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Abstract. Biological soil crusts (biocrusts) are key contributors to desert ecosystem functions, therefore,
biocrust restoration following mechanical disturbances is imperative. In the Negev Desert hyperarid regions,
phosphate mining has been practiced for over 60 years, destroying soil habitats and fragmenting the landscape.
In this study, we selected one mining site restored in 2007, and we used DNA stable isotope probing (DNA-
SIP) to identify which bacteria grow in post-mining and adjacent natural biocrusts. Since biocrust communities
activate only after wetting, we incubated the biocrusts with H18

2 O for 96 h under ambient conditions. We then
evaluated the physicochemical soil properties, chlorophyll a concentrations, activation, and functional potential
of the biocrusts. The DNA-SIP assay revealed low bacterial activity in both plot types and no significant dif-
ferences in the proliferated communities’ composition when comparing post-mining and natural biocrusts. We
further found no significant differences in the microbial functional potential, photosynthetic rates, or soil prop-
erties. Our results suggest that growth of hyperarid biocrust bacteria after wetting is minimal. We hypothesize
that due to the harsh climatic conditions, during wetting, bacteria devote their meager resources to prepare for
the coming drought, by focusing on damage repair and organic compound synthesis and storage rather than on
growth. These low growth rates contribute to the sluggish recovery of desert biocrusts following major distur-
bances such as mining. Therefore, our findings highlight the need for implementing active restoration practices
following mining.

1 Introduction

Phosphate mining in the Negev Desert, Israel, has been tak-
ing place since the 1960s in large areas. ICL-Rotem min-
ing company leads the phosphate mining activities and has
been practicing a reclamation-oriented mining protocol for
the past 15 years. The mining protocol entails the excava-
tion of the top 50–70 cm of soil (which they consider to be
topsoil), followed by the overburden (the layer covering the
phosphate), then storing the two soil layers in separate piles.
Following the excavation of the phosphate, the overburden is

returned to the mining pit followed by the topsoil. Finally,
the terrain is leveled with heavy machinery. The area is then
considered a restored, post-mining site.

Open mining activities lead to the destruction of the lo-
cal vegetation and seed bank and the fragmentation of the
natural landscape (Sengupta, 2021). The consequences in-
clude land degradation, erosion, soil and water pollution, and
dust dispersion. In addition, mining activity often leads to
decreased biodiversity in and around mining sites (Bridge,
2004; Sengupta, 2021). One of the ecosystem components
being destroyed by mining activities in the Negev Desert
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is the biological soil crust layer (biocrust). Biocrust is the
topmost layer of many arid soils and comprises primary-
producing and heterotrophic microorganisms that bind to-
gether soil particles using secreted extracellular polymeric
substances (EPSs), mainly polysaccharides (Weber et al.,
2022). Biocrusts provide many ecosystem services, includ-
ing fixing nitrogen and carbon as well as soil stabilization
(Belnap and Lange, 2003). While biocrust microorganisms
developed various adaptations to withstand the harsh desert
environment (Makhalanyane et al., 2015), biocrust structures
are susceptible to mechanical disturbances. Such a distur-
bance, especially over large scales (for example, mining ac-
tivity), breaks and buries biocrust organisms, often result-
ing in changed biocrust communities (Belnap and Eldridge,
2003).

In previous research, we evaluated the biocrust bacterial
communities in phosphate mining sites (Gabay et al., 2022).
Briefly, we found that natural and post-mining biocrusts dif-
fer in community composition and diversity. Following the
biocrust community analysis, we sought to identify which
bacterial groups are actively growing in the biocrust and
whether the composition differs between natural and post-
mining sites. To this end, we used DNA stable isotope prob-
ing (DNA-SIP): a culture-free approach that allows the de-
tection of actively growing microorganisms by labeling them
with stable isotopes such as 15N, 14C, and 18O (Dumont
and Hernández García, 2019). SIP has been widely applied
in identifying microbial groups that participate in carbon
and nitrogen cycling, such as methanotrophs (Sultana et al.,
2019; Zhang et al., 2020), methylotrophs (Macey et al., 2020;
Arslan et al., 2022), and nitrogen fixers (Pepe-Ranney et al.,
2016; Angel et al., 2018). Likewise, SIP can use the incor-
poration of heavy water (H18

