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Abstract. The number of samples used in the calibration data set affects the quality of the generated predictive
models using visible, near and shortwave infrared (VIS–NIR–SWIR) spectroscopy for soil attributes. Recently,
the convolutional neural network (CNN) has been regarded as a highly accurate model for predicting soil prop-
erties on a large database. However, it has not yet been ascertained how large the sample size should be for
CNN model to be effective. This paper investigates the effect of the training sample size on the accuracy of deep
learning and machine learning models. It aims at providing an estimate of how many calibration samples are
needed to improve the model performance of soil properties predictions with CNN as compared to conventional
machine learning models. In addition, this paper also looks at a way to interpret the CNN models, which are
commonly labelled as a black box. It is hypothesised that the performance of machine learning models will in-
crease with an increasing number of training samples, but it will plateau when it reaches a certain number, while
the performance of CNN will keep improving. The performances of two machine learning models (partial least
squares regression – PLSR; Cubist) are compared against the CNN model. A VIS–NIR–SWIR spectra library
from Brazil, containing 4251 unique sites with averages of two to three samples per depth (a total of 12 044
samples), was divided into calibration (3188 sites) and validation (1063 sites) sets. A subset of the calibration
data set was then created to represent a smaller calibration data set ranging from 125, 300, 500, 1000, 1500,
2000, 2500 and 2700 unique sites, which is equivalent to a sample size of approximately 350, 840, 1400, 2800,
4200, 5600, 7000 and 7650. All three models (PLSR, Cubist and CNN) were generated for each sample size of
the unique sites for the prediction of five different soil properties, i.e. cation exchange capacity, organic carbon,
sand, silt and clay content. These calibration subset sampling processes and modelling were repeated 10 times to
provide a better representation of the model performances. Learning curves showed that the accuracy increased
with an increasing number of training samples. At a lower number of samples (< 1000), PLSR and Cubist per-
formed better than CNN. The performance of CNN outweighed the PLSR and Cubist model at a sample size of
1500 and 1800, respectively. It can be recommended that deep learning is most efficient for spectra modelling
for sample sizes above 2000. The accuracy of the PLSR and Cubist model seems to reach a plateau above sample
sizes of 4200 and 5000, respectively, while the accuracy of CNN has not plateaued. A sensitivity analysis of the
CNN model demonstrated its ability to determine important wavelengths region that affected the predictions of
various soil attributes.
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1 Introduction

There has been an increasing demand for a rapid and cost-
effective method as an alternative to conventional labora-
tory soil analysis. Visible, near and shortwave infrared (VIS–
NIR–SWIR) spectroscopy have been proposed to be used as
an alternative tool for soil analysis for the last few decades
(Bendor and Banin, 1995; Shepherd and Walsh, 2002; Sten-
berg et al., 2010). This method enables the simultaneous pre-
diction of various properties and has non-destructive charac-
teristics.

Various machine learning models, such as partial least
squares regression (PLSR), Cubist, random forest and sup-
port vector machines have been utilised to model spec-
troscopy data. However, the performances of these regression
models are dependent on the spectral preprocessing methods
(Rinnan et al., 2009) and the size and representativeness of
the calibration samples (Kuang and Mouazen, 2012; Ng et
al., 2018). Different combinations of the spectral preprocess-
ing methods will result in various model performances. Fur-
thermore, the spectral preprocessing techniques developed
for a particular data set might not work for a different data
set. Better generalisation can be made by training the model
in a larger data set. However, several studies demonstrated
that the performance of the machine learning model did not
increase significantly, or it even plateaued, as the calibration
sample size increased (Figueroa et al., 2012; Ramirez-Lopez
et al., 2014; Ng et al., 2018).

Advances in artificial intelligence, such as deep learning,
enable the possibility of extracting features from data with-
out hand-engineered features (LeCun et al., 2015), such as
preprocessing. Various deep learning convolutional neural
network (CNN) models (i.e. AlexNet, VGGnet, GoogLeNet
and ResNet) had been developed and trained on large vol-
umes of data, which included over 10 million image data
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016). CNN has recently been
applied in soil science (Padarian et al., 2019; Tsakiridis et
al., 2020). Although CNN often deals with images as input
data, it has recently been successfully applied to vibrational
and reflectance spectroscopy (Acquarelli et al., 2017; Cui and
Fearn, 2018; Liu et al., 2018; Ng et al., 2019; Padarian et al.,
2019; Tsakiridis et al., 2020; Zhang et al., 2020). Acquarelli
et al. (2017) found that the CNN-based model outperformed
other models (partial least square, least discriminant analysis,
logistic regression and k nearest neighbour) for the classifica-
tion of various vibrational spectroscopy data. CNN also has
recently been successfully utilised for regression modelling
using reflectance spectroscopy data (Cui and Fearn, 2018;
Liu et al., 2018; Ng et al., 2019; Padarian et al., 2019). Cui
and Fearn (2018) compared the performance of CNN and
PLSR to predict the protein and ash content of wheat kernels
and wheat flour from the NIR–SWIR spectra with calibration
sample size ranging from 415 to 6987. Liu et al. (2018) de-
veloped a 1D CNN model using VIS–NIR–SWIR spectra to

