Articles | Volume 4, issue 2
https://doi.org/10.5194/soil-4-153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-4-153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors
Cora Vos
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Angélica Jaconi
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Anna Jacobs
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65,
38116 Braunschweig, Germany
Related authors
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019, https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Short summary
Forest soils have a steep carbon gradient from the forest floor to the mineral soil, indicating that carbon is prevented from entry into the soil. Wild boar are effective in mixing the soil when searching for food. In a 6–year field study, we found no significant changes in soil organic carbon stocks in the wild boar treatment plots. However, around 50 % of forest floor carbon was transferred with mixing into mineral soil carbon and increased the stabilised fraction of soil organic carbon.
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022, https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
Short summary
As soil carbon has become a key component of climate-smart agriculture, the demand for high-resolution maps has increased drastically. Meanwhile, machine learning algorithms are becoming more widely used and are opening up new solutions in soil mapping. This paper shows which algorithms perform best, how soil inventory data can be most efficiently used for digital soil mapping, and the different available options and methods to derive high-resolution soil carbon data at the large regional scale.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Short summary
We studied the contribution of litter-derived carbon (C) in the formation of subsoil organic matter (OM). Soil core sampling, 13C field labeling, density fractionation, and water extractions were used to track its contribution to different functional OM fractions down to the deep subsoil. We show that while migrating down the soil profile, OM undergoes a sequence of repeated sorption, microbial processing, and desorption. However, the contribution of litter-derived C to subsoil OM is small.
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019, https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Short summary
Forest soils have a steep carbon gradient from the forest floor to the mineral soil, indicating that carbon is prevented from entry into the soil. Wild boar are effective in mixing the soil when searching for food. In a 6–year field study, we found no significant changes in soil organic carbon stocks in the wild boar treatment plots. However, around 50 % of forest floor carbon was transferred with mixing into mineral soil carbon and increased the stabilised fraction of soil organic carbon.
Annelie Säurich, Bärbel Tiemeyer, Axel Don, Michel Bechtold, Wulf Amelung, and Annette Freibauer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-127, https://doi.org/10.5194/bg-2017-127, 2017
Manuscript not accepted for further review
Short summary
Short summary
Drained organic soils are hotspots of CO2 emissions. Due to mineralisation and mixing with mineral soil, the soil organic carbon (SOC) content of large areas of former peatlands decreased drastically. We evaluated potential CO2 emissions from such soils and true peat by aerobic incubation. Surprisingly, CO2 emissions increased in magnitude and variability with stronger disturbance and lower SOC content. This indicates that mixing peat with mineral soil is not a promising mitigation option.
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary
Short summary
This paper shows that three out of four frequently used methods to calculate soil organic carbon stocks lead to systematic overestimation of those stocks. Stones, which can be assumed to be free of carbon, have to be corrected for in both bulk density and layer thickness. We used data of the German Agricultural Soil Inventory to illustrate the potential bias and suggest a unified and unbiased calculation method for stocks of soil organic carbon, which is the largest terrestrial carbon pool.
M. Gronwald, A. Don, B. Tiemeyer, and M. Helfrich
SOIL, 1, 475–489, https://doi.org/10.5194/soil-1-475-2015, https://doi.org/10.5194/soil-1-475-2015, 2015
M. Köchy, A. Don, M. K. van der Molen, and A. Freibauer
SOIL, 1, 367–380, https://doi.org/10.5194/soil-1-367-2015, https://doi.org/10.5194/soil-1-367-2015, 2015
Short summary
Short summary
Using ranges for variables in a model of organic C stocks of the top 1m of soil on a global 0.5° grid, we assessed the (un)certainty of changes in stocks over the next 75 years. Changes are more certain where land-use change strongly affects carbon inputs and where higher temperatures and adequate moisture favour decomposition, e.g. tropical mountain forests. Global stocks will increase by 1% with a certainty of 75% if inputs to the soil increase due to CO₂ fertilization of the vegetation.
