Articles | Volume 9, issue 1
https://doi.org/10.5194/soil-9-169-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-9-169-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Britta Greenshields
CORRESPONDING AUTHOR
Department of Physical Geography, University of Göttingen,
37077 Göttingen, Germany
Barbara von der Lühe
Department of Physical Geography, University of Göttingen,
37077 Göttingen, Germany
now at: Faculty of Geoscience, University of Münster, 48149 Münster, Germany
Harold J. Hughes
Department of Physical Geography, University of Göttingen,
37077 Göttingen, Germany
Christian Stiegler
Bioclimatology, Büsgen Institute, University of Göttingen, 37077 Göttingen, Germany
Suria Tarigan
Department of Soil and Natural Resources Management, IPB University, Dramaga Bogor, 16680, Indonesia
Aiyen Tjoa
Department of Agrotechnology, Tadulako University, Palu, 94118,
Indonesia
Daniela Sauer
Department of Physical Geography, University of Göttingen,
37077 Göttingen, Germany
Related authors
Britta Greenshields, Barbara von der Lühe, Felix Schwarz, Harold J. Hughes, Aiyen Tjoa, Martyna Kotowska, Fabian Brambach, and Daniela Sauer
Biogeosciences, 20, 1259–1276, https://doi.org/10.5194/bg-20-1259-2023, https://doi.org/10.5194/bg-20-1259-2023, 2023
Short summary
Short summary
Silicon (Si) can have multiple beneficial effects on crops such as oil palms. In this study, we quantified Si concentrations in various parts of an oil palm (leaflets, rachises, fruit-bunch parts) to derive Si storage estimates for the total above-ground biomass of an oil palm and 1 ha of an oil-palm plantation. We proposed a Si balance by identifying Si return (via palm fronds) and losses (via harvest) in the system and recommend management measures that enhance Si cycling.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Britta Greenshields, Barbara von der Lühe, Felix Schwarz, Harold J. Hughes, Aiyen Tjoa, Martyna Kotowska, Fabian Brambach, and Daniela Sauer
Biogeosciences, 20, 1259–1276, https://doi.org/10.5194/bg-20-1259-2023, https://doi.org/10.5194/bg-20-1259-2023, 2023
Short summary
Short summary
Silicon (Si) can have multiple beneficial effects on crops such as oil palms. In this study, we quantified Si concentrations in various parts of an oil palm (leaflets, rachises, fruit-bunch parts) to derive Si storage estimates for the total above-ground biomass of an oil palm and 1 ha of an oil-palm plantation. We proposed a Si balance by identifying Si return (via palm fronds) and losses (via harvest) in the system and recommend management measures that enhance Si cycling.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
Cited articles
Albert, R. M., Bamford, M. K., and Esteban, I.: Reconstruction of ancient
palm vegetation landscapes using a phytolith approach, Quaternary
Int., 369, 51–66, https://doi.org/10.1016/j.quaint.2014.06.067,
2015.
Alexandre, A., Meunier, J.-D., Colin, F., and Koud, J.-M.: Plant impact on
the biogeochemical cycle of silicon and related weathering processes,
Geochim. Cosmochim. Ac., 61, 677–682,
https://doi.org/10.1016/S0016-7037(97)00001-X, 1997.
Allen, K., Corre, M. D., Kurniawan, S., Utami, S. R., and Veldkamp, E.:
Spatial variability surpasses land-use change effects on soil biochemical
properties of converted lowland landscapes in Sumatra, Indonesia, Geoderma,
284, 42–50, https://doi.org/10.1016/j.geoderma.2016.08.010, 2016.
Arshad, A. M.: Physical land evaluation for oil palm cultivation in district
of Temerloh and Kuantan, Pahang, Peninsular Malaysia, J. Biol.
Agr. Health., 5, 104–112, 2015.
Barão, L., Clymans, W., Vandevenne, F., Meire, P., Conley, D. J., and
Struyf, E.: Pedogenic and biogenic alkaline-extracted silicon distributions
along a temperate land-use gradient, Eur. J. Soil Sci., 65, 693–705,
https://doi.org/10.1111/ejss.12161, 2014.