predict clay content with a calibration sample size of 16 000.
Other studies have shown that the CNN model has the ca-
pability to outperform the PLSR and Cubist model for the
prediction of various soil properties using VIS–NIR–SWIR
(Ng et al., 2019; Padarian et al., 2019), mid-infrared (MIR)
and combined VIS–NIR–SWIR with MIR spectra (Ng et al.,
2019) with a calibration sample size greater than 10 000.

These days, deep learning, such as CNN, that was devel-
oped to handle a large amount of data (millions of images)
and soil spectra is not that large yet. For example, a recent
study used deep learning on 135 soil samples (Chen et al.,
2018). The advantage of using CNN on such a small num-
ber of samples is uncertain. A recent review on spectroscopy
showed that there were several studies in which deep learn-
ing was used with a small calibration sample size (Yang et
al., 2019). The review indicated that an increase in calibra-
tion sample size should further improve the calibration per-
formance. However, there was no guideline as to how much
improvement can be expected and what the minimum num-
ber of samples was for it to be effective.

A strategy to select an adequate calibration set in terms
of representativeness and size is vital for obtaining a model
with good generalisation ability. Although various sampling
algorithms (e.g. Kennard–Stone, conditioned Latin Hyper-
cube sampling and k means clustering) to select represen-
tative samples have been explored (Ramirez-Lopez et al.,
2014; Ng et al., 2018), the question of how many samples
are needed for the CNN model to perform better than ma-
chine learning models for spectroscopy data has yet to be
determined. It is commonly depicted and hypothesised in a
learning curve that, as more data are available, CNN will
outperform traditional machine learning models (Mahapatra,
2018; see Fig. 1). Machine learning models tend to reach a
plateau or show marginal improvement with an increasing
amount of data, as the model has limited complexity to deal
with an increasing amount of data (Zhu et al., 2016).

Thus, the purpose of this study is to assess the amount
of calibration data needed for the CNN model to outperform
machine learning models. PLSR and Cubist are chosen as the
representatives of the machine learning models which have
been found to perform well in soil spectra (e.g. Dangal et
al., 2019). In addition, to be able to predict soil properties
accurately, we need to understand and interpret how a CNN
model can predict soil properties from spectra. This paper
presents the following specific contributions:

– testing the idea that common machine learning models
will reach a plateau in accuracy with an increasing num-
ber of calibration samples,

– establishing the number of calibration samples required
for deep learning to be effective for VIS–NIR–SWIR
spectra,

– establishing how much improvement in accuracy is
achieved when the number of calibration samples for
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Figure 1. Model performance of deep learning vs. other machine learning algorithms as a function of number of samples.

deep learning and machine learning models is in-
creased, and

– demonstrating how to interpret a deep learning model
using a sensitivity analysis.

2 Materials and methods

2.1 Data set and chemical analysis

This data set comprises 12 044 soil samples from 4251
unique sites. The soil samples, collected from several re-
gions in Brazil, i.e. the states of São Paulo, Minas Gerais,
Goiás and Mato Grosso do Sul. This data set is part of the
Brazilian Soil Spectral Library and has been extracted from
Terra et al. (2018) and Bellinaso et al. (2010). The soils were
derived mostly from basalt (volcanic rock) and sedimentary
rocks (sandstone). Each site has up to seven measurements
from the surface up to 1 m depth.

The measured properties include soil texture (sand, silt
and clay), organic carbon (OC) and cation exchange capac-
ity (CEC). The soil particle size was quantified by the pipette
method, as described in Donagema et al. (2011). The method
consists of using a 0.1 M NaOH solution as a dispersing agent
under high-speed mechanical stirring for 10 min. Then, the
sand fraction was separated by sieving, and the clay frac-
tion was measured by sedimentation. The silt was quantified
based on the pre- and post-difference. Organic carbon (OC)
was determined by the Walkley–Black method (Walkley and
Black, 1934), in which OC was oxidised, using K2Cr2O7
in a wet environment, and then measured by titration with
0.1 M ammonium iron sulfate. As described in Donagema et
al. (2011), a 1 M KCl solution was used to extract aluminium,
exchangeable calcium and magnesium. The atomic absorp-

Table 1. Descriptive statistics of the soil properties measurements.

