Articles | Volume 8, issue 1
https://doi.org/10.5194/soil-8-199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Roberta Pulcher
Department of Biological, Geological and Environmental Sciences,
BIGeA, Università di Bologna, Bologna, Italy
Enrico Balugani
CORRESPONDING AUTHOR
Department of Physics and Astronomy, Università di Bologna,
Bologna, Italy
Maurizio Ventura
Faculty of Science and Technology, Libera Università di Bolzano,
39100 Bozen, Italy
Nicolas Greggio
Department of Biological, Geological and Environmental Sciences,
BIGeA, Università di Bologna, Bologna, Italy
Diego Marazza
Department of Biological, Geological and Environmental Sciences,
BIGeA, Università di Bologna, Bologna, Italy
Department of Physics and Astronomy, Università di Bologna,
Bologna, Italy
Related authors
No articles found.
Enrico Balugani, Alessia Castellucci, Matteo Ruggeri, Pierluigi Meriggi, Benedetta Volta, and Diego Marazza
EGUsphere, https://doi.org/10.5194/egusphere-2023-2966, https://doi.org/10.5194/egusphere-2023-2966, 2023
Preprint archived
Short summary
Short summary
To become more sustainable, agriculture needs practices that decrease net carbon emission to the atmosphere, increase soil carbon, and simultaneously increase yields and profits. In this study, we show that, in two different areas in Italy, the use of technology-informed managements of catch and cover crops could increase soil carbon sequestration, decrease overall carbon emissions, and increase agricultural yields.
Simone Pesce, Enrico Balugani, José Miguel de Paz, Diego Marazza, and Fernando Visconti
EGUsphere, https://doi.org/10.5194/egusphere-2023-298, https://doi.org/10.5194/egusphere-2023-298, 2023
Preprint withdrawn
Short summary
Short summary
Covering the soil with plant residues (mulching) decreases soil erosion, insulates the soil to temperature fluctuations, decreases evaporation of soil water, and increases the soil organic matter, sequestering CO2 from the atmosphere to the soil. We modified an existing computer model widely used to predict changes in carbon content of the soil to include mulching and its effect on soil temperature, water content and carbon for rice straw covering the soil of a Mediterranean citrus orchard.
Cited articles
Abbruzzini, T. F., Oliveira Zenero, M. D., de Andrade, P. A. M., Dini Andreote,
F., Campo, J., and Pellegrino Cerri, C. E.: Effects of Biochar on the Emissions
of Greenhouse Gases from Sugarcane Residues Applied to Soils, Agr. Sci.,
8, 869–886, https://doi.org/10.4236/as.2017.89064, 2017.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao, Rome, 300, 1998.
Brangarí, A. C., Manzoni, S., and Rousk, J.: A soil microbial model to
analyze decoupled microbial growth and respiration during soil drying and
rewetting, Soil Biol. Biochem., 148, 107871,
https://doi.org/10.1016/j.soilbio.2020.107871, 2020.
Bruun, S., Clauson-Kaas, S., Bobuská, L., and Thomsen, I. K.: Carbon dioxide
emissions from biochar in soil: Role of clay, microorganisms and carbonates,
Eur. J. Soil Sci., 65, 52–59, https://doi.org/10.1111/ejss.12073, 2014.
Cetin, E., Gupta, R., and Moghtaderi, B.: Effect of pyrolysis pressure and
heating rate on radiata pine char structure and apparent gasification
reactivity, Fuel, 84, 1328–1334, https://doi.org/10.1016/j.fuel.2004.07.016,
2005.
Chao, L., Zhang, W. D., and Wang, S. L.: Understanding the dominant controls on
biochar decomposition using boosted regression trees, Eur. J. Soil Sci.,
69, 512–520, https://doi.org/10.1111/ejss.12534, 2018.
Coleman, D., Crossley, D., and Hendrix, P. F.: Fundamentals of Soil Ecology,
2nd Edn., Fundam Soil Ecol., 2nd Edn., Academic press, 1–386, 2004.