2 O) into various biomarkers to
study the growth and function of microorganisms that be-
come activated upon wetting (Schwartz et al., 2019). Previ-
ous H18

2 O SIP experiments measured microbial growth rates
and dynamics following hydration (Blazewicz et al., 2020).
Desert biocrusts make an ideal study system for H18

2 O SIP
experiments, as they become active quickly following hy-
dration (Angel and Conrad, 2013), resuming growth, nutri-
ent cycling, and excretion of extracellular organic materials
(Garcia-Pichel and Belnap, 1996; Belnap and Lange, 2003).

In this research, we investigated the proliferation of bac-
terial groups in biocrusts taken from reference (“natural”)
areas and post-mining sites by incubating biocrust samples
with isotopically labeled water (H18

2 O). We hypothesized that
growth patterns and taxonomic identity of bacterial groups
would differ significantly when comparing natural and post-
mining biocrusts. Specifically, we expected higher bacterial
growth rates in natural compared to post-mining biocrusts.
Based on our previous findings, we specifically expected
higher activity of Cyanobacteria in the natural biocrusts
(Gabay et al., 2022).

2 Materials and methods

2.1 Study site and sample collection

Sampling was conducted during June 2020 at the Gov min-
ing site, located in the Zin Valley (30.84◦ N, 35.09◦ E,
98 m above sea level), where restoration was completed in
2007. The study area was previously described in Gabay
et al. (2022). Briefly, Zin Valley is a hyperarid region of
the Negev Desert, with 50 mm average annual rainfall (Zin
factory meteorological data) and highly saline soils (aver-
age electrical conductivity, EC, is 24 dS m−1). The main soil
cover types in Zin Valley are biocrusts and desert pavement,
with scarce vegetation of mainly annual species. The soil
composition in the post-mining site and natural area is simi-
lar with 70 % sand, 18 % silt, and 12 % clay, and 68 % sand,
20 % silt, and 12 % clay for natural and post-mining, respec-
tively (Gabay et al., 2022). The soils in Zin Valley are clas-
sified as Solonchak according to the World Reference Based
soil classification system.

Biocrusts were sampled either from the post-mining site
or the adjacent natural area. The biocrusts in Gov are thin
(between 1.5–2.5 mm deep) and smooth. The site is char-
acterized by areas covered in biocrusts or desert pavement.
In each sampling site, we sampled along a 100 m strip at
approximately 10 m intervals (Fig. 1). In total, we sam-
pled 20 biocrust samples (10 from each site). We collected
the biocrusts using a spatula, at an average depth of 2 mm.
Biocrusts were placed in 100 mm× 15 mm Petri dishes lined
with cotton. For the SIP assay, we chose five of the 10
samples from each site containing the highest chlorophyll a

concentrations as estimated in preliminary experiments (Ta-
ble S1).

2.2 Soil properties

Five biocrust samples from each plot type (post-mining and
natural) were sent for analysis of soil properties (pH, EC, and
NO−3 concentrations and soil organic matter). The analysis
was performed at the Gilat Soil Laboratory (Gilat Research
Center, Gilat, Israel).

2.3 Chlorophyll a extraction

Chlorophyll a was extracted from biocrust samples using a
protocol previously described in Gabay et al. (2022). Briefly,
chlorophyll a was extracted from 3 g soil of each biocrust
sample and was diluted in 9 mL of methanol for 15 min at
65 ◦C. The soil solution was centrifuged at 2000 rpm for
5 min, supernatant was collected, and absorbance was mea-
sured in a spectrophotometer at 665 nm. Concentrations were
calculated according to Ritchie (2006) and normalized to 1 g
of soil. Extractions of the biocrusts were performed before
(dry biocrusts) and after 96 h incubation with distilled wa-
ter (DW) under identical conditions to the incubation with
H18

2 O.
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Figure 1. Map of the research area. Map (a) shows the different post-mining sites around the Zin factory. Map (b) shows the biocrust
sampling points in Gov mining site used for this research. Green dots represent the natural biocrusts, and red dots represent the post-mining
biocrusts.

