Articles | Volume 4, issue 2
https://doi.org/10.5194/soil-4-153-2018
https://doi.org/10.5194/soil-4-153-2018
Original research article
 | 
06 Jun 2018
Original research article |  | 06 Jun 2018

Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors

Cora Vos, Angélica Jaconi, Anna Jacobs, and Axel Don

Related authors

Simulated wild boar bioturbation increases the stability of forest soil carbon
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019,https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017,https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary

Related subject area

Soils and biogeochemical cycling
Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, and Daniel Epron
SOIL, 11, 457–466, https://doi.org/10.5194/soil-11-457-2025,https://doi.org/10.5194/soil-11-457-2025, 2025
Short summary
Isotopic exchangeability reveals that soil phosphate is mobilised by carboxylate anions, whereas acidification had the reverse effect
Siobhan Staunton and Chiara Pistocchi
SOIL, 11, 389–394, https://doi.org/10.5194/soil-11-389-2025,https://doi.org/10.5194/soil-11-389-2025, 2025
Short summary
Calcium is associated with specific soil organic carbon decomposition products
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025,https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Gradual drying of permafrost peat decreases carbon dioxide production in drier peat plateaus but not in wetter fens and bogs
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025,https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Effects of nitrogen and phosphorus amendments on CO2 and CH4 production in peat soils of Scotty Creek, Northwest Territories: potential considerations for wildfire and permafrost thaw impacts on peatland carbon exchanges
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025,https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary

Cited articles

Aitkenhead, J. A. and Mcdowell, W. H.: Soil C?: N ratio as a predictor of annual riverine DOC flux at local and global scales, Global Biogeochem. Cy., 14, 127–138, 2000. 
Alcántara, V., Don, A., Well, R., and Nieder, R.: Deep ploughing increases agricultural soil organic matter stocks, Glob. Change Biol., 22, 2939–2956, https://doi.org/10.1111/gcb.13289, 2016. 
Baker, J. M., Ochsner, T. E., Venterea, R. T., and Griffis, T. J.: Tillage and soil carbon sequestration-What do we really know?, Agr. Ecosyst. Environ., 118, 1–5, https://doi.org/10.1016/j.agee.2006.05.014, 2007. 
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting contents of carbon and its component fractions in Australian soils from diffuse re fl ectance mid-infrared spectra, Soil Res., 51, 577–595, 2013. 
Bambalov, N.: Dynamics of organic matter in peat soil under the conditions of sand-mix culture during 15 years, Int. Agrophys., 13, 269–272, 1999. 
Download
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.
Share