Coleman, K. and Jenkinson, D. S.: RothC-26.3 – A Model for the turnover of
carbon in soil, in: Evaluation of Soil
Organic Matter Models, edited by: Powlson, D. S., Smith, P., and Smith, J. U., Springer Berlin Heidelberg, Berlin, Heidelberg,
237–246, https://doi.org/10.1007/978-3-642-61094-3_17, 1996.
Cross, A. and Sohi, S. P.: The priming potential of biochar products in relation
to labile carbon contents and soil organic matter status, Soil Biol. Biochem.,
43, 2127–2134, https://doi.org/10.1016/j.soilbio.2011.06.016, 2011.
Czimczik, C. I. and Masiello, C. A.: Controls on black carbon storage in soils, Global Biogeochem. Cy., 21, GB3005, https://doi.org/10.1029/2006GB002798,
2007.
Dondini, M., Alberti, G., Delle Vedove, G., Ventura, M., Tonon, G., Viger,
M., Harris, Z. M., Jenkins, J. R., Richards, M., Pogson, M., Taylor, G.,
Smith, J. U., and Smith, P.: Evaluation of the ECOSSE model to predict
heterotrophic soil respiration by direct measurements: Evaluating the ECOSSE
model by direct measurements, Eur. J. Soil Sci., 68, 384–393,
https://doi.org/10.1111/ejss.12416, 2017.
Thierry, J.: European Academies Science Advisory Council, Negative Emission
Technologies: What Role in Meeting Paris Agreement Targets? EASAC Policy Report 35, Halle
(Saale), EASAC Secretariat, Deutsche Akademie der Naturforscher Leopoldina, 2018.
Falloon, P. and Smith, P.: Simulating SOC changes in long-term experiments with
rothC and CENTURY: Model evaluation for a regional scale application, Soil
Use Manage., 18, 101–111, https://doi.org/10.1111/j.1475-2743.2002.tb00227.x,
2002.
Fangi, Y., Singh, B., Singh, B. P., and Krull, E.: Biochar carbon stability in
four contrasting soils, Eur. J. Soil Sci., 65, 60–71,
https://doi.org/10.1111/ejss.12094, 2013.
Farina, R., Testani, E., Campanelli, G., Leteo, F., Napoli, R., Canali, S.,
and Tittarelli, F.: Potential carbon sequestration in a Mediterranean organic
vegetable cropping system. A model approach for evaluating the effects of
compost and Agro-ecological Service Crops (ASCs), Agr. Syst., 162, 239–248,
https://doi.org/10.1016/j.agsy.2018.02.002, 2018.
Guo, J. and Chen, B.: Insights on the Molecular Mechanism for the Recalcitrance
of Biochars: Interactive Effects of Carbon and Silicon Components, Environ.
Sci. Technol., 48, 9103–9112, https://doi.org/10.1021/es405647e, 2014.
Gurwick, N. P., Moore, L. A., Kelly, C., and Elias, P.: A Systematic Review of
Biochar Research, with a Focus on Its Stability in situ and Its Promise as a
Climate Mitigation Strategy, PLoS ONE, 8, e75932,
https://doi.org/10.1371/journal.pone.0075932, 2013.
Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., and Xing, B.: Biochar's
stability and effect on the content, composition and turnover of soil
organic carbon, Geoderma, 364, 114184,
https://doi.org/10.1016/j.geoderma.2020.114184, 2020.
Hoosbeek, M. R., Lukac, M., van Dam, D., Godbold, D. L., Velthorst, E. J.,
Biondi, F. A., Peressotti, A., Cotrufo, M. F., de Angelis, P.,
and Scarascia-Mugnozza, G.: More new carbon in the mineral soil of a poplar
plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased
priming effect?: More New Soil C Under Poplar Face, Glob Biogeochem. Cy.,
18, GB1040, https://doi.org/10.1029/2003GB002127, 2004.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, edited by: Pachauri, R. K. and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M.,
Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K.,
and Borchard, N.: Feedstock choice, pyrolysis temperature and type influence
biochar characteristics: a comprehensive meta-data analysis review, Biochar,
2, 421–438, https://doi.org/10.1007/s42773-020-00067-x, 2020.