2.4 Stable isotope probing

2.4.1 Soil incubation

To test the incorporation of 18O into biocrust samples, a mi-
crocosm was designed to control for the incubation condi-
tions. Each microcosm consisted of a 10 mL glass vial in
which 1 g of biocrust sample was placed. To achieve field
water-holding capacity, 0.15 mL of H18

2 O or DNase-free wa-
ter were added. The glass vials were then sealed with butyl
rubber stoppers (Sigma-Aldrich, St. Louis, Missouri, United
States) to prevent evaporation. Both labeled and unlabeled
controls were incubated in duplicates, for a total of 40 vials.
Samples were incubated under a 12 h photoperiod for 96 h in
an incubator (FOC 225 I; VELP Scientifica, Usmate Velate
MB, Italy) to allow the incorporation of 18O into the bacterial
DNA. Following incubation, the microcosms were sacrificed,
and each biocrust sample was divided into four bead beating
tubes (Qiagen, Hilden, Germany), each containing 0.25 g of
soil, and stored at −80 ◦C until further analysis.

Each labeled sample had a non-labeled control, incubated
under identical conditions but with DNase-free water instead
of 18O water.

2.4.2 DNA extraction

DNA was extracted from all biocrust samples using DNeasy
PowerSoil Pro Kit (Qiagen), according to the manufacturer’s
instructions. The biomass in hyperarid biocrusts tends to be

very low, yielding only minute amounts of DNA. Therefore,
each 1 g soil was extracted in batches of 0.25 g, and the ex-
tracts were later consolidated to increase DNA yield.

2.4.3 SIP gradient preparation and fractionation

DNA (ca. 3.5 ng) was subjected to isopycnic gradient cen-
trifugation in a solution of caesium chloride (7.163 M CsCl;
Sigma Aldrich. St Louis, MI, USA) and buffer (0.1 M Tris-
HCl at pH of 8.0, 0.1 M KCl, and 1 mM EDTA; all from
Sigma Aldrich) to a final density of 1.725 g mL−1 as de-
scribed previously (Jia et al., 2019). The tubes were spun for
44 h at 177 000 g and then fractionated by water displace-
ment using a syringe pump (NE-300 Just Infusion™ Syringe
Pump, NewEra Pump systems, Farmingdale, NY, USA). The
refractive index was measured using an AR200 digital refrac-
tometer (Reichert, Depew, NY, USA) and then the DNA was
precipitated using a polyethylene glycol 6000 solution (30 %
PEG 8000 and 1.6 M NaCl) and 30 µg of GlycoBlue co-
precipitant (Thermo Fisher Scientific, Waltham, MS, USA).
Copy numbers of the 16S rRNA gene in each fraction were
determined by qPCR using a probe-based approach. Primers
338F and 805R (Yu et al., 2005) coupled with a 516P probe
(FAM-BHQ1 dual labeled) were used for the assay. Per one
reaction 10 µL of TaqMan™ Fast Advanced Master Mix
(Thermo Fisher Scientific), 0.4 µL of bovine saline albu-
min (BSA; Thermo Fisher Scientific), 1 µL of each primer
(10 µM), 0.4 µL of a probe (10 µM), and 2.2 µL of PCR wa-
ter was combined and mixed with 5 µL of DNA. After 5 min
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initial denaturation at 95 ◦C, a cycling program of 40 cycles
of 95 ◦C for 30 s followed by 62 ◦C for 1 min was applied.
Gene copy numbers were established from a standard curve
of Escherichia coli 16S rRNA gene.

