Articles | Volume 6, issue 2
https://doi.org/10.5194/soil-6-389-2020
https://doi.org/10.5194/soil-6-389-2020
Original research article
 | 
18 Aug 2020
Original research article |  | 18 Aug 2020

Game theory interpretation of digital soil mapping convolutional neural networks

José Padarian, Alex B. McBratney, and Budiman Minasny

Related authors

PEATGRIDS: Mapping thickness and carbon stock of global peatlands via digital soil mapping
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333,https://doi.org/10.5194/essd-2024-333, 2024
Revised manuscript under review for ESSD
Short summary
Mapping near real-time soil moisture dynamics over Tasmania with transfer learning
Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, and Darren Kidd
EGUsphere, https://doi.org/10.5194/egusphere-2024-2253,https://doi.org/10.5194/egusphere-2024-2253, 2024
Short summary
Additional soil organic carbon storage potential in global croplands
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73,https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
A new model for intra- and inter-institutional soil data sharing
José Padarian and Alex B. McBratney
SOIL, 6, 89–94, https://doi.org/10.5194/soil-6-89-2020,https://doi.org/10.5194/soil-6-89-2020, 2020
Short summary
Machine learning and soil sciences: a review aided by machine learning tools
José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020,https://doi.org/10.5194/soil-6-35-2020, 2020
Short summary

Related subject area

Soil and methods
Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022,https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
On the benefits of clustering approaches in digital soil mapping: an application example concerning soil texture regionalization
István Dunkl and Mareike Ließ
SOIL, 8, 541–558, https://doi.org/10.5194/soil-8-541-2022,https://doi.org/10.5194/soil-8-541-2022, 2022
Short summary
An open Soil Structure Library based on X-ray CT data
Ulrich Weller, Lukas Albrecht, Steffen Schlüter, and Hans-Jörg Vogel
SOIL, 8, 507–515, https://doi.org/10.5194/soil-8-507-2022,https://doi.org/10.5194/soil-8-507-2022, 2022
Short summary
Identification of thermal signature and quantification of charcoal in soil using differential scanning calorimetry and benzene polycarboxylic acid (BPCA) markers
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022,https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions
Yuanyuan Yang, Zefang Shen, Andrew Bissett, and Raphael A. Viscarra Rossel
SOIL, 8, 223–235, https://doi.org/10.5194/soil-8-223-2022,https://doi.org/10.5194/soil-8-223-2022, 2022
Short summary

Cited articles

Akpa, S. I., Odeh, I. O., Bishop, T. F., Hartemink, A. E., and Amapu, I. Y.: Total soil organic carbon and carbon sequestration potential in Nigeria, Geoderma, 271, 202–215, 2016. a
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., and Khan, M. K.: Medical image analysis using convolutional neural networks: a review, J. Med. Syst., 42, 226, https://doi.org/10.1007/s10916-018-1088-1, 2018. a
Behrens, T., MacMillan, R. A., Rossel, R. A. V., Schmidt, K., and Lee, J.: Teleconnections in spatial modelling, Geoderma, 354, 113854, https://doi.org/10.1016/j.geoderma.2019.07.012, 2019. a
Bui, E. N., Henderson, B. L., and Viergever, K.: Knowledge discovery from models of soil properties developed through data mining, Ecol. Model., 191, 431–446, 2006. a
Casanova, M., Salazar, O., Seguel, O., and Luzio, W.: The soils of Chile, Springer, London, https://doi.org/10.1007/978-94-007-5949-7, 2013. a
Download
Short summary
In this paper we introduce the use of game theory to interpret a digital soil mapping (DSM) model to understand the contribution of environmental factors to the prediction of soil organic carbon (SOC) in Chile. The analysis corroborated that the SOC model is capturing sensible relationships between SOC and climatic and topographical factors. We were able to represent them spatially (map) addressing the limitations of the current interpretation of models in DSM.