Barão, L., Teixeira, R., Vandevenne, F., Ronchi, B., Unzué-Belmonte,
D., and Struyf, E.: Silicon Mobilization in Soils: the Broader Impact of
Land Use, Silicon, 12, 1529–1538,
https://doi.org/10.1007/s12633-019-00245-y, 2020.
Blecker, S. W., McCulley, R. L., Chadwick, O. A., and Kelly, E. F.: Biologic
cycling of silica across a grassland bioclimosequence, Global Biogeochem.
Cy., 20, 1–11, https://doi.org/10.1029/2006GB002690, 2006.
Breuning-Madsen, H., Kristensen, J. Å., Awadzi, T. W., and Murray, A.
S.: Early cultivation and bioturbation cause high long-term soil erosion
rates in tropical forests: OSL based evidence from Ghana, Catena, 151,
130–136, https://doi.org/10.1016/j.catena.2016.12.002, 2017.
Clough, Y., Krishna, V. v., Corre, M. D., Darras, K., Denmead, L. H.,
Meijide, A., Moser, S., Musshoff, O., Steinebach, S., Veldkamp, E., Allen,
K., Barnes, A. D., Breidenbach, N., Brose, U., Buchori, D., Daniel, R.,
Finkeldey, R., Harahap, I., Hertel, D., Holtkamp, A. M., Hörandl, E.,
Irawan, B., Jaya, I. N. S., Jochum, M., Klarner, B., Knohl, A., Kotowska, M.
M., Krashevska, V., Kreft, H., Kurniawan, S., Leuschner, C., Maraun, M.,
Melati, D. N., Opfermann, N., Pérez-Cruzado, C., Prabowo, W. E.,
Rembold, K., Rizali, A., Rubiana, R., Schneider, D., Tjitrosoedirdjo, S. S.,
Tjoa, A., Tscharntke, T., and Scheu, S.: Land-use choices follow
profitability at the expense of ecological functions in Indonesian
smallholder landscapes, Nat. Commun., 7, 1–12,
https://doi.org/10.1038/ncomms13137, 2016.
Clymans, W., Struyf, E., Van den Putte, A., Langhans, C., Wang, Z., and
Govers, G.: Amorphous silica mobilization by inter-rill erosion: Insights
from rainfall experiments, Earth Surf. Process. Landf., 40, 1171–1181,
https://doi.org/10.1002/esp.3707, 2015.
Comte, I., Colin, F., Whalen, J. K., Grünberger, O., and Caliman, J.-P.:
Agricultural practices in oil palm plantations and their impact on
hydrological changes, nutrient fluxes and water quality in Indonesia: a
review, chap. 3, in: Advances in Agronomy, Vol. 116, 71–124, https://doi.org/10.1016/B978-0-12-394277-7.00003-8,
2012.
Conley, D. J., Likens, G. E., Buso, D. C., Saccone, L., Bailey, S. W., and
Johnson, C. E.: Deforestation causes increased dissolved silicate losses in
the Hubbard Brook Experimental Forest, Glob. Change Biol., 14, 2548–2554,
https://doi.org/10.1111/j.1365-2486.2008.01667.x, 2008.
Corley, R. H. V. and Tinker, P. B.: The Oil Palm, 5th Edn., Wiley, 687 pp.,
https://doi.org/10.1017/cbo9781316530122.010, 2016.
Cornelis, J., Delvaux, B., Georg, R. B., Lucas, Y., Ranger, J., and
Opfergelt, S.: Tracing the origin of dissolved silicon transferred from
various soil-plant systems towards rivers: a review, Biogeosciences, 8,
89–112, https://doi.org/10.5194/bg-8-89-2011, 2011.
De Coster, G. L.: The Geology of the central and south sumatra basins, 77–110, 1974.
de Tombeur, F., Turner, B. L., Laliberté, E., Lambers, H., Mahy, G.,
Faucon, M. P., Zemunik, G., and Cornelis, J. T.: Plants sustain the
terrestrial silicon cycle during ecosystem retrogression, Science,
369, 1245–1248, https://doi.org/10.1126/science.abc0393, 2020.
