biological Soil Crusts: Structure, Function, and
Management, edited by: Belnap, J. and Lange, O. L., Springer Berlin
Heidelberg, Berlin, Heidelberg, 217–240,
https://doi.org/10.1007/978-3-642-56475-8_18, 2003.
Levi, N., Hillel, N., Zaady, E., Rotem, G., Ziv, Y., Karnieli, A., and
Paz-Kagan, T.: Soil quality index for assessing phosphate mining restoration
in a hyper-arid environment, Ecol. Indic., 125, 107571,
https://doi.org/10.1016/j.ecolind.2021.107571, 2021.
Love, M. I., Huber, W., and Anders, S.: Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 1–21,
https://doi.org/10.1186/s13059-014-0550-8, 2014.
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R.:
UniFrac: an effective distance metric for microbial community comparison,
ISME J., 5, 169–172, 2011.
Macey, M. C., Pratscher, J., Crombie, A. T., and Murrell, J. C.: Impact of
plants on the diversity and activity of methylotrophs in soil, Microbiome,
8, 1–17, https://doi.org/10.1186/s40168-020-00801-4, 2020.
Maier, S., Kratz, A. M., Weber, J., Prass, M., Liu, F., Clark, A. T., Abed,
R. M. M., Su, H., Cheng, Y., Eickhorst, T., Fiedler, S., Pöschl, U., and
Weber, B.: Water-driven microbial nitrogen transformations in biological
soil crusts causing atmospheric nitrous acid and nitric oxide emissions,
ISME J., 16, 1012–1024, https://doi.org/10.1038/s41396-021-01127-1, 2022.
Makhalanyane, T. P., Valverde, A., Gunnigle, E., Frossard, A., Ramond,
J.-B., and Cowan, D. A.: Microbial ecology of hot desert edaphic systems,
FEMS Microbiol. Rev., 39, 203–221,
https://doi.org/10.1093/femsre/fuu011, 2015.
McMurdie, P. J. and Holmes, S.: phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data, Plos One, 8,
e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Meier, D. V., Imminger, S., Gillor, O., and Woebken, D.: Distribution of
Mixotrophy and Desiccation Survival Mechanisms across Microbial Genomes in
an Arid Biological Soil Crust Community, mSystems, 6, e00786-20,
https://doi.org/10.1128/mSystems.00786-20, 2021.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D.,
von Haeseler, A., and Lanfear, R.: IQ-TREE 2: New Models and Efficient
Methods for Phylogenetic Inference in the Genomic Era, Mol. Biol.
Evol., 37, 1530–1534, https://doi.org/10.1093/molbev/msaa015, 2020.
Morillas, L. and Gallardo, A.: Biological soil crusts and wetting events:
Effects on soil N and C cycles, Appl. Soil Ecol., 94, 1–6,
https://doi.org/10.1016/j.apsoil.2015.04.015, 2015.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters:
assessing small subunit rRNA primers for marine microbiomes with mock
communities, time series and global field samples, Environ.
Microbiol., 18, 1403–1414, 2016.
Pepe-Ranney, C., Koechli, C., Potrafka, R., Andam, C., Eggleston, E.,
Garcia-Pichel, F., and Buckley, D. H.: Non-cyanobacterial diazotrophs
mediate dinitrogen fixation in biological soil crusts during early crust
formation, ISME J., 10, 287–298, https://doi.org/10.1038/ismej.2015.106,
2016.
Rajeev, L., da Rocha, U. N., Klitgord, N., Luning, E. G., Fortney, J., Axen,
S. D., Shih, P. M., Bouskill, N. J., Bowen, B. P., Kerfeld, C. A.,
Garcia-Pichel, F., Brodie, E. L., Northen, T. R., and Mukhopadhyay, A.:
Dynamic cyanobacterial response to hydration and dehydration in a desert
biological soil crust, ISME J., 7, 2178–2191,
https://doi.org/10.1038/ismej.2013.83, 2013.
Ritchie, R. J.: Consistent Sets of Spectrophotometric Chlorophyll Equations
for Acetone, Methanol and Ethanol Solvents, Photosyn. Res., 89, 27–41,
https://doi.org/10.1007/s11120-006-9065-9, 2006.
Schwartz, E., Hayer, M., Hungate, B. A., and Mau, R. L.: Stable Isotope
Probing of Microorganisms in Environmental Samples with H O, in: Stable
Isotope Probing, Springer, 129–136, https://doi.org/10.1007/978-1-4939-9721-3_10, 2019.
Sengupta, M.: Environmental impacts of mining: monitoring, restoration, and
control, 2nd Edn., CRC Press, Boca Raton, FL, Abingdon, Oxon, 1 pp., https://doi.org/10.1201/9780203757062,
2021.
Steven, B., Kuske, C. R., Gallegos-Graves, L. V., Reed, S. C., and Belnap,
J.: Climate Change and Physical Disturbance Manipulations Result in Distinct
Biological Soil Crust Communities, Appl. Environ. Microbiol., 81, 7448–7459,
https://doi.org/10.1128/AEM.01443-15, 2015.