2.4.4 Polymerase chain reaction (PCR) and sequencing

Following fractionation, all samples (labeled and unlabeled)
were amplified using the 16S rRNA primers 515F_mod
and 806R_mod (Apprill et al., 2015; Parada et al., 2016).
Each reaction consisted of 2.5 µL Green Taq Buffer (Thermo
Fisher Scientific), 2.5 µL of dNTP set (biotechrabbit, Berlin,
Germany), 0.1 µL of BSA (Thermo Fisher Scientific),
0.625 µL of each primer (10 µM), 0.125 µL DreamTaq Green
DNA polymerase (Thermo Fisher Scientific), and 17.5 µL of
PCR water (Sigma Aldrich, St Louis, MI, USA). The PCR
ran for 38 cycles using the following program: denaturation
at 94 ◦C for 45 s, annealing at 52 ◦C for 45 s, extension at
72 ◦C for 45 s, and a final cycle of extension at 72 ◦C for
10 min. The amplified fragments were sequenced using
MiniSeq (Illumina, San Diego, CA, USA) at the UIC se-
quencing core, University of Illinois, Chicago, Illinois (https:
//www.rushu.rush.edu/research/rush-core-laboratories/
rush-genomics-and-microbiome-core-facility, last access:
22 October 2021). DNA extraction and SIP gradient
controls, PCR negative controls, and mock community
(ZymoBIOMICS Microbial Community Standard II Log
Distribution; Zymo Research, Irvine, CA, USA) sam-
ples (two of each) were also sequenced to control for
contaminants in the sequencing results.

2.5 Bioinformatic analysis

All the bioinformatic and statistical analyses were done in
R V4.1.1 (R Development Core Team, 2013). Labeling of
bacteria was detected using differential abundance analysis
as described in Angel (2019). Briefly, the sequences were
processed using the DADA2 package V8.8 (Callahan et al.,
2016) for quality filtering, denoising, read-merging, chimera
removal, constructing amplicon sequence variants (ASVs)
tables, and taxonomic assignment. Detection and removal of
potential contaminant sequences were performed using the R
package decontam V.1.12.0 (Davis et al., 2017). Prevalence
filtering of rare ASVs was done using the phyloseq pack-
age V1.36.0 (McMurdie and Holmes, 2013). ASVs that ap-
peared in less than 2.5 % of the samples were removed. A
maximum-likelihood phylogenetic tree was calculated using
IQ-TREE2 V 2.1.1. (Minh et al., 2020). Finally, differential
abundance analysis was performed using DESeq2 V1.32.0
(Love et al., 2014) to compare the relative abundance of each
ASV in the heavy fractions of labeled DNA to the unlabeled
heavy fractions (the negative control samples), which allows
identifying the bacterial groups that incorporated the water
isotope into their DNA. The results were filtered to include

only ASVs with a log2-fold change and a significance value
of p<0.1.

2.6 Predictions of genomic functions

Abundances of functional genes based on 16S rRNA gene
abundances were performed using PICRUSt2 (Douglas et
al., 2019). Abundances of functional genes were predicted
based on a filtered ASV table containing only ASVs belong-
ing to proliferated bacteria based on the differential abun-
dance modeling. The resulting output is functional identifi-
cations that were annotated using the KEGG database to in-
fer functional gene families. Each gene was then classified
into a function category, and the abundance of genes within
each category was averaged. The function categories were
chosen based on Meier et al. (2021). In their study, Meier et
al. collected biocrusts from the Negev and analyzed bacte-
rial metagenomes in the biocrusts to evaluate the distribution
of metabolic potential among bacterial populations. To com-
pare functional potential between various bacterial phyla,
they selected metabolic genes encoded in the metagenomic-
assembled genomes and grouped them into 10 function cate-
gories.