Darras, K. F. A., Corre, M. D., Formaglio, G., Tjoa, A., Potapov, A.,
Brambach, F., Sibhatu, K. T., Grass, I., Rubiano, A. A., Buchori, D.,
Drescher, J., Fardiansah, R., Hölscher, D., Irawan, B., Kneib, T.,
Krashevska, V., Krause, A., Kreft, H., Li, K., Maraun, M., Polle, A.,
Ryadin, A. R., Rembold, K., Stiegler, C., Scheu, S., Tarigan, S.,
Valdés-Uribe, A., Yadi, S., Tscharntke, T., and Veldkamp, E.: Reducing
Fertilizer and Avoiding Herbicides in Oil Palm Plantations – Ecological and
Economic Valuations, Front. Forest. Glob. Change, 2, 1–15,
https://doi.org/10.3389/ffgc.2019.00065, 2019.
Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya,
M., Barnes, A. D., Corre, M. D., Darras, K., Faust, H., Hess, B., Klasen,
S., Knohl, A., Kreft, H., Meijide, A., Nurdiansyah, F., Otten, F., Pe'er,
G., Steinebach, S., Tarigan, S., Tölle, M. H., Tscharntke, T., and
Wiegand, K.: A review of the ecosystem functions in oil palm plantations,
using forests as a reference system, Biol. Rev., 92, 1539–1569,
https://doi.org/10.1111/brv.12295, 2017.
Drescher, J., Rembold, K., Allen, K., Beckscha, P., Buchori, D., Clough, Y.,
Faust, H., Fauzi, A. M., Gunawan, D., Hertel, D., Irawan, B., Jaya, I. N.
S., Klarner, B., Kleinn, C., Knohl, A., Kotowska, M. M., Krashevska, V.,
Krishna, V., Leuschner, C., Lorenz, W., Meijide, A., Melati, D., Steinebach,
S., Tjoa, A., Tscharntke, T., Wick, B., Wiegand, K., Kreft, H., and Scheu,
S.: Ecological and socio-economic functions across tropical land use systems
after rainforest conversion, Philos. T. R. Soc.
B, 371, 20150275,
https://doi.org/10.1098/rstb.2015.0275, 2016.
Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., and Roubeix,
V.: Global spatial distribution of natural riverine silica inputs to the
coastal zone, Biogeosciences, 8, 597–620,
https://doi.org/10.5194/bg-8-597-2011, 2011.
Epstein, E.: Silicon: its manifold roles in plants, Ann. Appl.
Biol., 155, 155–160, https://doi.org/10.1111/j.1744-7348.2009.00343.x,
2009.
Euler, M., Schwarze, S., Siregar, H., and Qaim, M.: Oil Palm Expansion among
Smallholder Farmers in Sumatra, Indonesia, J. Agric. Econ., 67, 658–676,
https://doi.org/10.1111/1477-9552.12163, 2016.
Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A., and Corre, M. D.: Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation, Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, 2020.
Fox, J. and Weisberg, S.: An {R} Companion to
Applied Regression, 3rd Edn., Thousand Oaks, CA, Sage, https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (last access: 8 February 2023), 2019.
Fraysse, F., Pokrovsky, O. S., Schott, J., and Meunier, J.-D.: Surface
chemistry and reactivity of plant phytoliths in aqueous solutions, Chem.
Geol., 258, 197–206, https://doi.org/10.1016/j.chemgeo.2008.10.003, 2009.
Georgiadis, A., Sauer, D., Herrmann, L., Breuer, J., Zarei, M., and Stahr,
K.: Development of a method for sequential Si extraction from soils,
Geoderma, 209, 251–261, https://doi.org/10.1016/j.geoderma.2013.06.023,
2013.
Georgiadis, A., Rinklebe, J., Straubinger, M., and Rennert, T.: Silicon
fractionation in Mollic Fluvisols along the Central Elbe River, Germany,
Catena (Amst), 153, 100–105, https://doi.org/10.1016/j.catena.2017.01.027,
2017.