Sand Silt Clay OC CEC
(g kg−1) (mmolc kg−1)

Minimum 50.0 0.0 5.0 1.16 3.4
First quartile 644.0 31.0 112.0 3.48 22.9
Median 757.0 57.0 174.7 5.45 32.7
Mean 703.8 69.7 226.5 6.50 37.7
Third quartile 839.0 93.5 283.3 8.29 46.3
Maximum 969.0 562.0 840.0 40.02 375.7

tion spectrophotometry was used to quantify Ca and Mg
concentrations. Aluminium concentration was determined by
titrating with 0.025 M NaOH. Potassium was extracted us-
ing a Mehlich 1 (0.05 M HCl with 0.0125 M H2SO4) solu-
tion, and the K concentration was measured using the flame
photometry. Afterwards, CEC was determined as the sum of
exchangeable cations. The descriptive statistics of the soil
properties measured are included in Table 1.

2.2 Spectra measurements

The VIS–NIR–SWIR spectra of the soil samples were
obtained with a FieldSpec3 spectroradiometer (Analytical
Spectral Devices, Boulder, Colorado), with a spectra range
of visible to shortwave infrared (350–2500 nm) and a spec-
tra resolution of 1 nm from 350 to 700 nm, of 3 nm from 700
to 1400 nm and of 10 nm from 1400 to 2500 nm. The sensor
scanned an area of approximately 2 cm2, and a light source
was provided by two external 50 W halogen lamps. These
lamps were positioned at a distance of 35 cm from the sam-
ple (non-collimated rays and a zenith angle of 30◦), with an
angle of 90◦ between them. A Spectralon (Labsphere, Inc.,
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North Sutton, NH) standard white plate was scanned every
20 min during calibration. The samples were oven-dried at
45 ◦C for 48 h before being ground and sieved ≤ 2 mm. The
sample was distributed homogeneously in Petri dishes for
spectra measurement. Three replicates (involving a 180◦ turn
of the Petri dish) were obtained for each sample. Each spec-
trum was averaged from 100 readings over 10 s.

2.3 Training and validation

To better represent the soil distribution, we split and subset
the data based on sites. The data set was first randomly split
into 75 % calibration (3188 sites) and 25 % validation (1063
sites) based on the unique sites.

From the calibration data set, smaller sample sizes rang-
ing between 125, 300, 500, 1000, 1500, 2000, 2500 and
2700 unique sites were created, which is equivalent to a
sample size of approximately 350, 840, 1400, 2800, 4200,
5600, 7000 and 7650. Better representations of model per-
formances were provided by 10 replicates of these sizes.
Each sampling for the same number of sites could generate
a slightly different number of samples, since the number of
measurements varied from one site to another. However, the
model performance was evaluated on the common validation
data set using a total of 1063 sites (sample size N = 3017).
Thus, we created a learning curve of the accuracy of the mod-
els of the validation data set as a function of the number of
calibration samples.

2.4 Chemometrics model

Prior to the development of machine learning models (PLSR
and Cubist), the spectra were subjected to some preprocess-
ing methods, namely the (i) conversion to absorbance fol-
lowed by (ii) a Savitzky–Golay smoothing filter, with a win-
dow size of 11 and second-order polynomial (Savitzky and
Golay, 1964), (iii) spectra trimming to discard region that
has a low signal-to-noise ratio (< 500 nm and between 2450–
2500 nm) and (iv) a standard normal variate (SNV) transfor-
mation (Barnes et al., 1989). For the CNN model, the spectra
were only normalised with SNV before being fed into the
model. Our previous research (Ng et al., 2019) found that
CNN has its own filtering algorithm that makes preprocess-
ing unnecessary. This filtering approach will be discussed in
the results section.

2.5 PLSR model

PLSR is one of the standard and most commonly used mod-
els with spectroscopy data. It is a linear chemometric regres-
sion model that projects spectra into latent variables that ex-
plain the variances within the spectra and the response vari-
ables (Wold et al., 1983). The optimal number of latent vari-
ables used in the PLSR regression that resulted in the small-
est root mean square error (RMSE) using the cross-validation

Table 2. Architecture of the convolutional neural network model.

Type Shared Filter size No. of filters Activation

Convolutional Yes 20 32 ReLUs
Max pooling Yes 2 – –
Convolutional Yes 20 64 ReLUs
Max pooling Yes 5 – –
Convolutional Yes 20 128 ReLUs
Max pooling Yes 5 – –
Convolutional Yes 20 256 ReLUs
Max pooling Yes 5 – –
Drop out (0.4) Yes – – –
Flatten Yes – – –
Fully connected No – 100 ReLUs
Drop out (0.2) No – – –
Fully connected No – 1 Linear

ReLUs – rectified linear units.

approach was used to create the models. PLSR was imple-
mented in the R statistical software (R Core Team, 2019) us-
ing the “pls” package (Mevik et al., 2018).