2.7 Statistical analyses

Chlorophyll a concentrations were visualized as an esti-
mation plot using the dabestr package V0.3.0 (Ho and
Tumkaya, 2019). The effect size was calculated as a boot-
strap 95 % confidence interval. Relative abundances of phyla,
abundances of functional genes, and soil properties were
compared between natural and post-mining biocrusts using
Mann–Whitney tests. The community composition of natu-
ral and post-mining biocrusts was assessed using only se-
quences belonging to proliferated bacteria based on DESeq2
modeling. The weighted UniFrac (Lozupone et al., 2011)
was used to calculate the similarity between the natural and
post-mining communities, and an adonis model was used to
assess whether communities differ significantly from each
other (package Vegan V2.6-2; Dixon, 2003).

3 Results

3.1 Sample wetting and greening

Most biocrust samples (both natural and post-mining)
showed greening within 36 to 48 h into the 96 h incuba-
tion. By the end, most samples displayed varying degrees
of greening, indicating cyanobacterial activity. Generally,
post-mining biocrust showed less greening than the natural
biocrusts (Fig. 2).

3.2 Soil properties

EC and NO−3 were significantly higher in natural biocrusts
compared to post-mining biocrusts (EC: t = 2.89, p<0.05;
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Figure 2. Incubation setup. Top picture – biocrusts in sealed glass
vials in the incubator. Bottom picture – natural (a) and post-
mining (b) biocrusts following the 96 h incubation.

Table 1. Soil properties for natural and post-mining biocrusts.
The numbers represent the means for each property and the stan-
dard deviation. Significant differences are marked with an asterisk
(∗ p<0.05; ∗∗ p<0.01).

Plot type/soil property Natural Post-mining

pH 7.6± 0.12 7.5± 0.1
EC 26.22∗± 9.38 9.94± 8.39
NO3 84.82∗∗± 36.69 14.75± 13.57
Soil organic matter 1.2∗∗± 0.19 0.81± 0.12

NO−3 : t = 4, p<0.01; Table 1). Soil organic matter was
also significantly higher in the natural biocrusts (t = 3.77,
p<0.01; Table 1). pH was slightly higher in natural
biocrusts, however, the differences were not statistically sig-
nificant (pH: t = 1.41, p= 0.19; Table 1).

3.3 Chlorophyll a

The estimation plot revealed an effect size estimate at 1.42
(95 CI −0.432, 3.03; Fig. 3). In the natural samples, there
was no clear clustering according to the soil water content
i.e., dry or hydrated (following 96 h incubation with water).
In fact, there was a larger variance between samples collected
after incubation (Fig. 3). Hydrated post-mining biocrusts had
consistently higher chlorophyll a concentrations compared
to dry biocrusts. It is also apparent that the variance between
samples was smaller in the post-mining biocrusts (Fig. 3).

3.4 Sequencing and differential abundance modeling

Sequencing resulted in 47 311 reads per sample on average
(Table S2) and 10 275 ASVs (Table S3). Following decon-
tamination and filtering, 86 % of the ASVs were removed
(Table S3). However, they accounted for only 16 % of the

Figure 3. Estimation plots of chlorophyll a concentrations. Dots
represent the biocrust samples, and colors represent either dry or
incubated soil.

total reads. Out of the remaining 1404 ASVs, 1266 in total
were labeled and used for the differential abundance mod-
eling (Table S3). Each sequence in the labeled samples was
compared to its corresponding negative control, and the log2-
fold change in labeled sequences was evaluated to deter-
mine whether an ASV could be considered truly labeled
(i.e., belonging to growing bacteria) based on the significance
threshold. One of the natural biocrust samples, no. 1 (Fig. 4)
displayed much higher labeling than the other four samples
(414 ASVs passed, out of a total of 1093; Fig. 4). Excluding
sample 1, 38 out of 975 ASVs in total passed the significance
threshold for log2-fold change. In post-mining samples, the
number of labeled reads was more consistent among the dif-
ferent samples (Fig. 4). Out of 874 ASVs in total, 68 passed
the threshold for log2-fold change. Altogether, the number of
labeled ASVs did not differ significantly between natural and
post-mining samples (natural sample 1 was excluded, natu-
ral community mean of 9.5, post-mining community mean of
13.6, W = 9, and p= 0.9).