Štovícek, A. and Gillor, O.: The Response of Soil Microbial
Communities to Hydration and Desiccation Cycles in Hot Desert Ecosystems,
in: Microbiology of Hot Deserts, edited by: Ramond, J.-B. and Cowan, D. A.,
Springer International Publishing, Cham, 244, 319–339,
https://doi.org/10.1007/978-3-030-98415-1_11, 2022.
Sultana, N., Zhao, J., Zheng, Y., Cai, Y., Faheem, M., Peng, X., Wang, W.,
and Jia, Z.: Stable isotope probing of active methane oxidizers in rice
field soils from cold regions, Biol. Fertil. Soils, 55, 243–250,
https://doi.org/10.1007/s00374-018-01334-7, 2019.
Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P., and Northen, T.
R.: Linking soil biology and chemistry in biological soil crust using
isolate exometabolomics, Nat. Commun., 9, 19,
https://doi.org/10.1038/s41467-017-02356-9, 2018.
R Development Core Team: R: A language and environment for statistical computing, Vienna, Austria, https://www.R-project.org/, (last access: 1 December 2022), 2013.
Thomas, A. D., Elliott, D. R., Hardcastle, D., Strong, C. L., Bullard, J.,
Webster, R., and Lan, S.: Soil biocrusts affect metabolic response to
hydration on dunes in west Queensland, Australia, Geoderma, 405, 115464,
https://doi.org/10.1016/j.geoderma.2021.115464, 2022.
Velasco Ayuso, S., Giraldo Silva, A., Nelson, C., Barger, N. N., and
Garcia-Pichel, F.: Microbial Nursery Production of High-Quality Biological
Soil Crust Biomass for Restoration of Degraded Dryland Soils, Appl. Environ.
Microbiol., 83, e02179-16, https://doi.org/10.1128/AEM.02179-16, 2017.
Walker, L. R., Walker, J., and Hobbs, R. J. (Eds.): Linking restoration and
ecological succession, Springer, New York, NY, 190 pp., https://doi.org/10.1007/978-0-387-35303-6, 2007.
Wang, W., Liu, Y., Li, D., Hu, C., and Rao, B.: Feasibility of
cyanobacterial inoculation for biological soil crusts formation in desert
area, Soil Biol. Biochem., 41, 926–929,
https://doi.org/10.1016/j.soilbio.2008.07.001, 2009.
Weber, B., Büdel, B., and Belnap, J. (Eds.): Biological Soil Crusts: An
Organizing Principle in Drylands, Springer International Publishing, Cham, 226,
https://doi.org/10.1007/978-3-319-30214-0, 2016.
Weber, B., Belnap, J., Büdel, B., Antoninka, A. J., Barger, N. N.,
Chaudhary, V. B., Darrouzet-Nardi, A., Eldridge, D. J., Faist, A. M.,
Ferrenberg, S., Havrilla, C. A., Huber-Sannwald, E., Malam Issa, O.,
Maestre, F. T., Reed, S. C., Rodriguez-Caballero, E., Tucker, C., Young, K.
E., Zhang, Y., Zhao, Y., Zhou, X., and Bowker, M. A.: What is a biocrust? A
refined, contemporary definition for a broadening research community,
Biol. Rev., 97, 1768–1785, https://doi.org/10.1111/brv.12862, 2022.
Yu, Y., Lee, C., Kim, J., and Hwang, S.: Group-specific primer and probe
sets to detect methanogenic communities using quantitative real-time
polymerase chain reaction, Biotechnol. Bioeng., 89, 670–679,
2005.
Zaady, E., Eldridge, D. J., and Bowker, M. A.: Effects of Local-Scale
Disturbance on Biocrusts, in: Biological Soil Crusts: An Organizing
Principle in Drylands, edited by: Weber, B., Büdel, B., and Belnap, J.,
Springer International Publishing, Cham, 226, 429–449,
https://doi.org/10.1007/978-3-319-30214-0_21, 2016.
Zhang, C., Niu, D., Song, M., Elser, J. J., Okie, J. G., and Fu, H.: Effects
of rainfall manipulations on carbon exchange of cyanobacteria and
moss-dominated biological soil crusts, Soil Biol. Biochem., 124,
24–31, https://doi.org/10.1016/j.soilbio.2018.05.021, 2018.
Zhang, L., Dumont, M. G., Bodelier, P. L. E., Adams, J. M., He, D., and Chu,
H.: DNA stable-isotope probing highlights the effects of temperature on
functionally active methanotrophs in natural wetlands, Soil Biol.
Biochem., 149, 107954, https://doi.org/10.1016/j.soilbio.2020.107954,
2020.
Zhao, Y., Bowker, M. A., Zhang, Y., and Zaady, E.: Enhanced Recovery of
Biological Soil Crusts After Disturbance, in: Biological Soil Crusts: An
Organizing Principle in Drylands, Vol. 226, edited by: Weber, B., Büdel,
B., and Belnap, J., Springer International Publishing, Cham, 226, 499–523,
https://doi.org/10.1007/978-3-319-30214-0_24, 2016.
Short summary
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a hyperarid desert, using a stable isotope probing assay.
We discovered that biocrust bacteria from both natural and post-mining plots resumed photosynthetic activity but did not grow following hydration. Our paper provides insights into the effects of a large-scale disturbance (mining) on biocrusts and their response to hydration, with implications for biocrust restoration practices in Zin mines.
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a...