2.6 Cubist model

Cubist is a rule-based data mining model, which is an ex-
tension of the M5 model tree by Quinlan (1993). Cubist has
been used successfully in soil spectroscopy studies and, in
many cases, has been found to perform better than PLSR and
other machine learning models (Dangal et al., 2019). Cubist
creates one or more rules so that, if the rules are met, a cer-
tain linear model can be utilised to predict the target task.
The model was evaluated using the “Cubist” package (Kuhn
and Quinlan, 2018) in R.

2.7 CNN model

The CNN model is composed of three types of layers, namely
the convolutional, pooling and fully connected layer. The
convolutional layer extracts features from the inputs, the
pooling layer reduces the dimensionality of the input feature
and the fully connected layer connects the outputs from pre-
vious layers to the desired target outputs. The CNN model
utilised in this study was derived from our previous study (Ng
et al., 2019), in which the spectra were fed into the model as
1D data. The architecture of the CNN model is included in
Table 2 and Fig. 2. Some of the layers within the network are
shared to enable simultaneous output predictions.

The CNN model was trained with an initial learning rate
of 0.001 and an Adam optimiser (Kingma and Ba, 2014).
The network was trained using a batch size of 50 and a max-
imum epoch of 200. For model optimisation purposes, the
calibration data are further divided into a 75 % training and a
25 % testing set. Drop out, early stopping and reduced learn-
ing rates are used as a regularisation technique to prevent
network overfitting. For further details of the CNN model,
the reader is referred to Ng et al. (2019). The CNN model
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Figure 2. Architecture of the 1D convolutional neural network (CNN) model.

was implemented in Python (version 3.5.1; Python Software
Foundation, 2017) using the Keras library (version 2.1.2;
Chollet, 2015) and TensorFlow (version 1.4.1; Abadi et al.,
2015) back end.

All the model performances were compared in terms of the
coefficient of determination (R2) and the root mean square
error (RMSE), bias and ratio of performance to interquar-
tile distance (RPIQ) values based on the validation data set.
Generally, larger values of R2 and RPIQ and smaller bias and
RMSE indicate better model performance.

2.8 Sensitivity analysis: evaluating important
wavelengths

To uncover how CNN predicts different soil properties, a sen-
sitivity analysis was conducted to assess the importance of
each wavelength in contributing to predictions. Evaluating
the sensitivity of the model can be done in several ways; for
example, Cui and Fearn (2018) calculated the sensitivity of
a CNN model for NIR by taking a numerical partial deriva-
tive of the output with respect to each wavelength. For wave-
length i, the sensitivity S was calculated as follows:

Si =
f (X1, . . .,Xi + ε, . . .,Xn)− f (X)

ε
, (1)
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where X is the reflectance spectra, f (X)i is the CNN pre-
diction using the spectra, and ε is a small number. The idea
is that if wavelength i has an important contribution to the
prediction, then a small perturbation to the reflectance value
will create a large change in the prediction.

In our previous study (Ng et al., 2019), we calculated the
sensitivity as a function of the variance of the model for each
window of spectra. Here, we calculated the sensitivity based
on the variance principle as an alternative approach, as fol-
lows:

Si =
Var

(
f (X1, . . .,Xi, . . .,Xn)− f

(
X

))
Var(Y )

, (2)

where Var is the variation calculation, f (X1, . . .,Xi, . . .,Xn)
is the prediction of spectra due to the variation in wavelength
i with other wavelengths held constant at their mean values,
and f

(
X

)
is the prediction value using the mean values of the

spectra and Y is the observed values of the target variable. In
essence, we calculated how the model varied in comparison
to the observations as a function of wavelength.

The current sensitivity analysis (Eq. 2) considered the ac-
tual variance of the data for a better approximation of the
wavelength’s sensitivity. To calculate the variance sensitivity,
two new data frames were created. The first data frame con-
tained data which was the average of all the validation spectra
(X), and the second contained modified average spectra (Xi)
in which some of the average measurements were replaced
with the actual spectra reflectance at a wavelength width of
5 nm.

The illustrations of the process of deriving new data
frames are included in Fig. 3. Both data frames were then
fed into the pretrained CNN model (f ( )). The variance be-
tween the average and modified average spectra were then
compared to the actual variance of the target properties as a
measure of the model sensitivity (Eq. 2).