3.5 Composition of the proliferated bacterial community

Figure 5a depicts a principal coordinate analysis (PCoA)
ordination based on weighted UniFrac metric showing that
the biocrust samples do not cluster according to plot type
(natural sample number 1 was excluded). Furthermore, the
adonis test revealed no significant differences in commu-
nity composition (weighted UniFrac∼ plot type; F = 1.23,
R2
= 0.15, and p= 0.21). A comparison of phyla relative

abundances reveals higher abundances of Cyanobacteria and
Actinobacteria in post-mining samples, and higher abun-
dances of Firmicutes and Proteobacteria in natural samples
(Fig. 5b). However, none of the abundances differ signifi-
cantly between groups (Table S4). A Venn diagram of unique
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Figure 4. Community composition of proliferated bacteria in natural (a) and post-mining (b) biocrusts. Each graph represents a different
sample. Red dots indicate labeled ASVs, and gray dots indicate unlabeled ASVs, based on Deseq2 modeling.
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and overlapping sequences reveals that only eight out of 88
labeled sequences appear both in natural and post-mining
samples (Fig. S2). However, phylogenetic trees depicting the
different proliferated bacterial groups indicate that, for the
most part, sequences that appear in natural and post-mining
biocrusts belong to the same orders/classes. In the phylum
Cyanobacteria, labeled sequences belonged to two classes,
and most sequences in both natural and post-mining sam-
ples belonged to the class Cyanobacteria, with a slightly
higher prevalence in the post-mining samples (Fig. S1). The
class Bacteroidia, belonging to the phylum Bacteroidota,
had a similar prevalence for natural and post-mining sam-
ples (Fig. S1). The trend was similar in the class Bacilli,
belonging to the phylum Firmicutes (Fig. S1). In the Al-
phaproteobacteria phylum, the orders Rhodobacteriales, Rhi-
zobiales, and Sphingomonadales appeared in both natural
and post-mining samples (Fig. S1). The phylum Gammapro-
teobacteria appeared only once in post-mining samples but
was more prevalent in natural samples (Fig. S1). The phy-
lum Actinobacteria was more prevalent in post-mining sam-
ples, yet the orders Frankiales, Micrococcales, and Propioni-
bacteriales appeared in both natural and post-mining samples
(Fig. S1).

3.6 Predictions of genomic functions

Abundances of 10 function categories (listed in Table S5)
were compared between natural and post-mining biocrust
samples. Abundances were generally higher in post-mining
compared to natural biocrusts (Fig. 6; Table S5). Also, the
variance between samples was larger in post-mining biocrust
(Fig. 6). However, the differences between plot types were
not statistically significant in any of the function categories
(Table S5).

4 Discussion

In this study, we examined which groups of the biocrust bac-
terial communities grow after hydration using an SIP assay
and differential abundance and diversity modeling. We hy-
drated and incubated the biocrusts for 96 h expecting bacte-
rial growth, yet very little growth was detected. Only 3.9 %
of the natural and 7.7 % of the post-mining biocrusts’ ASVs
were identified as truly labeled by the stable isotope. Post-
mining biocrusts had a slightly higher number of labeled
ASVs compared to natural biocrusts, but the differences were
not significant. Also, the composition and taxonomic iden-
tity of the growing communities did not significantly differ
between natural and post-mining biocrusts.

Biocrust organisms are known to resume activity quickly
following hydration, resuming functions such as damage re-
pair, germination, nutrient cycling, and growth (Harel et al.,
2004; Rajeev et al., 2013; Green and Proctor, 2016; Thomas
et al., 2022). Hydration was also demonstrated to change the
biocrust bacterial communities (Angel and Conrad, 2013;

Figure 5. Composition of proliferated community. Top fig-
ure (a) depicts a PCoA ordination of community composition based
on weighted UniFrac similarity metric. Blue dots are natural sam-
ples, and pink dots are post-mining samples. The ellipses represent
95 % confidence intervals, the bottom figure (b) depicts a bar plot of
phyla relative abundance ( %) in natural and post-mining biocrusts.