Grass, I., Kubitza, C., Krishna, V. v., Corre, M. D., Mußhoff, O.,
Pütz, P., Drescher, J., Rembold, K., Ariyanti, E. S., Barnes, A. D.,
Brinkmann, N., Brose, U., Brümmer, B., Buchori, D., Daniel, R., Darras,
K. F. A., Faust, H., Fehrmann, L., Hein, J., Hennings, N., Hidayat, P.,
Hölscher, D., Jochum, M., Knohl, A., Kotowska, M. M., Krashevska, V.,
Kreft, H., Leuschner, C., Lobite, N. J. S., Panjaitan, R., Polle, A.,
Potapov, A. M., Purnama, E., Qaim, M., Röll, A., Scheu, S., Schneider,
D., Tjoa, A., Tscharntke, T., Veldkamp, E., and Wollni, M.: Trade-offs
between multifunctionality and profit in tropical smallholder landscapes,
Nat. Commun., 11, 1–13, https://doi.org/10.1038/s41467-020-15013-5, 2020.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of sea water
analysis, 3rd Edn., John Wiley & Sons, 899 pp.,
https://doi.org/10.1016/0304-4203(78)90045-2, 2009.
Guillaume, T., Damris, M., and Kuzyakov, Y.: Losses of soil carbon by
converting tropical forest to plantations: erosion and decomposition
estimated by δ13C, Glob. Change Biol., 21, 3548–3560,
https://doi.org/10.1111/gcb.12907, 2015.
Guillaume, T., Holtkamp, A. M., Damris, M., Brümmer, B., and Kuzyakov,
Y.: Soil degradation in oil palm and rubber plantations under land resource
scarcity, Agr. Ecosyst. Environ., 232, 110–118,
https://doi.org/10.1016/j.agee.2016.07.002, 2016.
Guntzer, F., Keller, C., and Meunier, J. D.: Benefits of plant silicon for
crops: A review, Agron. Sustain. Dev., 32, 201–213,
https://doi.org/10.1007/s13593-011-0039-8, 2012.
Harrison, R. D. and Swinfield, T.: Restoration of logged humid tropical
forests: An experimental programme at harapan rainforest, Indonesia, Trop.
Conserv. Sci., 8, 4–16, https://doi.org/10.1177/194008291500800103, 2015.
Haynes, R. J.: A contemporary overview of silicon availability in
agricultural soils, J. Plant Nutr. Soil Sci., 177,
831–844, https://doi.org/10.1002/jpln.201400202, 2014.
Hennings, N., Becker, J. N., Guillaume, T., Damris, M., Dippold, M. A., and
Kuzyakov, Y.: Riparian wetland properties counter the effect of land-use
change on soil carbon stocks after rainforest conversion to plantations,
Catena, 196, 104941, https://doi.org/10.1016/j.catena.2020.104941,
2021.
Huisman, S. N., Raczka, M. F., and McMichael, C. N. H.: Palm phytoliths of
mid-elevation Andean forests, Front. Ecol. Evol., 6, 1–8,
https://doi.org/10.3389/fevo.2018.00193, 2018.
Iler, R. K.: The chemistry of silica: solubility, polymerization, colloid
and surface properties, and biochemistry, Wiley & Sons, Wiley, 896 pp.,
https://doi.org/10.1002/ange.19800920433, 1979.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots R package
version 0.5.0, https://CRAN.R-project.org/package=ggpubr (last access: 8 February 2023), 2022.
Kee, K. K. and Chew, P. S.: Nutrient loss through surface runoff and soil erosion – implications for improved fertiliser efficiency in mature oil palms, in: Proc. PORIM Int. Oil Palm Congr., 153–169, Palm Oil Research Institute of Malaysia, Kuala Lumpur, 1996.
Keller, C., Guntzer, F., Barboni, D., Labreuche, J., and Meunier, J.-D.:
Impact of agriculture on the Si biogeochemical cycle: Input from phytolith
studies, Compt. Rend. Geosci., 344, 739–746,
https://doi.org/10.1016/j.crte.2012.10.004, 2012.