3 Results

3.1 VIS–NIR–SWIR spectra characteristics

Large variability within the soil properties and texture could
potentially influence the soil spectra characteristics (shown
in Fig. 4). In general, there was an increase in reflectance
between 400 and 1000 nm, with several prominent absorp-
tion features at 1400, 1900 and 2200 nm. There are absorp-
tion features in the VIS–NIR (400–1000 nm), which are re-
lated to iron oxides, such as haematite (Fe2O3) and goethite
(FeOOH; Clark, 1999). Absorption near 1400 nm is associ-
ated with the first overtone of an O–H stretch vibration of
water or metal–O–H vibration, while absorption is 1900 nm
is combination vibrations of water related to H–O–H bend
and O–H stretch (Viscarra Rossel et al., 2009). Absorption
in the 2100–2400 nm region is related to the combination vi-
brations of minerals. Generally, spectra that have a higher

Table 3. Results of model validation for the prediction of various
soil attributes using the full calibration data set.

Model Properties Unit R2 RMSE Bias RPIQ

PLSR Sand g kg−1 0.79 91.47 2.74 1.29
Silt 0.47 41.58 −1.78 0.67
Clay 0.80 73.01 −0.65 0.87
OC 0.48 2.89 0.02 0.70

CEC mmolc kg−1 0.52 16.77 −0.17 0.57

Cubist Sand g kg−1 0.78 89.66 1.28 1.19
Silt 0.45 38.68 −2.06 0.67
Clay 0.81 69.65 −0.23 0.92
OC 0.54 2.80 −0.13 0.70

CEC mmolc kg−1 0.52 17.03 −0.93 0.59

CNN Sand g kg−1 0.85 77.28 −0.16 1.52
Silt 0.58 37.09 −1.74 0.75
Clay 0.86 60.78 −0.53 1.05
OC 0.69 2.22 −0.06 0.91

CEC mmolc kg−1 0.68 13.73 −0.76 0.69

OC – organic carbon; CEC – cation exchange capacity.

clay content would show smaller reflectance (greater absorp-
tion) values in comparison to those with lower clay content.
The representative samples of the VIS–NIR–SWIR spectra
before and after preprocessing were included in Fig. 4.

3.2 Visualisation of the spectra within CNN model

An attempt to take a look at what the CNN model actu-
ally learns was conducted. As the raw reflectance spectrum
was fed into the CNN model, it passed through a convolu-
tional layer which extracted information from the spectra.
Filters from the first two convolutional layers were included
in Fig. 5. Though only raw spectra were fed into the CNN
model, we could see that the spectra underwent some spec-
tral preprocessing within each filter of the layers. Some of
the filters shown in the first convolution layer looked like
the input spectra pattern (filter nos. 3, 4 and 10), and some
of them mimicked the transformation pattern, namely ab-
sorbance (filter nos. 1, 5, 6, 7, 9, 13 and 16) and deriva-
tives (filter nos. 2, 8, 11, 12, 14 and 15). The spectrum be-
came smoother when they passed through the second con-
volutional layer, where some filters only accentuated certain
peaks (Fig. 5).

3.3 Prediction of soil properties and model comparison

The model performances for the validation data set using the
full calibration data (nsite = 3188, N = 9027) for various soil
properties and chemometrics model were presented in Ta-
ble 3. The CNN model outperformed both Cubist and PLSR
models (in terms of higher R2 and RPIQ and lower RMSE).

The performance was achieved using the CNN model
with the prediction of sand (R2

= 0.85; RPIQ= 1.52), silt
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Figure 3. Illustration of the sensitivity analysis process, with (a) the validation spectra, (b) the overall average of the validation spectra and
(c) the modified average of the validation spectra.

Figure 4. Visible, near and shortwave infrared (VIS–NIR–SWIR) spectra of 10 soil samples without spectral preprocessing (a) and with
spectral preprocessing (b).

(R2
= 0.58; RPIQ= 0.75), clay (R2

= 0.86; RPIQ= 1.05),
OC (R2

= 0.69; RPIQ= 0.91) and CEC (R2
= 0.68;

RPIQ= 0.69). Both the PLSR and Cubist had similar perfor-
mance for the prediction of the various properties. The PLSR
model achieved R2 of 0.79, 0.47, 0.80, 0.48 and 0.52 and
RPIQ of 1.29, 0.67, 0.87, 0.70 and 0.57 for the prediction
of sand, silt, clay, OC and CEC, respectively. Meanwhile,
the Cubist model achieved R2 of 0.78, 0.45, 0.81, 0.54 and
0.52 and RPIQ of 1.19, 0.67, 0.92, 0.70 and 0.59 for the pre-
diction of sand, silt, clay, organic carbon and CEC, respec-
tively. Nonetheless, in some cases the CNN model prediction
yielded higher bias in the prediction of some soil properties
such as OC and CEC (bias of−0.06 and−0.76, respectively)
than PLSR model (bias of 0.02 and −0.17, respectively) for
the same properties. The Cubist model yielded bias of−0.13
and −0.93 for the prediction of OC and CEC, respectively.