Štovícek and Gillor, 2022). In an H18
2 O SIP assay using

the Negev Desert biocrusts from arid and hyperarid regions,
samples were hydrated and incubated for 3 weeks at maxi-
mum water-holding capacity. Within days, changes in the la-
beled bacterial community composition and abundance were
observed, indicating growth (Angel and Conrad, 2013). Sim-
ilarly, biocrusts collected in the Negev Desert Highlands dur-
ing a rain event and subsequent desiccation, demonstrated
an increase in Cyanobacteria and decrease in Actinobacteria
relative abundance (Baubin et al., 2021), implying selective
activation of bacterial taxa in the hydrated biocrust.

In other H18
2 O SIP assays on soil bacterial communi-

ties, a quick response to rewetting was observed, and bac-
terial growth was evident within 24 to 72 h of incubation
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Figure 6. Boxplot of functional predictions. The y axis represents functional gene abundances. The line represents the median, and the
whiskers represent the range.

(Blazewicz et al., 2014; Aanderud et al., 2015). Thus, we as-
sumed that hydration and incubation of hyperarid biocrusts
under favorable conditions would result in growth. Previous
studies examining the effect of a physical disturbance (re-
peated trampling) on biocrust communities revealed a de-
crease in the amount of extractable DNA, lower chloro-
phyll a, and a decrease in biomass and Cyanobacteria abun-
dance (Kuske et al., 2012; Steven et al., 2015; Chung et al.,
2019). However, these studies investigated a localized distur-
bance compared to mining disturbance, where the biocrust
is completely removed over large spatial scales. Moreover,
the previous studies were conducted in environments that
were less extreme than the hyperarid Zin Valley. Therefore,
we expected the damage to the biocrust in Zin post-mining
sites to follow similar patterns but to be more conspicuous
than the previously reported disturbed biocrusts (Kuske et
al., 2012; Steven et al., 2015; Chung et al., 2019). Our pre-
vious report (Gabay et al., 2022) supported this notion; we
demonstrated differences in bacterial communities in natural
and post-mining biocrusts, expecting these differences to be
reflected in the proliferating communities of these biocrusts.

Our previous survey (2017) also revealed significantly
lower abundances of Cyanobacteria and chlorophyll a con-
centrations in post-mining biocrusts (Gabay et al., 2022). Out
of the four mining sites surveyed, Gov (which was restored

in 2007) showed the most considerable shift in biocrust com-
munity following mining. However, in the current study, we
sampled post-mining biocrusts at a different location in the
Gov mining site (∼ 500 m away from the original plot) due to
technical constraints. In the new location, we found that the
photosynthetic potential of the biocrust in the post-mining
plots did not differ from the natural biocrust. These results
highlight the importance of microenvironments in shaping
the functionality of biocrusts (Garcia-Pichel and Belnap,
1996). The similarities in active communities and photosyn-
thetic potential could be due to more developed biocrusts in
the new sampling locations compared to the previous ones.

Photosynthetic activity is usually observed in biocrusts
within minutes to hours after hydration by either dew or rain
(Harel et al., 2004; Lange, 2003). In our experiment, we hy-
drated the biocrusts to capacity and then incubated the sam-
ples for 96 h. During the incubation, most biocrust samples
displayed some degree of greening, with more greening in
the natural biocrusts (Fig. 2). This indicates that the photo-
synthetic bacteria in the biocrust were activated upon wet-
ting. Yet, no significant differences were detected between
natural and post-mining biocrusts’ chlorophyll a concentra-
tions (Fig. 3) or abundances of photosynthesis-related genes
(Fig. 6). This implies that similar abundances of photosyn-
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thetic bacteria were activated upon wetting in both biocrusts,
yet they barely proliferated (Fig. 4).