Related subject area
Soils and biogeochemical cycling
Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization
Isotopic exchangeability reveals that soil phosphate is mobilised by carboxylate anions, whereas acidification had the reverse effect
Calcium is associated with specific soil organic carbon decomposition products
Gradual drying of permafrost peat decreases carbon dioxide production in drier peat plateaus but not in wetter fens and bogs
Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges
Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove
Depth dependence of soil organic carbon additional storage capacity in different soil types by the 2050 target for carbon neutrality
Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach
Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter
Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils
Comprehensive increase in CO2 release by drying–rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude
Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling
Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions
Freeze–thaw processes correspond to the protection–loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)
Investigating the complementarity of thermal and physical soil organic carbon fractions
Cultivation reduces quantities of mineral-organic associations in the form of amorphous coprecipitates
An ensemble estimate of Australian soil organic carbon using machine learning and process-based modelling
What is the stability of additional organic carbon stored thanks to alternative cropping systems and organic waste product application? A multi-method evaluation
Improving measurements of microbial growth, death, and turnover by accounting for extracellular DNA in soils
The influence of land use and management on the behaviour and persistence of soil organic carbon in a subtropical Ferralsol
Dissolved carbon flow to particulate organic carbon enhances soil carbon sequestration
Shifts in controls and abundance of particulate and mineral-associated organic matter fractions among subfield yield stability zones
The six rights of how and when to test for soil C saturation
Cover crops improve soil structure and change organic carbon distribution in macroaggregate fractions
Soil carbon, nitrogen, and phosphorus storage in juniper–oak savanna: role of vegetation and geology
Organic matters, but inorganic matters too: column examination of elevated mercury sorption on low organic matter aquifer material using concentrations and stable isotope ratios
Contrasting potential for biological N2 fixation at three polluted central European Sphagnum peat bogs: combining the 15N2-tracer and natural-abundance isotope approaches
Soil organic carbon stocks did not change after 130 years of afforestation on a former Swiss Alpine pasture
Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil
Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use
Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils
Oil-palm management alters the spatial distribution of amorphous silica and mobile silicon in topsoils
Semantics about soil organic carbon storage: DATA4C+, a comprehensive thesaurus and classification of management practices in agriculture and forestry
Forest liming in the face of climate change: the implications of restorative liming for soil organic carbon in mature German forests
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Effects of returning corn straw and fermented corn straw to fields on the soil organic carbon pools and humus composition
Soil nutrient contents and stoichiometry within aggregate size classes varied with tea plantation age and soil depth in southern Guangxi in China
Land use impact on carbon mineralization in well aerated soils is mainly explained by variations of particulate organic matter rather than of soil structure
Inclusion of biochar in a C dynamics model based on observations from an 8-year field experiment
Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Phosphorus dynamics during early soil development in a cold desert: insights from oxygen isotopes in phosphate
Transformation of n-alkanes from plant to soil: a review
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Soil organic carbon mobility in equatorial podzols: soil column experiments
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon
Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics
Continental-scale controls on soil organic carbon across sub-Saharan Africa
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, and Daniel Epron
SOIL, 11, 457–466, https://doi.org/10.5194/soil-11-457-2025, https://doi.org/10.5194/soil-11-457-2025, 2025
Short summary
Short summary
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter soil methane oxidation. An experiment in Thailand shows that fertilization significantly suppresses methane oxidation in rubber plantation soils, affecting depths up to 60 cm. Without fertilization, deeper soil layers (below 10 cm) actively oxidize methane. These findings suggest that fertilization negatively impacts the methane uptake capacity of deep-layer soils in rubber plantations.
Siobhan Staunton and Chiara Pistocchi
SOIL, 11, 389–394, https://doi.org/10.5194/soil-11-389-2025, https://doi.org/10.5194/soil-11-389-2025, 2025
Short summary
Short summary
Mineral phosphate is a finite resource, so ways must be found to optimise the use of native soil P. We have used isotopic dilution to assess how acidification and the addition of citrate or oxalate modify the lability of soil P in four contrasting soils from the Mediterranean region. Acidification did not mobilise soil P, whereas both carboxylate anions promoted soil-P lability. This suggests that soil amendments and the choice of crops that exude carboxylates could optimise P nutrition.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025, https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
Sergio Aranda-Barranco, Penélope Serrano-Ortiz, Andrew S. Kowalski, and Enrique P. Sánchez-Cañete
SOIL, 11, 213–232, https://doi.org/10.5194/soil-11-213-2025, https://doi.org/10.5194/soil-11-213-2025, 2025
Short summary
Short summary
This study investigated soil respiration and the main factors involved in a semi-arid environment (olive grove). For this purpose, 1 year's worth of automatic multi-chamber measurements was used, accompanied by ecosystem respiration data obtained using the eddy covariance technique. The soil respiration annual balance, Q10 parameter, rain pulses, and spatial and temporal variability of soil respiration are presented in this paper.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, and Daniel P. Rasse
SOIL, 11, 141–147, https://doi.org/10.5194/soil-11-141-2025, https://doi.org/10.5194/soil-11-141-2025, 2025
Short summary
Short summary
Here, we investigated how biochar, a potential C sequestration tool, affects early carbon storage in different soils. We created artificial soils to isolate the impact of soil texture. We found that biochar significantly reduces plant residue’s breakdown in all soil textures but mainly in sandy soils, which naturally hold less carbon. This suggests that biochar could be a valuable tool for improving soil health, especially in sandy soils.
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, and Steven Sleutel
SOIL, 11, 105–119, https://doi.org/10.5194/soil-11-105-2025, https://doi.org/10.5194/soil-11-105-2025, 2025
Short summary
Short summary
Farmers frequently apply fresh organic matter such as crop residues to soil to boost its carbon content. Yet, one burning question remains: does the quantity of applied organic matter affect its decomposition and that of native soil organic matter? Our experiment suggests that smaller application doses might deplete soil organic matter more rapidly, at least in coarser-textured soil. In contrast, applying intermediate or high doses might be a promising strategy for maintaining it.
Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, and Zengchao Geng
SOIL, 11, 85–94, https://doi.org/10.5194/soil-11-85-2025, https://doi.org/10.5194/soil-11-85-2025, 2025
Short summary
Short summary
The differences in organic matter contents and clay mineralogy are the fundamental reasons for the differences in colloidal suspension stability behind the size effects of Anthrosol and Calcisol colloids. The present study revealed the size effects of two alkaline soil colloids on carbon content, clay minerals, surface properties and suspension stability, emphasizing that soil nanoparticles are prone to be more stably dispersed instead of being aggregated.