Among all the properties predicted, the sand and clay con-
tent showed the best performance with R2 values greater than
0.75, regardless of the types of model used, ranging from
0.78 to 0.85 and 0.8 to 0.86, respectively. This finding is in
agreement with the ones from Demattê et al. (2016), who
observed good predictions for sand and clay content with R2

of 0.86 and 0.85. Pinheiro et al. (2017) reported a predic-
tion accuracy of 0.62 and 0.78 for the sand and clay content,
respectively. The low performance of the silt predicted can

be linked to errors associated with the laboratory analysis
method in which the silt content is derived from the differ-
ence in the soil mass after the sand and clay content are deter-
mined. The prediction for OC content in our study ranges R2

of 0.48–0.69. Shibusawa et al. (2001) reported R2 of 0.65 for
the prediction of OC, using a slightly different wavelength
region (400–2400 nm). Our prediction of CEC ranges R2 of
0.52–0.68. Chang et al. (2001) and Islam et al. (2003) re-
ported R2 of 0.81 and 0.88, respectively, for the prediction of
CEC. Although some prediction accuracies are slightly lower
than other studies, they are still within an acceptable range.

3.4 Effect of training sample size: learning curve

A total of nine subset models based on the unique sample
sizes were generated to investigate the effect of training a
sample size. The performance comparison of all the models
expressed as average R2 values is illustrated as a learning
curve in Fig. 6. The depicted R2 values are the average per-
formance prediction for all five properties of all 10 replicates,
except for the largest sample size (N = 9027), where a sin-
gle data random split for validation of the data is used. The
learning curve generally follows the common pattern found
in machine learning studies (Figueroa et al., 2012); the per-
formance increased rapidly with an increase in the size of the
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Figure 5. Visualisation of the filters in the first two convolutional layers within the 1D convolutional neural network (CNN) model of the
visible, near and shortwave infrared (VIS–NIR–SWIR) spectra.

training set from around 350 to 1400. For PLSR and Cubist,
the growth in performance became slower after it reached
2800 samples. The PLSR performance reached a plateau af-
ter 4000 samples, while the increase in performance in Cubist
was marginal after 5500 samples.

In general, the PLSR and Cubist models tended to perform
better when the sample size was relatively small (< 1500).
When the sample size was approximately 1800, there was
only a small difference in the performances for all mod-
els. However, when the sample size was further increased
(> 2000), the CNN model started to show a better perfor-
mance in comparison to both PLSR and Cubist models. The
effectiveness of PLSR and Cubist models reached a plateau
at approximately 4000 and 5500 samples, respectively, while
the performance of CNN was still increasing, as depicted in
the theoretical curve (Fig. 1). The slight drop in Cubist’s per-
formance at sample size 9027 was because there was only
one realisation of data split (75 % of the data).

We further compared the average model performance
based on the RMSE ratios of machine learning models
against the CNN model (Fig. 7). This comparison was devel-
oped using the model performance for each unique property,
and the variances presented were based on 10 simulations. If
a particular X model performs better than the Y model it is

Figure 6. Model performances (in terms of average R2 for five soil
properties) as a function of sample size using partial least squares
regression (PLSR), Cubist and convolutional neural network (CNN)
models based on 10 simulations. The value for the largest sample
size (N = 9027) is a single realisation 75 % of the data.
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Figure 7. Model performances in terms of root mean square error
(RMSE) ratios of (a) partial least squares regression (PLSR) over
Cubist model, (b) PLSR over convolutional neural network (CNN)
model and (c) Cubist over CNN as an average of five soil properties,
based on various sample size using 10 simulations. The red dotted
line represents a 1 : 1 RMSE ratio.

compared against, then the RMSE ratios of X/Y should be
less than one.