The PICRUSt analysis revealed no significant differences
in the abundances of genes within any of the function cat-
egories examined (Fig. 6). In contrast, a previous study
conducted in the Negev Desert Highlands examined active
bacterial communities during a rain and subsequent drying
(Baubin et al., 2021). The results indicated an increase in
genes related to photosynthesis, light, and sensing follow-
ing the rain, while the other function categories did not vary
significantly. We note that the identity and abundances of the
functional genes in the dry biocrusts detected by Baubin et
al. (2021) and here (Fig. 6) are similar. Therefore, we pro-
pose that the similarity between the post-mining and natu-
ral biocrust communities (Fig. 5) reflect similar functional
potential (Fig. 6). However, low abundance of active ASVs
were used to infer the abundances of functional genes, and
large variance between samples in post-mining biocrusts
could mask significant differences (Table S5).

The growth patterns of biocrust organisms are affected
by local environmental conditions (Kim and Or, 2017). Zin
mining fields are in a hyperarid region, where extreme heat
events are frequent in the summer, and rains are scarce and
unpredicted. Moreover, in recent years there were only two
or three rain events during each rainy season (Zin factory
meteorological data). Hydration is the most important factor
affecting biocrust organisms’ growth rate, while long desic-
cation periods negatively affect growth (Zaady et al., 2016).
Also, salinity levels in Zin Valley soils are high (Table 1; Levi
et al., 2021), imposing further stress on the biocrust commu-
nity. It is known that in high stress environments, biocrust
microorganisms increase nutrient availability and accumula-
tion by resuming carbon and nitrogen fixation upon hydration
(Aranibar, 2022). The resulting organic carbon and nitrogen
compounds can be consumed during the long desiccation pe-
riods (Belnap, 2003; Colesie et al., 2014). One study examin-
ing microbial nitrogen transformations in biocrusts collected
from succulent Karoo biome in Namibia and South Africa
showed that following wetting, nitrogen cycling genes are
expressed in biocrust organisms (Maier et al., 2022). An-
other study examining biocrust samples taken from the Moab
Desert in Utah demonstrated a pulse of metabolite release
following controlled wetting (Swenson et al., 2018). Based
on these reports, and due to the extreme conditions in Zin
Valley (Levi et al., 2021), we suggest that hyperarid biocrust
communities prioritize functions such as metabolite produc-
tion, nutrient cycling, and preparation for desiccation over
growth.

Natural recovery of biocrusts has been long debated and is
generally estimated to be a slow process, especially in arid
sites that experience very short activity periods for biocrust
development, such as the hyperarid Zin mining site (Kidron
et al., 2020; Weber et al., 2016). The time and trajectory of
recovery depend on many factors relating to local climatic
conditions and site properties (Belnap and Lange, 2003). One

such factor that greatly affects establishment and restora-
tion of biocrusts is the proximity, availability, and dispersal
timing of biocrust propagules (Bowker, 2007; Walker et al.,
2007). Thus, the low proliferation rates we observed, partic-
ularly in post-mining biocrusts, suggest that restoration pro-
cesses might be much slower than previously estimated. The
topsoil from a stockpile is used to cover the mining pits. This
soil may not contain a biocrust seed bank because it was
probably destroyed and buried during the mining processes.
Further increase in bacterial biomass might highly depend on
the dispersal of biocrust propagules to the site from adjacent
natural areas by wind or water. Our results further emphasize
the need for active restoration measures in the Zin mines.
Such measures include soil inoculation with local cyanobac-
terial propagules (Acea, 2003; Wang et al., 2009; Zhao et
al., 2016; Velasco Ayuso et al., 2017) and increased hydra-
tion (Morillas and Gallardo, 2015; Zhang et al., 2018), which
were effective in enhancing biocrust establishment and re-
covery following disturbances (Antoninka et al., 2020).

5 Conclusions

Low proliferation of biocrust bacteria was detected after wet-
ting, suggesting prolonged recovery times of biocrusts fol-
lowing major mechanical disturbances such as mining. Fur-
thermore, recovery largely depends on site conditions and
the ability of biocrust propagules to disperse to post-mining
sites. Further research is needed to confirm our hypothesis
of low proliferation and thus restoration rates in hyperarid
biocrust bacterial communities.
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