Klotzbücher, T., Klotzbücher, A., Kaiser, K., Merbach, I., and
Mikutta, R.: Impact of agricultural practices on plant-available silicon,
Geoderma, 331, 15–17, https://doi.org/10.1016/j.geoderma.2018.06.011, 2018.
Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S., and Hertel, D.:
Quantifying above- and belowground biomass carbon loss with forest
conversion in tropical lowlands of Sumatra (Indonesia), Glob. Change Biol., 21,
3620–3634, https://doi.org/10.1111/gcb.12979, 2015.
Kraushaar, S., Konzett, M., and Meister, J.: Suitability of phytoliths as a
quantitative process tracer for soil erosion studies, Earth Surf. Proc. Landf., 46,
1797–1808,
https://doi.org/10.1002/esp.5121, 2021.
Laumonier, Y.: The Vegetation and Physiography of Sumatra, in: Geobotany,
Vol. 22, Kluwer Academic Publishers, 223,
https://doi.org/10.1007/978-94-009-0031-8, 1997.
Li, Z., de Tombeur, F., vander Linden, C., Cornelis, J. T., and Delvaux, B.:
Soil microaggregates store phytoliths in a sandy loam, Geoderma, 360,
114037, https://doi.org/10.1016/j.geoderma.2019.114037, 2020.
Luke, S. H., Purnomo, D., Advento, A. D., Aryawan, A. A. K., Naim, M.,
Pikstein, R. N., Ps, S., Rambe, T. D. S., Soeprapto, Caliman, J.-P.,
Snaddon, J. L., Foster, W. A., and Turner, E. C.: Effects of understory
vegetation management on plant communities in oil palm plantations in
Sumatra, Indonesia, Front. Forest. Glob. Change, 2, 1–13,
https://doi.org/10.3389/ffgc.2019.00033, 2019.
Ma, J. F. and Takahashi, E.: Silicon-accumulating plants in the plant
kingdom, in: Soil, fertilizer, and plant silicon research in Japan, Elsevier
Science, Amsterdam, 63–71,
https://doi.org/10.1016/b978-044451166-9/50005-1, 2002.
Maene, L. M., Thong, K. C., Ong, T. S., and Mokhtaruddin, A. M.: Surface wash under mature oil palm, in: Proc. Symp. Water in agriculture in Malaysia, edited by: Pushparajah, E., 204–216, Malaysian Society of Soil Science, Kuala Lumpur, 1979.
Meijaard, E., Brooks, T., Carlson, K. M., Slade, E. M., and Ulloa, J. G.:
The environmental impacts of palm oil in context, Nat. Plants, 6, 1418–1426,
https://doi.org/10.1038/s41477-020-00813-w, 2020.
Meunier, J. D., Keller, C., Guntzer, F., Riotte, J., Braun, J. J., and
Anupama, K.: Assessment of the 1 % Na2CO3 technique to quantify the
phytolith pool, Geoderma, 216, 30–35,
https://doi.org/10.1016/j.geoderma.2013.10.014, 2014.
Munevar, F. and Romero, A.: Soil and plant silicon status in oil palm crops
in Colombia, Exp. Agric., 51, 1–11, https://doi.org/10.1017/S0014479714000374,
2015.
Oliveira, P. T. S., Wendland, E., and Nearing, M. A.: Rainfall erosivity in
Brazil: a review, Catena, 100, 139–147,
https://doi.org/10.1016/j.catena.2012.08.006, 2013.
Qaim, M., Sibhatu, K. T., Siregar, H., and Grass, I.: Environmental,
Economic, and Social Consequences of the Oil Palm Boom, Annu. Rev. Resour.
Econ., 12, 1–24,
https://doi.org/10.1146/annurev-resource-110119-024922, 2020.
Quigley, K. M., Donati, G. L., and Anderson, T. M.: Variation in the soil
`silicon landscape' explains plant silica accumulation across environmental
gradients in Serengeti, Plant Soil, 410, 217–229,
https://doi.org/10.1007/s11104-016-3000-4, 2017.
Revelle, W.: psych: Procedures for Personality and Psychological Research, Northwestern
University, Evanston, Illinois, USA,
2022.
