Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-231-2023
https://doi.org/10.5194/soil-9-231-2023
Original research article
 | 
02 May 2023
Original research article |  | 02 May 2023

Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine

Talia Gabay, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel

Related authors

Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI)
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022,https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
The role of ecosystem engineers in shaping the diversity and function of arid soil bacterial communities
Capucine Baubin, Arielle M. Farrell, Adam Št'ovíček, Lusine Ghazaryan, Itamar Giladi, and Osnat Gillor
SOIL, 7, 611–637, https://doi.org/10.5194/soil-7-611-2021,https://doi.org/10.5194/soil-7-611-2021, 2021
Short summary
The response of desert biocrust bacterial communities to hydration-desiccation cycles
Capucine Baubin, Noya Ran, Hagar Siebner, and Osnat Gillor
SOIL Discuss., https://doi.org/10.5194/soil-2021-88,https://doi.org/10.5194/soil-2021-88, 2021
Revised manuscript not accepted
Short summary
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021,https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
The origin and role of biological rock crusts in rocky desert weathering
Nimrod Wieler, Hanan Ginat, Osnat Gillor, and Roey Angel
Biogeosciences, 16, 1133–1145, https://doi.org/10.5194/bg-16-1133-2019,https://doi.org/10.5194/bg-16-1133-2019, 2019
Short summary

Related subject area

Soil biodiversity and soil health
Biochar promotes soil aggregate stability and associated organic carbon sequestration and regulates microbial community structures in Mollisols from northeast China
Jing Sun, Xinrui Lu, Guoshuang Chen, Nana Luo, Qilin Zhang, and Xiujun Li
SOIL, 9, 261–275, https://doi.org/10.5194/soil-9-261-2023,https://doi.org/10.5194/soil-9-261-2023, 2023
Short summary
Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics
Huaihai Chen, Kayan Ma, Yu Huang, Qi Fu, Yingbo Qiu, Jiajiang Lin, Christopher W. Schadt, and Hao Chen
SOIL, 8, 297–308, https://doi.org/10.5194/soil-8-297-2022,https://doi.org/10.5194/soil-8-297-2022, 2022
Short summary
Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI)
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022,https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi
Guoyu Lan, Chuan Yang, Zhixiang Wu, Rui Sun, Bangqian Chen, and Xicai Zhang
SOIL, 8, 149–161, https://doi.org/10.5194/soil-8-149-2022,https://doi.org/10.5194/soil-8-149-2022, 2022
Short summary
Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system
Zijun Zhou, Zengqiang Li, Kun Chen, Zhaoming Chen, Xiangzhong Zeng, Hua Yu, Song Guo, Yuxian Shangguan, Qingrui Chen, Hongzhu Fan, Shihua Tu, Mingjiang He, and Yusheng Qin
SOIL, 7, 595–609, https://doi.org/10.5194/soil-7-595-2021,https://doi.org/10.5194/soil-7-595-2021, 2021
Short summary

Cited articles

Aanderud, Z. T., Jones, S. E., Fierer, N., and Lennon, J. T.: Resuscitation of the rare biosphere contributes to pulses of ecosystem activity, Front. Microbiol., 6, 24, https://doi.org/10.3389/fmicb.2015.00024, 2015. 
Acea, M.: Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface, Soil Biol. Biochem., 35, 513–524, https://doi.org/10.1016/S0038-0717(03)00005-1, 2003. 
Angel, R.: Stable Isotope Probing Techniques and Methodological Considerations Using 15N, in: Stable Isotope Probing: Methods and Protocols, edited by: Dumont, M. G. and Hernández García, M., Springer New York, New York, NY, 175–187, https://doi.org/10.1007/978-1-4939-9721-3_14, 2019. 
Angel, R. and Conrad, R.: Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event: Microbial resuscitation in biological soil crusts, Environ. Microbiol., 15, 2799–2815, https://doi.org/10.1111/1462-2920.12140, 2013. 
Angel, R., Panhölzl, C., Gabriel, R., Herbold, C., Wanek, W., Richter, A., Eichorst, S. A., and Woebken, D.: Application of stable-isotope labelling techniques for the detection of active diazotrophs: Detecting diazotrophs with stable-isotope techniques, Environ. Microbiol., 20, 44–61, https://doi.org/10.1111/1462-2920.13954, 2018. 
Download
Short summary
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a hyperarid desert, using a stable isotope probing assay. We discovered that biocrust bacteria from both natural and post-mining plots resumed photosynthetic activity but did not grow following hydration. Our paper provides insights into the effects of a large-scale disturbance (mining) on biocrusts and their response to hydration, with implications for biocrust restoration practices in Zin mines.