Upon comparing the RMSE ratios of the PLSR and Cubist
models, we found that PLSR performed better than the Cu-
bist model when the sample size was less than 1400. The Cu-
bist model performed better than the PLSR model as the sam-
ple size was increased. Using the RMSE ratios of PLSR and
CNN models, PLSR was found to perform better than CNN
when the sample was less than 1400 (Fig. 7). Similar perfor-
mance of both PLSR and CNN models was achieved when
the sample size was approximately 1400. In terms of RMSE
ratios of Cubist and CNN, the CNN model performed better
overall in comparison to the Cubist model, regardless of sam-
ple size. This was slightly different to the one that was ob-
served when only the R2 parameter was utilised. The RMSE
ratios of Cubist and CNN models seemed to vary more for
a smaller sample size (longer whisker). When the sample
size is approximately 850, both models seemed to perform
similarly. A portion of the model performed better, while the
remainder performed worse. As the calibration sample size
increased, the CNN model performed better in comparison

to the Cubist model. Thus, it can be recommended that the
current CNN model structure is most efficient for VIS–NIR–
SWIR spectra modelling with sample sizes above 2000. CNN
can still be used for a small number of samples, but its per-
formance is not better than PLSR or Cubist.

3.5 Sensitivity analysis

The critique of CNN is that it is a complex model and a black
box. To uncover how the CNN model works, a sensitivity
analysis was conducted to show how CNN predicts each of
the soil properties, as illustrated in Fig. 8. Only certain parts
of the spectra were used by the CNN model for prediction,
which corresponded to the soil properties and composition.
The important wavelengths for the prediction of CEC are be-
tween the regions of 1600 and 2000 nm. This result is similar
to the observations made by Lee et al. (2009) on the sur-
face horizon data set, where 1772 and 1805 nm are essential
for predicting the CEC. The presence of high CEC is often
linked to the presence of OC and clay content. It is interest-
ing that the same region is important for predicting organic
carbon but not clay content. Aside from the same region used
by CEC, the wavelengths’ region between 1100 and 1200 nm
is also deemed relevant by the CNN model for the predic-
tion of OC content. This finding is slightly different to those
reported by Lee et al. (2009) in which the important wave-
lengths reported are at 1772, 1871, 2069, 2246, 2351 and
2483 nm for the profile data set and 1871, 2072 and 2177 nm
for the surface horizon data set.

Similar wavelength regions are deemed to be important
for predicting the soil texture, although the importance var-
ied slightly among the types of texture of interest (sand, silt
and clay) at wavelengths between 500 and 1800 nm. The im-
portant wavelengths for the prediction of sand and clay con-
tent share a higher similarity in comparison to those of silt
content prediction. The most crucial wavelength identified
is around 850 nm for the prediction of sand and clay con-
tent and around 1100 nm for the prediction of silt content.
These observations are also different from those reported by
Demattê (2002) and Lee et al. (2009), where the important
wavelengths for the prediction of soil texture are at 1800–
2400 nm. In particular, the soil texture prediction found in the
CNN model is strongly related to hematite and/or goethite, -
OH and Al–OH groups from kaolinite (Viscarra Rossel and
Behrens, 2010; Pinheiro et al., 2017; Fang et al., 2018).

We also compare important wavelengths from the ma-
chine learning models against the one from the deep learn-
ing model for the prediction of OC, as an example. Common
wavelengths found to be related to the organic carbon predic-
tions are 1100, 1600, 1700–1800, 2000 and 2200–2400 nm
(Dalal and Henry, 1986; Stenberg et al., 2010).

As a comparison, we calculated important wavelengths
used in the PLSR and Cubist models. The important wave-
lengths utilised in the PLSR model were derived based on
the absolute value of the regression coefficients. The height
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Figure 8. Sensitivity analysis of the visible, near and shortwave infrared (VIS–NIR–SWIR) spectra in predicting various soil properties using
the convolutional neural network (CNN) model. The graph depicts the sensitivity index (calculated from Eq. 2) for different soil properties
as a function of wavelength.

of the line indicates the importance of particular wavelengths
for the determination of organic carbon content in the soil.
Important wavelengths identified for the prediction of or-
ganic carbon were 500–700, 1400 and 1715 nm.

The wavelengths used in the Cubist model were derived
based on model usage, either as predictors (blue lines) or
conditions (pink lines) (Fig. 9). Some of the wavelengths
used in the Cubist model are similar to those observed in
the PLSR model, particularly the visible (500–700 nm) and
shortwave infrared regions (1400 and 1900 nm).

4 Discussion

4.1 Understanding the CNN models

While conventional PLSR and machine learning models re-
quire preprocessing for the spectra input, the CNN model
takes raw spectra as inputs. CNN has been shown to be a suc-
cessful end-to-end learning model which learns feature auto-
matically while minimising hand-crafted preprocessing pro-
cesses. Upon taking a closer look at the various filters within
the convolutional layers, we found that the filters behaved
like spectral preprocessing methods. It is interesting to note
that, using the raw spectra input, various spectral preprocess-
ing that was commonly used within spectroscopy could be
observed within the layer itself. Given the various complexi-
ties within the CNN model, the use of spectral preprocessing

prior to being fed is unnecessary. This advantage opens up
possibilities for developing a highly accurate chemometrics
model, which also plays a role in automatic spectral prepro-
cessing.

