Articles | Volume 4, issue 2
SOIL, 4, 153–167, 2018
https://doi.org/10.5194/soil-4-153-2018
SOIL, 4, 153–167, 2018
https://doi.org/10.5194/soil-4-153-2018

Original research article 06 Jun 2018

Original research article | 06 Jun 2018

Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors

Cora Vos et al.

Related authors

Simulated wild boar bioturbation increases the stability of forest soil carbon
Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos
Biogeosciences, 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019,https://doi.org/10.5194/bg-16-4145-2019, 2019
Short summary
Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content
Christopher Poeplau, Cora Vos, and Axel Don
SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017,https://doi.org/10.5194/soil-3-61-2017, 2017
Short summary

Related subject area

Soils and biogeochemical cycling
Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021,https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Soil organic carbon mobility in equatorial podzols: soil column experiments
Patricia Merdy, Yves Lucas, Bruno Coulomb, Adolpho J. Melfi, and Célia R. Montes
SOIL, 7, 585–594, https://doi.org/10.5194/soil-7-585-2021,https://doi.org/10.5194/soil-7-585-2021, 2021
Short summary
Microbial activity responses to water stress in agricultural soils from simple and complex crop rotations
Jörg Schnecker, D. Boone Meeden, Francisco Calderon, Michel Cavigelli, R. Michael Lehman, Lisa K. Tiemann, and A. Stuart Grandy
SOIL, 7, 547–561, https://doi.org/10.5194/soil-7-547-2021,https://doi.org/10.5194/soil-7-547-2021, 2021
Short summary
The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021,https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Phosphorus dynamics during early soil development in extreme environment
Zuzana Frkova, Chiara Pistocchi, Yuliya Vystavna, Katerina Capkova, Jiri Dolezal, and Federica Tamburini
SOIL Discuss., https://doi.org/10.5194/soil-2021-65,https://doi.org/10.5194/soil-2021-65, 2021
Revised manuscript accepted for SOIL
Short summary

Cited articles

Aitkenhead, J. A. and Mcdowell, W. H.: Soil C?: N ratio as a predictor of annual riverine DOC flux at local and global scales, Global Biogeochem. Cy., 14, 127–138, 2000. 
Alcántara, V., Don, A., Well, R., and Nieder, R.: Deep ploughing increases agricultural soil organic matter stocks, Glob. Change Biol., 22, 2939–2956, https://doi.org/10.1111/gcb.13289, 2016. 
Baker, J. M., Ochsner, T. E., Venterea, R. T., and Griffis, T. J.: Tillage and soil carbon sequestration-What do we really know?, Agr. Ecosyst. Environ., 118, 1–5, https://doi.org/10.1016/j.agee.2006.05.014, 2007. 
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting contents of carbon and its component fractions in Australian soils from diffuse re fl ectance mid-infrared spectra, Soil Res., 51, 577–595, 2013. 
Bambalov, N.: Dynamics of organic matter in peat soil under the conditions of sand-mix culture during 15 years, Int. Agrophys., 13, 269–272, 1999. 
Download
Short summary
Soil organic carbon sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools. We assessed how soil organic carbon is distributed among C pools in Germany, identified factors influencing this distribution and identified regions with high vulnerability to C losses. Explanatory variables were soil texture, C / N ratio, soil C content and pH. For some regions, the drivers were linked to the land-use history as heathlands or peatlands.