Jenkins, J. R., Viger, M., Arnold, E. C., Harris, Z. M., Ventura, M.,
Miglietta, F., Girardin, C., Edwards, R. J., Rumpel, C., Fornasier, F.,
Zavalloni, C., Tonon, G., Alberti, G., and Taylor, G.: Biochar alters the soil
microbiome and soil function: results of next-generation amplicon sequencing
across Europe, GCB Bioenergy, 9, 591–612, https://doi.org/10.1111/gcbb.12371,
2017.
Jiang, X., Tan, X., Cheng, J., Haddix, M. L., and Cotrufo, M. F.: Interactions
between aged biochar, fresh low molecular weight carbon and soil organic
carbon after 3.5 years soil-biochar incubations, Geoderma, 333, 99–107,
https://doi.org/10.1016/j.geoderma.2018.07.016, 2019.
Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., and Murphy, D. V.:
Biochar-mediated changes in soil quality and plant growth in a three year
field trial, Soil Biol. Biochem., 45, 113–124,
https://doi.org/10.1016/j.soilbio.2011.10.012, 2012.
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook,
J., Van Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl,
N., Smernik, R. J., and Amonette, J. E.: An investigation into the reactions of
biochar in soil, Austr. J. Soil Res., 48, 501–515,
https://doi.org/10.1071/SR10009, 2010.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the
Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263,
https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kuzyakov, Y., Bogomolova, I., and Glaser, B.: Biochar stability in soil:
Decomposition during eight years and transformation as assessed by
compound-specific 14C analysis, Soil Biol. Biochem., 70, 229–236,
https://doi.org/10.1016/j.soilbio.2013.12.021, 2014.
Lefebvre, D., Williams, A., Meersmans, J., Kirk, G. J. D., Sohi, S., Goglio,
P., and Smith, P.: Modelling the potential for soil carbon sequestration using
biochar from sugarcane residues in Brazil, Sci. Rep., 10, 19479,
https://doi.org/10.1038/s41598-020-76470-y, 2020.
Lehmann, J. and Joseph, S.: Biochar for environmental management: science,
technology and implementation, 2nd Edn., Routledge, Taylor &
Francis Group, London, New York, ISBN 978-0-415-70415-1, 2015.
Lehmann, J., Gaunt, J., and Rondon, M.: Bio-char sequestration in terrestrial
ecosystems – A review, Mitig. Adapt. Strateg. Glob. Change, 11, 403–427,
https://doi.org/10.1007/s11027-005-9006-5, 2006.
Leng, L., Huang, H., Li, H., Li, J., and Zhou, W.: Biochar stability assessment
methods: A review, Sci. Total Environ., 647, 210–222,
https://doi.org/10.1016/j.scitotenv.2018.07.402, 2019a.
Leng, L., Huang, H., Li, H., Li, J., and Zhou, W.: Biochar stability assessment
by incubation and modelling: Methods, drawbacks and recommendations, Sci.
Total Environ., 664, 11–23, https://doi.org/10.1016/j.scitotenv.2019.01.298,
2019b.
Liu, Y., Bi, Y., Xie, Y., Zhao, X., He, D., Wang, S., Wang, C., Guo, T.,
and Xing, G.: Successive straw biochar amendments reduce nitrous oxide emissions
but do not improve the net ecosystem economic benefit in an alkaline sandy
loam under a wheat–maize cropping system, Land Degrad. Dev., 31, 868–883,
https://doi.org/10.1002/ldr.3495, 2020.
Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., and Brookes, P. C.: Short term
soil priming effects and the mineralisation of biochar following its
incorporation to soils of different pH, Soil Biol. Biochem., 43, 2304–2314,
https://doi.org/10.1016/j.soilbio.2011.07.020, 2011.
Maestrini, B., Nannipieri, P., and Abiven, S.: A meta-analysis on pyrogenic
organic matter induced priming effect, GCB Bioenergy, 7, 577–590,
https://doi.org/10.1111/gcbb.12194, 2015.
Marazza, D., Tigrini, D., Carlini, C., Greggio, N., Pesce, S., and Balugani, E.:
Long term experiment Platform for the study of agronomical and environmental
effects of the biochar (LTEP-BIOCHAR), Zenodo [data set], https://doi.org/10.5281/zenodo.5960686,
2021.
Meyer, R. S., Cullen, B. R., Whetton, P. H., Robertson, F. A., and Eckard, R. J.:
Potential impacts of climate change on soil organic carbon and productivity
in pastures of south eastern Australia, Agr. Syst., 167, 34–46,
https://doi.org/10.1016/j.agsy.2018.08.010, 2018
Mondini, C., Cayuela, M. L., Sinicco, T., Fornasier, F., Galvez, A., and Sánchez-Monedero, M. A.: Modification of the RothC model to simulate soil C mineralization of exogenous organic matter, Biogeosciences, 14, 3253–3274, https://doi.org/10.5194/bg-14-3253-2017, 2017.
Nemo, Klumpp, K., Coleman, K., Dondini, M., Goulding, K., Hastings, A.,
Jones, M., B., Leifeld, J., Osborne, B., Saunders, M., Scott, T., The, Y. A.,
and Smith, P.: Soil Organic Carbon (SOC) Equilibrium and Model Initialisation
Methods: an Application to the Rothamsted Carbon (RothC) Model, Environ.
Model Assess., 22, 215–229, https://doi.org/10.1007/s10666-016-9536-0, 2017.
Pausch, J. and Kuzyakov, Y.: Carbon input by roots into the soil:
Quantification of rhizodeposition from root to ecosystem scale, Glob. Change
Biol., 24, 1–12, https://doi.org/10.1111/gcb.13850, 2018.
Pulcher, R., Balugani, E., and Ventura, M.: Pulcher_2022_SoilArticleDatabase_Inclusionofbiocharina
Cdynamicsmodelbased, Zenodo [data set], https://doi.org/10.5281/zenodo.6355587, 2022.
Purakayastha, T. J., Kumari, S., and Pathak, H.: Characterisation, stability, and
microbial effects of four biochars produced from crop residues, Geoderma,
239/240, 293–303, https://doi.org/10.1016/j.geoderma.2014.11.009, 2015.
Qi, Y. and Xu, M.: Separating the effects of moisture and temperature on soil
CO2 efflux in a coniferous forest in the Sierra Nevada mountains, Plant
Soil, 237, 15–23, 2001.
Saffari, N., Hajabbasi, M. A., Shirani, H., Mosaddeghi, M. R., and Mamedov, A. I.:
Biochar type and pyrolysis temperature effects on soil quality indicators
and structural stability, J. Environ. Manage., 261, 110190,
https://doi.org/10.1016/j.jenvman.2020.110190, 2020.
Schiedung, M., Bellè, S.-L., Sigmund, G., Kalbitz, K., and Abiven, S.: Vertical mobility of pyrogenic organic matter in soils: a column experiment, Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, 2020.
Shu, X., Zou, Y., Shaw, L. J., Todman, L., Tibbett, M., and Sizmur, T.: Mixing
crop residues induces a synergistic effect on microbial biomass and an
additive effect on soil organic matter priming, Biorxiv, 1–31, 2021.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the
link between (micro)aggregates, soil biota, and soil organic matter
dynamics, Soil Till. Res., 79, 7–31,
https://doi.org/10.1016/j.still.2004.03.008, 2004.
Smith, P.: Soil carbon sequestration and biochar as negative emission
technologies, Glob. Change Biol., 22, 1315–1324,
https://doi.org/10.1111/gcb.13178, 2016.
Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P.,
Batjes, N. H., van Egmond, F., McNeill, S, Kuhnert, M., Arias-Navarro, C.,
Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes,
J., Sanz-Cobena, A., and Klumpp, K.: How to measure, report and verify soil
carbon change to realize the potential of soil carbon sequestration for
atmospheric greenhouse gas removal, Glob. Change Biol., 26, 219–241,
https://doi.org/10.1111/gcb.14815, 2020.
Stewart, C. E., Zheng, J., Botte, J., and Cotrufo, M. F.: Co-generated fast
pyrolysis biochar mitigates green-house gas emissions and increases carbon
sequestration in temperate soils, GCB Bioenergy, 5, 153–164,
https://doi.org/10.1111/gcbb.12001, 2013.
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N.,
Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh,
K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes,
P.C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O'Donnell, A. G.,
Parton, W. J., Whitehead, D., and Zimmermann, M.: The knowns, known unknowns and
unknowns of sequestration of soil organic carbon, Agr. Ecosyst. Environ.,
164, 80–99, https://doi.org/10.1016/j.agee.2012.10.001, 2013.
Todman, L. and Neal, A.: Can trait-based approaches model the resilience of soil microbial communities?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12297, https://doi.org/10.5194/egusphere-egu21-12297, 2021.
Ventura, M., Alberti, G., Viger, M., Jenkins, J. R., Girardin, C., Baronti,
S., Zaldei, A., Taylor, G., Rumpel, C., Miglietta, F., and Tonon, G.: Biochar
mineralization and priming effect on SOM decomposition in two European short
rotation coppices, GCB Bioenergy, 7, 1150–1160,
https://doi.org/10.1111/gcbb.12219, 2015.
Ventura, M., Alberti, G., Panzacchi, P., Vedove, G. D., Miglietta, F., and Tonon,
G.: Biochar mineralization and priming effect in a poplar short rotation
coppice from a 3-year field experiment, Biol. Fert. Soils, 55, 67–78,
https://doi.org/10.1007/s00374-018-1329-y, 2019a.
Ventura, M., Panzacchi, P., Muzzi, E., Magnani, F., and Tonon, G.: Carbon
balance and soil carbon input in a poplar short rotation coppice plantation
as affected by nitrogen and wood ash application, New Forest, 50, 969–990,
https://doi.org/10.1007/s11056-019-09709-w, 2019b.
Wang, J., Xiong, Z., and Kuzyakov, Y.: Biochar stability in soil: Meta-analysis
of decomposition and priming effects, GCB Bioenergy, 8, 512–523,
https://doi.org/10.1111/gcbb.12266, 2016.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., and Joseph, S.:
Sustainable biochar to mitigate global climate change, Nat. Commun., 1, 1–9,
https://doi.org/10.1038/ncomms1053, 2010.
Zahida, R., Waseem, R., Kanth, R. H., Ashaq, H., Parmeet, S., Pir, F. A.,
Saad, A. A., Lal, S., Tahir, S., Shahid, B., and Aijaz, N.: Biochar: A Tool for
Mitigating Climate Change-A Review, Chem. Sci. Rev. Lett., 6, 1561–1574, https://doi.org/10.5930/issn.2278-6783, 2017.
Zanotelli, D., Montagnani, L., Manca, G., and Tagliavini, M.: Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements, Biogeosciences, 10, 3089–3108, https://doi.org/10.5194/bg-10-3089-2013, 2013.
Zhu, L. X., Xiao, Q., Shen, Y. F., and Li, S. Q.: Effects of biochar and
maize straw on the short-term carbon and nitrogen dynamics in a cultivated
silty loam in China, Environ. Sci. Pollut. Res., 24, 1019–1029,
https://doi.org/10.1007/s11356-016-7829-0, 2017.
Zimmerman, A. R. and Ouyang, L.: Priming of pyrogenic C (biochar) mineralization
by dissolved organic matter and vice versa, Soil Biol. Biochem., 130, 105–112,
https://doi.org/10.1016/j.soilbio.2018.12.011, 2019.
Zimmerman, A. R., Gao, B., and Ahn, M.: Positive and negative carbon
mineralization priming effects among a variety of biochar-amended soils,
Soil Biol. Biochem., 43, 1169–1179,
https://doi.org/10.1016/j.soilbio.2011.02.005, 2011.
Zwahlen, C., Hilbeck, A., and Nentwig, W.: Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates, Plant Soil, 300, 245–257, 2007.
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change...