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
SOIL, 11, 35–49, https://doi.org/10.5194/soil-11-35-2025, https://doi.org/10.5194/soil-11-35-2025, 2025
Short summary
Short summary
We incubated 10 Japanese soils to study CO2 release under drying–rewetting cycles (DWCs). CO2 release was increased by DWCs among all soils, showing soil-by-soil variations in CO2 release increase magnitude. The organo-Al complex was the primary predictor for the increase magnitude, suggesting vulnerability of carbon protection by reactive minerals against DWCs. Microbial biomass decrease by DWCs was also suggested, although its link with the CO2 release increase is still unclear.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025, https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
Ruizhe Wang and Xia Hu
SOIL, 10, 859–871, https://doi.org/10.5194/soil-10-859-2024, https://doi.org/10.5194/soil-10-859-2024, 2024
Short summary
Short summary
This study characterized pore structure and soil organic carbon (SOC) fractions of aggregates during the seasonal freeze–thaw process. Freezing was associated with SOC accumulation, while the early stage of thawing was characterized by SOC loss. In the freezing period, pore structure could enhance SOC accumulation by promoting formation of > 80 μm pores. In the thawing period, pores of < 15 μm might inhibit SOC loss. These results present new perspectives on soil microstructure–SOC interactions.
Vítězslav Vlček, David Juřička, Martin Valtera, Helena Dvořáčková, Vojtěch Štulc, Michaela Bednaříková, Jana Šimečková, Peter Váczi, Miroslav Pohanka, Pavel Kapler, Miloš Barták, and Vojtěch Enev
SOIL, 10, 813–826, https://doi.org/10.5194/soil-10-813-2024, https://doi.org/10.5194/soil-10-813-2024, 2024
Short summary
Short summary
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and various soil properties. Nine plots across an altitudinal range from 10 to 320 m were investigated in the deglaciated region of James Ross Island (Antarctica). Our results indicate that the primary factor influencing the SOC content is likely not altitude or coarse-fraction content; rather, other hard-to-quantify factors, such as the presence of liquid water during the summer period, impact SOC content.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, and Isabelle Basile-Doelsch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2933, https://doi.org/10.5194/egusphere-2024-2933, 2024
Short summary
Short summary
This study shows that cultivating natural soils disrupts crucial mineral-organic associations, leading to carbon loss and reduced soil fertility. By analyzing soil samples from a forest and crop andosols, we found that these associations exist as amorphous coprecipitates (nanoCLICs). Cultivation reduces quantities of nanoCLICs by 50 %, highlighting their vulnerability to environmental changes and the need to develop strategies to preserve them to maintain soil fertility.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Tchodjowiè P. I. Kpemoua, Pierre Barré, Sabine Houot, François Baudin, Cédric Plessis, and Claire Chenu
SOIL, 10, 533–549, https://doi.org/10.5194/soil-10-533-2024, https://doi.org/10.5194/soil-10-533-2024, 2024
Short summary
Short summary
Several agroecological management options foster soil organic C stock accrual. What is behind the persistence of this "additional" C? We used three different methodological approaches and >20 years of field experiments under temperate conditions to find out. We found that the additional C is less stable at the pluri-decadal scale than the baseline C. This highlights the need to maintain agroecological practices to keep these carbon stocks at a high level over time.
Jörg Schnecker, Theresa Böckle, Julia Horak, Victoria Martin, Taru Sandén, and Heide Spiegel
SOIL, 10, 521–531, https://doi.org/10.5194/soil-10-521-2024, https://doi.org/10.5194/soil-10-521-2024, 2024
Short summary
Short summary
Microbial processes are driving the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial death rates currently lack distinct methods to be determined. Here, we propose a new approach to measure microbial death rates. This new approach to determine microbial death rates as well as dynamics of intracellular and extracellular DNA separately will help to improve concepts and models of C dynamics in soils in the future.
Laura Hondroudakis, Peter M. Kopittke, Ram C. Dalal, Meghan Barnard, and Zhe H. Weng
SOIL, 10, 451–465, https://doi.org/10.5194/soil-10-451-2024, https://doi.org/10.5194/soil-10-451-2024, 2024
Short summary
Short summary
Land use change to cropping is known to greatly reduced organic carbon and nitrogen concentrations, but much remains unknown about the mechanisms influencing their persistence in soil. In a soil from a subtropical Australian cropping system, we demonstrate that organic carbon is protected by mineral associations but not particulate forms. Importantly, we also show that reversion from cropping to pasture or plantation can partially restore this organic carbon.
Qintana Si, Kangli Chen, Bin Wei, Yaowen Zhang, Xun Sun, and Junyi Liang
SOIL, 10, 441–450, https://doi.org/10.5194/soil-10-441-2024, https://doi.org/10.5194/soil-10-441-2024, 2024
Short summary
Short summary
Our soil incubation experiment demonstrates that dissolved labile carbon substrate is a significant contributor to the soil particulate organic carbon pool. Dissolved carbon flow to particulate organic carbon is regulated by microbial biomass carbon and soil texture. The soil carbon model underestimates soil carbon sequestration when carbon flow from dissolved substrates to particulate organic carbon through microbial processes is not considered.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Johan Six, Sebastian Doetterl, Moritz Laub, Claude R. Müller, and Marijn Van de Broek
SOIL, 10, 275–279, https://doi.org/10.5194/soil-10-275-2024, https://doi.org/10.5194/soil-10-275-2024, 2024
Short summary
Short summary
Soil C saturation has been tested in several recent studies and led to a debate about its existence. We argue that, to test C saturation, one should pay attention to six fundamental principles: the right measures, the right units, the right dispersive energy and application, the right soil type, the right clay type, and the right saturation level. Once we take care of those six rights across studies, we find support for a maximum of C stabilized by minerals and thus soil C saturation.