Sauer, D., Saccone, L., Conley, D. J., Herrmann, L., and Sommer, M.: Review
of methodologies for extracting plant-available and amorphous Si from soils
and aquatic sediments, Biogeochemistry, 80, 89–108,
https://doi.org/10.1007/s10533-005-5879-3, 2006.
Schaller, J. and Puppe, D.: Heat improves silicon availability in mineral
soils, Geoderma, 386, 114909,
https://doi.org/10.1016/j.geoderma.2020.114909, 2021.
Schaller, J., Frei, S., Rohn, L., and Gilfedder, B. S.: Amorphous silica
controls water storage capacity and phosphorus mobility in soils, Front.
Environ. Sci., 8, 1–12, https://doi.org/10.3389/fenvs.2020.00094, 2020.
Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R., and Sommer, M.:
Silicon cycling in soils revisited, Plants, 10, 1–36,
https://doi.org/10.3390/plants10020295, 2021.
Sinukaban, N., Tarigan, S. D., Purwakusuma, W., Baskoro, D. P. T., and
Wahyuni, E. D.: Analysis of watershed function sediment transfer across
various type of filter strips, Final report to ICRAF, 72 pp., 2000.
Street-Perrott, F. A. and Barker, P. A.: Biogenic silica: a neglected
component of the coupled global continental biogeochemical cycles of carbon
and silicon, Earth Surf. Process. Landf., 33, 1436–1457,
https://doi.org/10.1002/esp.1712 F., 2008.
Struyf, E. and Conley, D.: Emerging understanding of the ecosystem silica
filter, Biogeochemistry, 107, 9–18,
https://doi.org/10.1007/s10533-011-9590-2 SYNTHESIS, 2012.
Struyf, E. and Conley, D. J.: Silica: an essential nutrient in wetland
biogeochemistry, Front. Ecol. Environ., 7, 88–94,
https://doi.org/10.1890/070126, 2009.
Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael,
B., Conley, D. J., Batelaan, O., Frot, E., Clymans, W., Vandevenne, F.,
Lancelot, C., Goos, P., and Meire, P.: Historical land use change has
lowered terrestrial silica mobilization, Nat. Commun., 1, 1–7,
https://doi.org/10.1038/ncomms1128, 2010.
Tarigan, S., Stiegler, C., Wiegand, K., Knohl, A., and Murtilaksono, K.:
Relative contribution of evapotranspiration and soil compaction to the
fluctuation of catchment discharge: case study from a plantation landscape,
Hydrol. Sci. J., 65, 1239–1248,
https://doi.org/10.1080/02626667.2020.1739287, 2020.
Tsujino, R., Yumoto, T., Kitamura, S., Djamaluddin, I., and Darnaedi, D.:
History of forest loss and degradation in Indonesia, Land Use Policy, 57,
335–347, https://doi.org/10.1016/j.landusepol.2016.05.034, 2016.
Unzué-Belmonte, D., Ameijeiras-Mariño, Y., Opfergelt, S., Cornelis,
J. T., Barão, L., Minella, J., Meire, P., and Struyf, E.: Land use
change affects biogenic silica pool distribution in a subtropical soil
toposequence, Solid Earth, 8, 737–750,
https://doi.org/10.5194/se-8-737-2017, 2017.
vander Linden, C. and Delvaux, B.: The weathering stage of tropical soils
affects the soil-plant cycle of silicon, but depending on land use,
Geoderma, 351, 209–220, https://doi.org/10.1016/j.geoderma.2019.05.033,
2019.
Vandevenne, F., Struyf, E., Clymans, W., and Meire, P.: Agricultural silica
harvest: have humans created a new loop in the global silica cycle?, Front.
Ecol. Environ., 10, 243–248, https://doi.org/10.1890/110046, 2012.
von der Lühe, B., Pauli, L., Greenshields, B., Hughes, H. J., Tjoa, A.,
and Sauer, D.: Transformation of Lowland Rainforest into Oil-palm
Plantations and use of Fire alter Topsoil and Litter Silicon Pools and
Fluxes, Silicon, 13, 4345–4353, https://doi.org/10.1007/s12633-020-00680-2,
2020.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm...