Articles | Volume 6, issue 2
SOIL, 6, 565–578, 2020
SOIL, 6, 565–578, 2020
Original research article
17 Nov 2020
Original research article | 17 Nov 2020

The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data

Wartini Ng et al.

Related authors

Weathering intensities in tropical soils evaluated by machine learning, clusterization and geophysical sensors
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss.,,, 2022
Preprint under review for SOIL
Short summary
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246,,, 2022
Short summary
Additional soil organic carbon storage potential in global croplands
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss.,,, 2021
Manuscript not accepted for further review
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397,,, 2020
Short summary
Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm
Yosra Ellili-Bargaoui, Brendan Philip Malone, Didier Michot, Budiman Minasny, Sébastien Vincent, Christian Walter, and Blandine Lemercier
SOIL, 6, 371–388,,, 2020

Related subject area

Soil and methods
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235,,, 2022
Short summary
Thermal signature and quantification of charcoal in soil by differential scanning calorimetry and BPCA markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL Discuss.,,, 2022
Revised manuscript accepted for SOIL
Short summary
An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97,,, 2022
Short summary
Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731,,, 2021
Short summary
The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715,,, 2021
Short summary

Cited articles

Acquarelli, J., van Laarhoven, T., Gerretzen, J., Tran, T. N., Buydens, L. M. C., and Marchiori, E.: Convolutional neural networks for vibrational spectroscopic data analysis, Anal. Chim. Acta, 954, 22–31,, 2017. 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from, available at: (last access: 1 July 2019), 2015. 
Barnes, R. J., Dhanoa, M. S., and Lister, S. J.: Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra, Appl. Spectrosc., 43, 772–777,, 1989. 
Bellinaso, H., Demattê, J. A. M., and Romeiro, S. A.: Soil Spectral Library and Its Use in Soil Classification, Rev. Bras. Cienc. Solo, 34, 861–870,, 2010. 
Bendor, E. and Banin, A.: Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties, Soil Sci. Soc. Am. J., 59, 364–372,, 1995. 
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.