Norman Gentsch, Florin Laura Riechers, Jens Boy, Dörte Schweneker, Ulf Feuerstein, Diana Heuermann, and Georg Guggenberger
SOIL, 10, 139–150, https://doi.org/10.5194/soil-10-139-2024, https://doi.org/10.5194/soil-10-139-2024, 2024
Short summary
Short summary
Cover crops have substantial impacts on soil properties, but so far it is not clear how long a legacy effect of cover cropping will remain in the soil. We found that cover crops attenuate negative effects on soil structure that come from soil cultivation. The combination of plants with different litter qualities and rhizodeposits in biodiverse cover crop mixtures can improve the positive effects of cover cropping on soil structure amelioration.
Che-Jen Hsiao, Pedro A. M. Leite, Ayumi Hyodo, and Thomas W. Boutton
SOIL, 10, 93–108, https://doi.org/10.5194/soil-10-93-2024, https://doi.org/10.5194/soil-10-93-2024, 2024
Short summary
Short summary
Tree cover has increased in grasslands worldwide, with juniper and oak trees expanding in the southern Great Plains, USA. Here, we examine how these changes interact with geology to affect soil C, N, and P storage. Soil concentrations of these elements were significantly higher under trees than grasslands but increased more under trees growing on Edwards soils. Our results suggest that geology and vegetation change should be considered when predicting soil storage in dryland ecosystems globally.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Frantisek Veselovsky, Jan Curik, Eva Prechova, Arnost Komarek, and Leona Bohdalkova
SOIL, 9, 623–640, https://doi.org/10.5194/soil-9-623-2023, https://doi.org/10.5194/soil-9-623-2023, 2023
Short summary
Short summary
Biological N2 fixation helps to sustain carbon accumulation in peatlands and to remove CO2 from the atmosphere. Changes in N2 fixation may affect the dynamics of global change. Increasing inputs of reactive N from air pollution should lead to downregulation of N2 fixation. Data from three N-polluted peat bogs show an interplay of N2-fixation rates with 10 potential drivers of this process. N2 fixation was measurable only at one site characterized by high phosphorus and low sulfate availability.
Tatjana C. Speckert, Jeannine Suremann, Konstantin Gavazov, Maria J. Santos, Frank Hagedorn, and Guido L. B. Wiesenberg
SOIL, 9, 609–621, https://doi.org/10.5194/soil-9-609-2023, https://doi.org/10.5194/soil-9-609-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is key player in the global carbon cycle. Afforestation on pastures potentially alters organic matter input and SOC sequestration. We investigated the effects of a Picea abies L. afforestation sequence (0 to 130 years) on a former subalpine pasture on SOC stocks and dynamics. We found no difference in the SOC stock after 130 years of afforestation and thus no additional SOC sequestration. SOC composition was altered due to a modified SOC input following afforestation.
Lauren M. Gillespie, Nathalie Y. Triches, Diego Abalos, Peter Finke, Sophie Zechmeister-Boltenstern, Stephan Glatzel, and Eugenio Díaz-Pinés
SOIL, 9, 517–531, https://doi.org/10.5194/soil-9-517-2023, https://doi.org/10.5194/soil-9-517-2023, 2023
Short summary
Short summary
Forest soil is potentially an important source or sink of greenhouse gases (CO2, N2O, and CH4), but this is affected by soil conditions. We studied how land inclination and soil/litter properties influence the flux of these gases. CO2 and N2O were more affected by inclination than CH4; all were affected by soil/litter properties. This study underlines the importance of inclination and soil/litter properties in predicting greenhouse gas fluxes from forest soil and potential source–sink balance.
Sastrika Anindita, Peter Finke, and Steven Sleutel
SOIL, 9, 443–459, https://doi.org/10.5194/soil-9-443-2023, https://doi.org/10.5194/soil-9-443-2023, 2023
Short summary
Short summary
This study investigated how land use, through its impact on soil geochemistry, might indirectly control soil organic carbon (SOC) content in tropical volcanic soils in Indonesia. We analyzed SOC fractions, substrate-specific mineralization, and net priming of SOC. Our results indicated that the enhanced formation of aluminum (hydr)oxides promoted aggregation and physical occlusion of OC, which is consistent with the lesser degradability of SOC in agricultural soils.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Christian Stiegler, Suria Tarigan, Aiyen Tjoa, and Daniela Sauer
SOIL, 9, 169–188, https://doi.org/10.5194/soil-9-169-2023, https://doi.org/10.5194/soil-9-169-2023, 2023
Short summary
Short summary
Silicon (Si) research could provide complementary measures in sustainably cultivating oil-palm monocultures. Our study shows that current oil-palm management practices and topsoil erosion on oil-palm plantations in Indonesia have caused a spatial distribution of essential Si pools in soil. A lack of well-balanced Si levels in topsoil could negatively affect crop yield and soil fertility for future replanting at the same plantation site. Potential measures are suggested to maintain Si cycling.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Oliver van Straaten, Larissa Kulp, Guntars O. Martinson, Dan Paul Zederer, and Ulrike Talkner
SOIL, 9, 39–54, https://doi.org/10.5194/soil-9-39-2023, https://doi.org/10.5194/soil-9-39-2023, 2023
Short summary
Short summary
Across northern Europe, millions of hectares of forest have been limed to counteract soil acidification and restore forest ecosystems. In this study, we investigated how restorative liming affects the forest soil organic carbon (SOC) stocks and correspondingly ecosystem greenhouse gas fluxes. We found that the magnitude and direction of SOC stock changes hinge on the inherent site characteristics, namely, forest type, soil texture, initial soil pH, and initial soil SOC stocks (before liming).