CNN has been proven to be extremely successful; how-
ever, how it works remains largely a mystery as it are buried
in layers of computations (Tsakiridis et al., 2020). Sensitiv-
ity analysis enabled us to see the inner workings of the CNN
model better. We could better understand which wavelength’s
features are essential to the spectra when used in develop-
ing the regression prediction. Important wavelengths derived
from the sensitivity analysis based on the CNN model looked
slightly different from those of the PLSR and Cubist models.
Wavelengths around the 1700 nm region were deemed to be
the most important, followed by those in the 1150 nm region.
Nonetheless, some of the important regions overlapped. It is
also worth noting that the model did not use the visible part
of the spectra for prediction. In comparison to the sensitivity
of MIR spectra in a previous study (Ng et al., 2019), the NIR
model’s sensitivity index was much broader, which reflected
NIR’s characteristic broad peak.

Although all three methods used different ways to derive
important wavelengths, the PLSR model tended to use most
parts of the spectra. When irrelevant wavelengths are in-
cluded in model development, it may reduce the model per-
formance. The Cubist model seemed more selective in terms
of wavelengths used; however, this example showed that it
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Figure 9. Important wavelengths for the prediction of organic carbon (OC) content using partial least squares regression (PLSR), Cubist and
convolutional neural network (CNN) models.

also used most parts of the VIS–NIR–SWIR spectra. The
CNN model used wavelengths between 800 and 2000 nm,
with emphasis at around 1100 and 1700 nm.

4.2 The effect of calibration sample size to model
performance

PLSR, Cubist and CNN represent models with increased
complexity. By combining results from five soil properties,
we can better show a generalisation of the performance of
the models as a function of training sample sizes. Sim-
pler models (PLSR) performed better at a smaller sample
sizes (< 1400). Cubist outperformed PLSR at sample sizes
> 2000, while CNN outweighed other models when sam-
ple sizes were > 2500. The increase in the accuracy of ma-
chine learning models (PLSR and Cubist) became insignifi-
cant when the number of samples was greater than 5000. This
trend of the plateauing of the performance (maximised up to
a certain point) with an increase in sample size has been ob-
served by several authors (Shepherd and Walsh, 2002; Kuang
and Mouazen, 2012; Ramirez-Lopez et al., 2014; Ng et al.,
2018). This trend is related to the complexity of the model, as
a simpler model (such as PLSR) cannot capture all the vari-
ations in the data. Thus, a more complex model is suitable
when the number of samples is large.

Previous studies by Ng et al. (2019) and Padarian et
al. (2019) showed that CNN performed better than PLSR and
Cubist when the model was trained with more than 10 000

samples. However, there were also studies using CNN with
a small number of training samples. This study showed that
the CNN model only outperformed PLSR and Cubist models
when the sample size was greater than 2000. As the sam-
ple size increases, so the efficiency of the CNN model is
increased. We observed a larger reduction in RMSE (CNN
compared to the other two models) with an increasing cali-
bration sample size. Thus, we recommend using a minimum
of 2000 samples to train the CNN model for the VIS–NIR–
SWIR spectra. To further improve the performance of the
CNN model, simultaneous prediction of soil properties could
also be implemented within the model.

The advantage of using deep learning on a small number
of samples is minimal, as CNN is a data-hungry model; it
is also more computationally expensive than the typical ma-
chine learning models. While our results pertain to the spec-
tra set from Brazil and a particular structure of the CNN, we
believe our results can serve as a guide for the number of
samples needed to create a better deep learning model. Fu-
ture research could test this idea on larger and more variable
data sets (e.g. a global spectra library with more than 100 000
samples) to see if a more complex and deeper network of
CNN can handle such data set.
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5 Conclusions

We assessed the effect of the training sample size and identi-
fied important wavelengths in predicting various soil proper-
ties using Cubist and CNN models. Here, we found that, with
its current model structure, CNN is more accurate than ma-
chine learning models when the number of calibration sam-
ples is above 2000. The more complex and deeper the net-
work of a deep learning model, the more likely it will need
a larger number of samples for training. PLSR and Cubist
models perform less accurately than the CNN model as sam-
ple size increases, and both models reached a plateau after a
sample size of 4000–5000. Meanwhile, the performance of
CNN still increased until the maximum number of data used
in this study (N = 9000) was reached. Future studies should
explore larger data sets to test the generalisation of the accu-
racy vs. sample size and to explore if the deep learning CNN
model ever reaches a plateau in accuracy.
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