Junxiao Pan, Jinsong Wang, Dashuan Tian, Ruiyang Zhang, Yang Li, Lei Song, Jiaming Yang, Chunxue Wei, and Shuli Niu
SOIL, 8, 687–698, https://doi.org/10.5194/soil-8-687-2022, https://doi.org/10.5194/soil-8-687-2022, 2022
Short summary
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
Yifeng Zhang, Sen Dou, Batande Sinovuyo Ndzelu, Rui Ma, Dandan Zhang, Xiaowei Zhang, Shufen Ye, and Hongrui Wang
SOIL, 8, 605–619, https://doi.org/10.5194/soil-8-605-2022, https://doi.org/10.5194/soil-8-605-2022, 2022
Short summary
Short summary
How to effectively convert corn straw into humic substances and return them to the soil in a relatively stable form is a concerning topic. Through a 360 d field experiment under equal carbon (C) mass, we found that return of the fermented corn straw treated with Trichoderma reesei to the field is more valuable and conducive to increasing easily oxidizable organic C, humus C content, and carbon pool management index than the direct application of corn straw.
Ling Mao, Shaoming Ye, and Shengqiang Wang
SOIL, 8, 487–505, https://doi.org/10.5194/soil-8-487-2022, https://doi.org/10.5194/soil-8-487-2022, 2022
Short summary
Short summary
Soil ecological stoichiometry offers a tool to explore the distribution, cycling, limitation, and balance of chemical elements. This study improved the understanding of soil organic carbon and nutrient dynamics in tea plantation ecosystems and also provided supplementary information for soil ecological stoichiometry in global terrestrial ecosystems.
Steffen Schlüter, Tim Roussety, Lena Rohe, Vusal Guliyev, Evgenia Blagodatskaya, and Thomas Reitz
SOIL, 8, 253–267, https://doi.org/10.5194/soil-8-253-2022, https://doi.org/10.5194/soil-8-253-2022, 2022
Short summary
Short summary
We combined microstructure analysis via X-ray CT with carbon mineralization analysis via respirometry of intact soil cores from different land uses. We found that the amount of particulate organic matter (POM) exerted a dominant control on carbon mineralization in well-aerated topsoils, whereas soil moisture and macroporosity did not play role. This is because carbon mineralization mainly occurs in microbial hotspots around degrading POM, where it is decoupled from conditions of the bulk soil.
Roberta Pulcher, Enrico Balugani, Maurizio Ventura, Nicolas Greggio, and Diego Marazza
SOIL, 8, 199–211, https://doi.org/10.5194/soil-8-199-2022, https://doi.org/10.5194/soil-8-199-2022, 2022
Short summary
Short summary
Biochar, a solid product from the thermal conversion of biomass, can be used as a climate change mitigation strategy, since it can sequester carbon from the atmosphere and store it in the soil. The aim of this study is to assess the potential of biochar as a mitigation strategy in the long term, by modelling the results obtained from an 8-year field experiment. As far as we know, this is the first time that a model for biochar degradation has been validated with long-term field data.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL, 8, 1–15, https://doi.org/10.5194/soil-8-1-2022, https://doi.org/10.5194/soil-8-1-2022, 2022
Short summary
Short summary
Phosphorus (P) is essential for life. We studied microbial processes driving the P cycle in soils developed on the same rock but with different ages (0–100 years) in a cold desert. Compared to previous studies under cold climate, we found much slower weathering of P-containing minerals of soil development, likely due to aridity. However, microbes dominate short-term dynamics and progressively redistribute P from the rock into more available forms, making it available for plants at later stages.
Carrie L. Thomas, Boris Jansen, E. Emiel van Loon, and Guido L. B. Wiesenberg
SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, https://doi.org/10.5194/soil-7-785-2021, 2021
Short summary
Short summary
Plant organs, such as leaves, contain a variety of chemicals that are eventually deposited into soil and can be useful for studying organic carbon cycling. We performed a systematic review of available data of one type of plant-derived chemical, n-alkanes, to determine patterns of degradation or preservation from the source plant to the soil. We found that while there was degradation in the amount of n-alkanes from plant to soil, some aspects of the chemical signature were preserved.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021, https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Short summary
Transfer of organic C from topsoil to deeper horizons and the water table is little documented, especially in equatorial environments, despite high primary productivity in the evergreen forest. Using column experiments with podzol soil and a percolating solution sampled in an Amazonian podzol area, we show how the C-rich Bh horizon plays a role in natural organic matter transfer and Si, Fe and Al mobility after a kaolinitic layer transition, thus giving insight to the genesis of tropical podzol.
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021, https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
Short summary
Drought and flooding challenge agricultural systems and their management globally. Here we investigated the response of soils from long-term agricultural field sites with simple and diverse crop rotations to either drought or flooding. We found that irrespective of crop rotation complexity, soil and microbial properties were more resistant to flooding than to drought and highly resilient to drought and flooding during single or repeated stress pulses.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Cited articles
Aitkenhead, J. A. and Mcdowell, W. H.: Soil C?: N ratio as a predictor of
annual riverine DOC flux at local and global scales, Global Biogeochem. Cy.,
14, 127–138, 2000.
Alcántara, V., Don, A., Well, R., and Nieder, R.: Deep ploughing
increases agricultural soil organic matter stocks, Glob. Change Biol., 22,
2939–2956, https://doi.org/10.1111/gcb.13289, 2016.
Baker, J. M., Ochsner, T. E., Venterea, R. T., and Griffis, T. J.: Tillage
and soil carbon sequestration-What do we really know?, Agr. Ecosyst.
Environ., 118, 1–5, https://doi.org/10.1016/j.agee.2006.05.014, 2007.
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting
contents of carbon and its component fractions in Australian soils from
diffuse re fl ectance mid-infrared spectra, Soil Res., 51, 577–595, 2013.
Bambalov, N.: Dynamics of organic matter in peat soil under the conditions of
sand-mix culture during 15 years, Int. Agrophys., 13, 269–272, 1999.
Bolinder, M. A., Angers, D. A., and Dubuc, J. P.: Estimating shoot to root
ratios and annual carbon inputs in soils for cereal crops, Agr. Ecosyst.
Environ., 63, 61–66, https://doi.org/10.1016/S0167-8809(96)01121-8, 1997.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Certini, G., Vestgarden, L. S., Forte, C., and Strand, L. T.: Litter
decomposition rate and soil organic matter quality in a patchwork heathland
of southern Norway, SOIL, 1, 207–216, https://doi.org/10.5194/soil-1-207-2015, 2015.
Chan, K. Y., Heenan, D. P., and Oates, A.: Soil carbon fractions and
relationship to soil quality under different tillage and stubble management,
Soil Till. Res., 63, 133–139, 2002.
Chang, C., Laird, D., and Mausbach, M. J.: Near-Infrared Reflectance
Spectroscopy – Principal Components Regression Analyses of Soil Properties,
Soil Sci. Soc. Am. J., 65, 480–490, https://doi.org/10.2136/sssaj2001.652480x, 2001.
Chimento, C., Almagro, M., and Amaducci, S.: Carbon sequestration potential
in perennial bioenergy crops?: the importance of organic matter inputs and
its physical protection, GCB Bioenergy, 8, 111–121, https://doi.org/10.1111/gcbb.12232,
2016.
Christensen, B. T.: Physical fractionation of soil and structural and
functional complexity in organic matter turnover, Eur. J. Soil Sci., 52,
345–353, https://doi.org/10.1046/j.1365-2389.2001.00417.x, 2001.
Cozzolino, D. and Moro, A.: Potential of near-infrared reflectance
spectroscopy and chemometrics to predict soil organic carbon fractions, Soil
Till. Res., 85, 78–85, https://doi.org/10.1016/j.still.2004.12.006, 2006.
Dalal, R. C., Allen, D. E., Wang, W. J., Reeves, S., and Gibson, I.: Organic
carbon and total nitrogen stocks in a Vertisol following 40 years of
no-tillage, crop residue retention and nitrogen fertilisation, Soil Till.
Res., 112, 133–139, https://doi.org/10.1016/j.still.2010.12.006, 2011.
Daszykowski, M., Walczak, B., and Massart, D. L.: Representative subset
selection, Anal. Chim. Acta, 468, 91–103, 2002.
Devine, S., Markewitz, D., Hendrix, P., and Coleman, D.: Soil Aggregates and
Associated Organic Matter under Conventional Tillage, No-Tillage, and Forest
Succession after Three Decades, PLoS One, 9, 1–12,
https://doi.org/10.1371/journal.pone.0084988, 2014.
Elith, J., Leathwick, J. R., and Hastie, T.: A working guide to boosted
regression trees, J. Anim. Ecol., 77, 802–13,
https://doi.org/10.1111/j.1365-2656.2008.01390.x, 2008.
Frank, S., Tiemeyer, B., Bechtold, M., Lücke, A., and Bol, R.: Effect of
past peat cultivation practices on present dynamics of dissolved organic
carbon, Sci. Total Environ., 574, 1243–1253,
https://doi.org/10.1016/j.scitotenv.2016.07.121, 2017.
Golchin, A., Oades, J. M., Skjemstad, J. O., and Clarke, P.: Study of Free
and Occluded Particulate Organic Matter in Soils by Solid state 13C
CP/MAS NMR Spectroscopy and Scanning Electron Microscopy, Aust. J. Soil Res.,
32, 285–309, 1994.
Helfrich, M., Ludwig, B., Buurman, P., and Flessa, H.: Effect of land use on
the composition of soil organic matter in density and aggregate fractions as
revealed by solid-state 13C NMR spectroscopy, Geoderma, 136, 331–341,
https://doi.org/10.1016/j.geoderma.2006.03.048, 2006.
Hobley, E., Wilson, B., Wilkie, A., Gray, J., and Koen, T.: Drivers of soil
organic carbon storage and vertical distribution in Eastern Australia, Plant
Soil, 390, 111–127, 2015.
Hothorn, T., Hornik, K., and Zeileis, A.: Unbiased Recursive Partitioning?: A
Conditional Inference Framework Unbiased Recursive Partitioning?, J. Comput.
Graph. Stat., 15, 651–674, 2006.
John, B., Yamashita, T., Ludwig, B., and Flessa, H.: Storage of organic
carbon in aggregate and density fractions of silty soils under different
types of land use, Geoderma, 128, 63–79, https://doi.org/10.1016/j.geoderma.2004.12.013,
2005.
Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-term
sensitivity of soil carbon turnover to warming, Nature, 433, 298–301,
https://doi.org/10.129/2002PA000837, 2005.
Kucheryavskiy, S.: mdatools: Multivariate Data Analysis for
Chemometrics, R package version 0.8.2,
https://CRAN.R-project.org/package=mdatools (last access: 4 June 2018), 2017.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter,
Nature, 528, 0–8, https://doi.org/10.1038/nature16069, 2015.
Leiber-Sauheitl, K., Fuß, R., Voigt, C., and Freibauer, A.: High CO2
fluxes from grassland on histic gleysol along soil carbon and drainage
gradients, Biogeosciences, 11, 749–761, https://doi.org/10.5194/bg-11-749-2014, 2014.
Liu, E., Ghirmai, S., Yan, C., Yu, J., Gu, R., Liu, S., He, W., and Liu, Q.:
Long-term effects of no-tillage management practice on soil organic carbon
and its fractions in the northern China, Geoderma, 213, 379–384,
https://doi.org/10.1016/j.geoderma.2013.08.021, 2014.
Luo, Z., Wang, E., and Sun, O. J.: Can no-tillage stimulate carbon
sequestration in agricultural soils? A meta-analysis of paired experiments,
Agr. Ecosyst. Environ., 139, 224–231, https://doi.org/10.1016/j.agee.2010.08.006, 2010.
Nicodemus, K. K., Malley, J. D., Strobl, C., and Ziegler, A.: The behaviour
of random forest permutation-based variable importance measures under
predictor correlation, BMC Bioinformatics, 11, 110,
https://doi.org/10.1186/1471-2105-11-110, 2010.
Oades, J. M.: Soil organic matter and structural stability: mechanisms and
implications for management, Plant Soil, 76, 319–337,
https://doi.org/10.1007/BF02205590, 1984.
Overesch, M.: Kohlenstoff- und Stickstoffumsatz in Sandböden
Niedersachsens, Hochschule Vechta, 2007.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and
fractions to different land-use changes across Europe, Geoderma, 192,
189–201, https://doi.org/10.1016/j.geoderma.2012.08.003, 2013a.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and
fractions to different land-use changes across Europe, Geoderma, 192,
189–201, https://doi.org/10.1016/j.geoderma.2012.08.003, 2013b.
Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B.,
Schumacher, J., and Gensior, A.: Temporal dynamics of soil organic carbon
after land-use change in the temperate zone – carbon response functions as a
model approach, Glob. Change Biol., 17, 2415–2427,
https://doi.org/10.1111/j.1365-2486.2011.02408.x, 2011.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are
systematically overestimated by misuse of the parameters bulk density and
rock fragment content, SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, 2017.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.
F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M.,
Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M.,
Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., v. Wesemael, B.,
Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating organic
carbon fractions with varying turnover rates in temperate agricultural soils
– A comprehensive method comparison, Soil Biology & Biochemistry, in
review, 2018.
Post, M. and Kwon, K. C.: Soil Carbon Sequestration and Land-Use Change?,
Processes and Potential, Glob. Change Biol., 6, 317–328, 2000.
Puget, P., Chenu, C., and Balesdent, J.: Dynamics of soil organic matter
associated with particle-size fractions of water-stable aggregates, Eur. J.
Soil Sci., 51, 595–605, 2000.
Rabbi, S. M. F., Tighe, M., Cowie, A., Wilson, B. R., Schwenke, G., Mcleod,
M., Badgery, W., and Baldock, J.: The relationships between land uses, soil
management practices, and soil carbon fractions in South Eastern Australia,
Agr. Ecosyst. Environ., 197, 41–52, https://doi.org/10.1016/j.agee.2014.06.020, 2014.
Reeves, J. B., Follett, R. F., Mccarty, G. W., Kimble, J. M., Reeves, J. B.,
Follett, R. F., Mccarty, G. W., and John, M.: Can Near or Mid – Infrared
Diffuse Reflectance Spectroscopy Be Used to Determine Soil Carbon Pools?,
Commun. Soil Sci. Plan., 37, 2307–2325, https://doi.org/10.1080/00103620600819461, 2006.
Ross, S. M. and Malcolm, D. C.: Modelling nutrient mobilisation in
intensively mixed peaty heathland soil, Plant Soil, 121, 113–121, 1988.
Rousk, J., Brookes, P. C., and Bååth, E.: Contrasting Soil pH Effects
on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon
Mineralization, Appl. Environ. Microbiol., 75, 1589–1596,
https://doi.org/10.1128/AEM.02775-08, 2009.
Rowe, E. C., Evans, C. D., Emmett, B. A., Reynolds, B., Helliwell, R. C.,
Coull, M. C., and Curtis, C. J.: Vegetation Type affects the Relationship
between Soil Carbon to Nitrogen Ratio and Nitrogen Leaching, Water. Air. Soil
Pollut., 177, 335–347, https://doi.org/10.1007/s11270-006-9177-z, 2006.
Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., and Stahr, K.:
Podzol: Soil of the year 2007, A review on its genesis, occurrence, and
functions, J. Plant Nutr. Soil Sci., 170, 581–597,
https://doi.org/10.1002/jpln.200700135, 2007.
Schmidt, M. W. I., Skjemstad, J. O., Gehrt, E., and Kögel-Knabner, I.:
Charred organic carbon in German chernozemic soils, Eur. J. Soil Sci., 50,
351–365, https://doi.org/10.1046/j.1365-2389.1999.00236.x, 1999a.
Schmidt, M. W. I., Rumpel, C., and Ko, I.: Evaluation of an ultrasonic
dispersion procedure to isolate primary organomineral complexes from soils,
Europ. J. Soil Sci., 50, 87–94, 1999b.
Six, J., Conant, R. T., Paul, E., and Paustian, K.: Stabilization mechanisms
of soil organic matter: Implications for C-saturatin of soils, Plant Soil,
241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Sleutel, S., Leinweber, P., Ara Begum, S., Kader, M. A., Van Oostveldt, P.,
and Neve, S. D.: Composition of organic matter in sandy relict and cultivated
heathlands as examined by pyrolysis-field ionization MS, Biogeochemistry, 89,
253–271, https://doi.org/10.1007/s10533-008-9217-4, 2008.
Sleutel, S., Leinweber, P., Van Ranst, E., Kader, M. A., and Jegajeevagan,
K.: Organic Matter in Clay density Fractions from Sandy Cropland Soils with
Differing Land-Use History, Soil Sci. Soc. Am. J., 75, 521–532, 2011.
Sponagel, H., Grottenthaler, W., Hartmann, K. J., Hartwich, R., Janetzko, P.,
Joisten, H., Kühn, D., Sabel, K. J., and Traidl, R. (Eds.):
Bodenkundliche Kartieranleitung (German manual of soil mapping, KA5), 5th
Edn., Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 2005.
Springob, G. and Kirchmann, H.: C-rich sandy Ap horizons of specific
historical land-use contain large fractions of refractory organic matter,
Soil Biol. Biochem., 34, 1571–1581, https://doi.org/10.1016/S0038-0717(02)00127-X, 2002.
Srinivasarao, C. H., Venkateswarlu, B., Lal, R., Singh, A. K., Kundu, S.,
Vittal, K. P. R., Patel, J. J., and Patel, M. M.: Long-Term Manuring and
Fertilizer Effects on Depletion of Soil Organic Carbon Stocks Under Pearl
Millet-Cluster Bean-Castor Rotation in Western India, L. Degrad. Dev., 25,
173–183, https://doi.org/10.1002/ldr.1158, 2014.
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.: Bias in random
forest variable importance measures: illustrations, sources and a solution,
BMC Bioinformatics, 8, 25, https://doi.org/10.1186/1471-2105-8-25, 2007.
Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S.,
Beyer, C., Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S.,
Förster, C., Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J.,
Hoffmann, M., Höper, H., Jurasinski, G., Leiber-Sauheitl, K.,
Peichl-Brak, M., Roßkopf, N., Sommer, M., and Zeitz, J.: High emissions
of greenhouse gases from grasslands on peat and other organic soils, Glob.
Chang. Biol., 22, 4134–4149, https://doi.org/10.1111/gcb.13303, 2016.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic
matter in temperate soils?: mechanisms and their relevance under different
soil conditions – a review, Eur. J. Soil Sci., 57, 426–445,
https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Wiesmeier, M., Schad, P., Lützow, M. Von, Poeplau, C., Spörlein, P.,
Geuß, U., Hangen, E., Reischl, A., Schilling, B., and Kögel-knabner,
I.: Quantification of functional soil organic carbon pools for major soil
units and land uses in southeast Germany (Bavaria), Agr. Ecosyst. Environ.,
185, 208–220, https://doi.org/10.1016/j.agee.2013.12.028, 2014.
Zaidelman, F. R. and Shvarov, A. P.: Hydrothermic regime, dynamics of
organic matter and nitrogen in drained peaty soils at different sanding
modes, Arch, 45, 123–142, https://doi.org/10.1080/03650340009366117, 2000.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.:
Measured soil organic matter fractions can be related to pools in the RothC
model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x,
2007a.
Zimmermann, M. Ã., Leifeld, J., and Fuhrer, J.: Quantifying soil organic
carbon fractions by infrared-spectroscopy, Soil Biol. Biochem., 39, 224–231,
https://doi.org/10.1016/j.soilbio.2006.07.010, 2007b.
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.
Soil organic carbon sequestration can be facilitated by agricultural management, but its...